Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications
Abstract
:1. Introduction
1.1. Basics of Electrospinning
1.2. Types of Electrospinning
1.3. Parameters of Electrospinning
1.4. Types of Polymeric Matrices
2. Electrospun Fibers Used for Smart and Protective Clothing
2.1. Antimicrobial Protection
2.1.1. PU-Based
2.1.2. CS-Based
2.1.3. PVA-Based
2.1.4. PCL-Based
2.1.5. CA-Based
2.1.6. Other Polymers
2.2. Micro-Nanoparticle Filtration
2.2.1. CS: PEO-Based
2.2.2. PVC: PU-Based
2.2.3. CA-Based
2.2.4. PLA-Based
2.2.5. Other Polymers
2.3. Air Permeability
2.3.1. PU-Based
2.3.2. Other Polymers
2.4. Water Vapor Breathability
2.4.1. PU-Based
2.4.2. PVA-Based
2.4.3. PLA-Based
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Water Vapor Permeability (Expressed as WVTR) | Target Application | Reference |
---|---|---|---|---|---|---|---|
PU | THF:N,N-dimethylformamide mixture (60:40 v/v) | 13 wt%/v of commercial PU, 10 h of electrospinning, 13 kV voltage, 13 cm tip-to-collector distance, 150 rpm rotating speed, 400 mm/min traverse speed of the drum | Nanofibrous web with a thickness of 252.1 μm and average fiber diameter of 480 nm | 40.67 g/m2/24 h | Protective clothing | [82] | |
PU | THF:N,N-dimethylformamide (DMF) (60:40, v/v) | 13% w/w PU, 2 h electrospinning, 14 kV voltage, 0.6 mL/h feed rate through a 22 G blunt tipped needle, 170 mm adjusting distance between nozzles and collector | Nanofiber layers with an average diameter of fibers 415 nm and a thickness of 0.010 mm | 1.72 × 103 g/m2/24 h | Various applications (sportswear, protective clothing, orthopedic dressing etc.) | [79] | |
PU | N,N-dimethylformamide (DMF) | 18 wt% PU, 15 kV voltage, 0.6 mL/h feed rate, 20 cm tip-to-collector distance, 300 rpm rotating rate of the collector | Fibrous membranes with fibers’ average diameter of 639 nm | ~9.20 × 103 g/m2/24 h | Various applications (protective clothing, water purification, and tissue engineering) | [80] | |
PU | N,N-dimethylacetamide (DMAc) | 12% w/w PU, 13 kV voltage, 10 cm tip-to-collector distance | Fibers with an average diameter of 1.45 μm—PU web/fabric | 9.02 × 103 g/m2/24 h | Protective and specialty textiles | [76] | |
PU | N,N-dimethylformamide (DMF) | 13 wt% PU, 10 kV voltage, feed rate of 0.2 mL/h, 11 cm tip-to-collector distance | Nanofiber web 2-layer fabric system (PU, densely woven polyester) with a thickness of 0.17 mm | ~4.20 × 103 g/m2/24 h | Waterproof and breathable materials | [90] | |
PU | N,N-dimethylformamide (DMF) | 10 wt% PU, 25 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector distance, 680 rpm rotating speed | Nanofibrous webs with a thickness of 50 μm and an average fiber diameter of 200 nm | 1.09 × 103 g/m2/24 h | Various applications | [73] | |
PU, FPU | DMF | - | 4 wt% PU, 0.5 wt% FPU, 20 kV voltage, 2 mL/h feed rate, 15 cm tip-to-collector distance | Microfibrous memrbanes with a thickness of 30 ± 2 μm and an average fiber diameter of 995 nm | 9.21 × 103 g/m2/24 h | Various applications (protective clothing, bioseparation, membrane distillation, tissue engineering and catalyst carriers, etc.) | [88] |
PU, FPU | DMF | 20 wt% PU, 2 wt% FPU, 35 kV voltage, 4 mL/h feed rate, ambient temperature 25 °C, 25 cm tip-to-collector distance | Hydrophobic fibrous membranes with a mean pore size of 1.2 μm and pore length of 50 μm | 11.90 × 103 g/m2/24 h | Protective garments | [91] | |
PU, FPU | LiCl:DMAc ionic liquid | Lithium chloride (LiCl) | 14 wt% PU, 1.75 wt% FPU, 0.006 wt% LiCl, 50 kV voltage, 3 mL/h feed rate, 20 cm tip-to-collector distance | Fibrous membranes with a thickness of 20 ± 2 μm | 10.90 × 103 g/m2/24 h | Various applications (e.g., protective clothing) | [92] |
PU, FPU | DMF:THF (1:1, w/w) | Carbon nanotubes (CNTs) | 1.5 wt% PU/FPU, 1.0 wt% CNTs, 5 kV voltage, 5 mL/h feed rate, 20 cm tip-to-collector distance | Fibrous membranes with a thickeness of 30 ± 2 μm | 9.20 × 103 g/m2/24 h | Various applications (e.g., protective clothing) | [93] |
Ethanol-soluble PU (EPU), FPU | Ethanol | Thymol | 14 wt% EPU, 1:8 w/w FPU/EPU, 8 wt% thymol, 11 kV voltage, 1.5 mL/h feed rate, 12 cm tip-to-collector distance | Nanofibrous membranes with a thickness of 20 ± 2 μm and an average fiber diameter of ~900 nm | 3.56 × 103 g/m2/24 h | Wound dressings, flexible electronic sensors | [94] |
PU | Tetraethoxysilane (TEOS):acetic acid (1:2 w/w) | Hydrophobic SiO2 SNPs | 8.2 wt% PU, 5 wt% SNP, 14 kV voltage, 0.2 mL/h feed rate, 18 cm tip-to-collector distance | Superhydrophobic webs with an average fiber diameter of 752 ± 149 nm | 6.16 × 103 g/m2/24 h | Textile laminate materials | [85] |
PU | DMF:BuAc mixture (4:6 v/v) | Superhydrophobic silica NPs (SSNPs) | 18 wt% PU, 9 wt% SSNPs relative to the PU concentration, 12 kV voltage, 0.6 mL/h feed rate, 100 rpm rotating rate | Hydrophobic nanofibrous webs | 8.07 × 103 g/m2/24 h | Various applications | [95] |
PU | Water | Silicon dioxide (SiO2), PU emulsion, 4,4′-methylenebis-(phenyl isocyanate) (4,4′-MDI) and 3-aminopropyltriethoxysilane (APTES), triethylamine (TEA, AR) (VTEOS:VEtOH:Vwater = 1:4:2) | 16% PU emulsion, 0.4 wt% 4,4′-MDI, 2 wt% APTES, 25 kV voltage, 2 mL/min feed rate, 23 cm tip-to-collector | Superhydrophobic membranes with an average fiber diameter of 245 nm | 10.12 × 103 g/m2/24 h | Waterproof materials | [9] |
PU | N,N-dimethylacetamide (DMAc) | PU elastomer (C4FPU), AgNO3 | 2% C4FPU solution, (0.005 wt% AgNO3) 45 kV voltage, 2 mL/h feed rate, 22 cm tip-to-collector distance | Fibers with diameter of 460 nm | 13.40 × 103 g/m2/24 h | Protective textiles | [96] |
Waterborne PU (WPU) | Water | Polycarbodiimide (PCD) and long-chain alkyl polymer (LAP) emulsions (PCE and LAE), PEO) | 9 wt% PCE, 15 wt% LAE, 0.6 wt% PEO, 40 kV voltage, 4 mL/h feed rate, 22 cm tip-to-collector | Nanofibrous membranes with an average fiber diameter of 548 nm and a thickness of 150 ± 5 μm | 4.89 × 103 g/m2/24 h | Medical hygiene, wearable electronics, water desalination, and oil/water separation | [8] |
Waterborne PU (WPU) | Water | Trimethylolpropane tris (2-methyl-1-aziridine propionate) (TTMA), PEO, Water-based fluoropolymer emulsions (WFE) | 35 wt% PU solid contnent in emulsion, 0.6 wt% PEO, 3 wt% TTMA, 6 wt% WFE, 30 kV voltage, 2 mL/h feed rate, 22 cm tip-to-collector, 50 rpm roller speed | Nanofibrous membranes with an average fiber diameter of 680 nm | 13 × 103 g/m2/24 h | Medical hygiene, wearable electronics and outdoor clothing | [97] |
Siliceous PU (SIPU) | DMAC:acetone (2:3 v/v) | Stearic acid (SA) | 11 wt% SIPU, 0 wt% SA, 25.5 kV voltage, 22 cm tip-to-collector | Nanofibrous membranes with a thickness of 60 ± 5 μm and an average fiber diameter of 210 nm) | 8.9 × 103 g/m2/24 h | Outdoor protective clothing, medical clothing, intelligent clothing and military products | [98] |
Silicon-based PU (Si-PU), PMMA | DMAC:acetone (4:6 v/v) | Octadecanethiol (thiol) and 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra-vinylcyclotetrasiloxane (TMTVSi) | 13 wt% Si-PU/PMMA, 20 wt% TMTVSi, 30 wt% thiol, 25 kV voltage, 0.08 mL/min feed rate, 18 cm tip-to-collector | Nanofibrous membranes with an average fiber diameter of ~470 nm | 7.88 × 103 g/m2/24 h | Protective garments and oil–water separation | [99] |
Silicon-based PU (SiPU) | N, N-dimethylacetamide (DMAc):acetone (6:4) | PMMA, Lithium chloride (LiCl) | 13 wt% Si-PU and PMMA, 7:3 (w/w) Si-PU/PMMA, 0.01 wt% LiCl, 25 kV voltage, 0.48 cm h−1 flow rate, 18 cm tip-to-collector, 80 °C temperature heat treatment | Nanofiber membrane | 9.37 × 103 g/m2/24 h | Protective clothing, outdoor equipment, and high-altitude garment | [100] |
PU, PAMPS | THF:DMF (Nozzle 1: 60:40, Nozzle 2: 0:100) | GO | Nozzle 1: 6 w/w% PU, 12 kV voltage, 0.5 mL/h feed rate, 14 cm tip-to-collector distance Nozzle 2: 20 w/w% PAMPS, 14 kV voltage, 0.1 mL/h feed rate 14 cm tip-to-collector distance, 100 rpm speed of collector, 16 cm/min traverse motion of collector | Nanofibrous membranes | 0.86 × 103 g/m2/24 h | Protective clothing, wound dressing | [84] |
PU, PAMPS | THF:DMF (Nozzle 1: 60:40, Nozzle 2: 0:100) | GO | Nozzle 1: 6 w/v% PU, 12 kV voltage, 0.5 mL/h feed rate 14 cm tip-to-collector distance Nozzle 2: 30 w/w% PAMPS, 0.4 %w/v GO, 14 kV voltage, 0.1 mL/h feed rate, 14 cm tip-to-collector distance 100 rpm speed of collector, 16 cm/min traverse motion of collector | Nanofibrous membranes with mean fiber diameter of 70 nm | ~1.43 × 103 g/m2/24 h | Protective clothing, wound dressing | [101] |
PCL based PU | PCL diol, 4,40-diphenylmethane diisocyanate (MDI), and 1,4-butanediol (BD) | 4 wt% PU, 6.5 kV voltage, 1.0 mL/h feed rate, 5–20 cm tip-to-collector distance | Shape memory PU (SMPU) web with a thickness of 40 μm | ~5.90 × 103 g/m2/24 h | Intelligent clothing material | [81] | |
PAN, PU | N,N-dimethylacetamide (DMAc) | TiO2 NPs, fluorinated acrylic copolymer (FAC) | 10 wt% PAN/PU (8/2 mass ratio), 1 wt% TiO2 NPs, 2 wt% FAC, 30 kV voltage, 1 mL/h feed rate, 20 cm tip-to-collector distance | Nanofibrous membranes with an average diameter of ~350 nm | 12.90 × 103 g/m2/24 h | Various applications (high-altitude garments, protective clothing, covering materials, self-cleaning materials, and other medical products etc.) | [102] |
PU | DMF:THF mixture (3:2 v/v) | 12% w/w PU, 12 kV voltage, 0.8 mL/h feed rate, 13 cm tip-to-collector distance, 300 rpm collector speed | Nanofiber webs with fibers’ average diameter of 890 nm | 0.79 × 103 g/m2/24 h | Army combat, sports uniforms | [77] | |
PU, C6FPU (20:1) | N,N-dimethylacetamide (DMAc) | Lithium chloride (LiCl) | 12 wt% PU, 1.8 wt% C6FPU, 0.004 wt% LiCl, 50 kV voltage, 5 mL/h feed rate, 20 cm tip-to-collector distance, 680 rpm rotating speed | Fibrous membranes with an average fiber diameter of 421 μm and thickness of 19.2 μm | 11.80 × 103 g/m2/24 h | Protective clothing | [106] |
Polycarbonate (PC) | Tetrahydrofuran (THF):dimethylformamide (DMF) (1:1 v/v) | PU | 20 wt% PC, 10 wt% PU, 21 kV voltage, 2.00 mL/h PC feed rate, 1.50 mL/h PU feed rate, 12–13 cm tip-to-collector distance | Nanofibers with a diameter range of 251–1813 nm, specimen thickness 0.240 (0.020) nm | 3.42 × 103 g/m2/24 h | Textile applications | [7] |
CS | Trifluroacetic acid:dichloromethane (2:8 ratios) | ZnO NPs | 13% CS, 65 kV voltage, 13.5 cm distance between spinning electrodes, 8 rpm rotation of drum spinning electrode | Nanoweb with an average fiber diameter of 700–715 nm, coating density of 0.04 g m−2 and mean pore size of 23.8 μm | 0.70 × 103 g/m2/24 h | Next-generation lightweight NBC suit for soldiers | [103] |
PVA | Water | 10 wt% PVA solution, 15 kV voltage, 0.5 mL/h feed rate, 10 cm tip-to-collector | Random orientation network of fibers with diameters of 12–13 μm | 1.44 × 103 g/m2/24 h | Face mask | [87] | |
PLA | Dichloromethane (DCM):N,N-Dimethylformamide (DMF) (7:3 wt/wt), ethanol | TiO2 NPs | 10 wt% PLA, 18 kV voltage, 0.03–0.08 mL/min feed rate, 15 cm tip-to-collector, 10 min | Janus fibrous membrane with an average diameter of about 482 nm | 3.03 × 103 g/m2/24 h | Multifunctional personal protective materials | [104] |
PAN, PVDF | Dimethylformamide (DMF) | Hydrophilic agent JF-8046 | HOPAN/HPLA membranes: 4.5 g PAN powder into 45.5 g DMF, 30 kV voltage, 2 mL h−1 feed rate, 24 cm tip-to-collector, 80 rpm speed of rotating drum, 10 wt% JF-8046, 2 h electrosprayed PVDF membrane: 2 g PVDF pellets into 48 g DMF, 30 kV voltage, 1 mL h−1 feed rate, 10 cm tip-to-collector | HOPAN/HPLA@PVDF membrane with an average fiber diameter of 287 nm | 11.6 × 103 g/m2/24 h (from HPLA@PVDF to HOPAN side), 5.2 × 103 g/m2/24 h (from HOPAN side to HPLA@PVDF) | Quick-drying applications, wicking textiles | [105] |
2.5. Waterproof Protection
2.5.1. PU and FPU-Based
2.5.2. PVA-Based
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Waterproof Efficacy | Target Application | Reference |
---|---|---|---|---|---|---|---|
PU | N,N-dimethylacetamide (DMAc) | 12% w/w PU, 13 kV voltage, 10 cm tip-to-collector distance | Fibers with an average diameter of 1.45 μm—PU web/fabric | Hydrostatic pressure (3.58 × 103 Pa) | Protective and specialty textiles | [76] | |
PU | THF:N,N-dimethylformamide (DMF) (60:40 v/v) | 13% w/w PU, 4 h electrospinning, 14 kV voltage, 0.6 mL/h feed rate, 170 mm tip-to-collector distance | Nanofiber layers with an average fiber diameter of 447 nm and thickness of 0.023 mm | Contact angle (141.882°), Acidic water permeation (>1200 s) | Various applications (sportswear, protective clothing, orthopedic dressing etc.) | [79] | |
PU | DMF:THF (3:2 v/v) | 12% w/w PU, 12 kV voltage, 0.8 mL/h feed rate, 13 cm tip-to-collector distance, 300 rpm collector speed | Nanofiber webs with fibers’ average diameter of 890 nm | Resistance to water penetration (4.2 × 103 Pa) | Army combat, sports uniforms | [77] | |
PU | THF:N,N-imethylformamide (DMF) (60:40 v/v), | 13 wt%/v PU, 13 kV voltage, 130 mm nozzle-to-collector distance, rotational speed of 150 rpm, traverse speed of 400 mm/min, 12 h duration | Nanofibrous web with a thickness of 280.0 μm and average fiber diameter of 480 nm | Hydrostatic pressure (7.35 × 103 Pa) | Protective clothing | [82] | |
PU | PCL diol, 4,40-Diphenylmethane diisocyanate (MDI), 1,4-butanediol (BD) | 4 wt% PU, 6.5 kV voltage, 1.0 mL/h feed rate, 5–20 cm tip-to-collector distance | Shape memory PU (SMPU) web with a thickness of 40 μm | Hydrostatic pressure (5.39 × 103 Pa) | Protective and thermally intelligent clothing material | [81] | |
PU | N,N-dimethylformamide (DMF) | 10 wt% PU, 25 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector distance, 680 rpm rotating speed | Nanofibrous webs with a thickness of 60 μm and an average fiber diameter of 200 nm | Water pressure resistance (15.2 × 103 Pa), water contact angle (130°) | Various applications | [73] | |
PU | N,N-dimethylformamide (DMF) | 13 wt% PU, 10 kV voltage, 0.2 mL/h feed rate, 11 cm tip-to-collector distance | Nanofiber web 3-layer fabric system (PU, polyester fabric, nylon tricot) with a thickness of 0.46 mm | Hydrostatic pressure (~68.6 × 103 Pa) | Waterproof materials | [90] | |
PU, FPU | N,N-dimethylformamide (DMF) | 20 wt% PU, 2 wt% FPU, 35 kV voltage, 4 mL/h feed rate, 25 cm tip-to-collector distance | Hydrophibicfibrous membranes (thickness of 125 μm) and flat films (thickness of 15 ± 1 µm) | Hydrostatic pressure (86 × 103 Pa), water contact angle (149°) | Various applications (e.g., protective clothing) | [91] | |
PU, FPU | DMF:THF (1:1 w/w), | Carbon nanotubes (CNTs) | 1.5 wt% PU/FPU, 0.75 wt% CNTs, 5 kV voltage, 5 mL/h feed rate, 20 cm tip-to-collector distance | Fibrous membranes with a thickness of 30 ± 2 μm | Hydrostatic pressure (108 × 103 Pa) | Various applications (e.g., protective clothing) | [93] |
PU, FPU | LiCl, DMAc ionic liquid | Lithium chloride (LiCl) | 14 wt% PU, 1.75 wt% FPU, 0.006 wt% LiCl, 50 kV voltage, 3 mL/h feed rate, 20 cm tip-to-collector distance | Fibrous membranes with a thickness of 20 ± 2 μm | Hydrostatic pressure (82.1 × 103 Pa) | Various applications (e.g., protective clothing) | [92] |
PU, C6FPU | N,N-dimethylacetamide (DMAc) | Lithium chloride (LiCl) | 12 wt% PU, 1.8 wt% C6FPU, 0.004 wt% LiCl, 50 kV voltage, 5 mL/h feed rate, 20 cm tip-to-collector distance, 680 rpm rotating speed | Fibrous membranes with an average fiber diameter of 421 μm and thickness of 19.2 μm | Hydrostatic pressure (88.2 × 103 Pa), water contact angle (142.6°) | Protective clothing | [106] |
PU, FPU | DMF | - | 4 wt% PU, 0.5 wt% FPU, 20 kV voltage, 2 mL/h feed rate, 15 cm tip-to-collector distance | Microfibrous membranes with a thickness of 30 ± 2 μm and an average fiber diameter of 995 nm | Hydrophobicity (water contact angle of 156°) Oleophobicity (oil contact angle of 145°) | Protective clothing, bioseparation, membrane distillation, tissue engineering | [88] |
PU | Water | Silicon dioxide (SiO2), PU emulsion, 4,4′-methylenebis-(phenyl isocyanate) (4,4′-MDI) and 3-aminopropyltriethoxysilane (APTES), triethylamine (TEA, AR) (VTEOS:VEtOH:Vwater = 1:4:2) | 16% PU emulsion, 0.4 wt% 4,4′-MDI, 2 wt% APTES, 25 kV voltage, 2 mL/min feed rate, 23 cm tip-to-collector | Superhydrophobic membranes with an average fiber diameter of 245 nm | Hydrostatic pressure (8.02 × 103 Pa), water contact angle (154°) | Waterproof materials | [9] |
PU | Tetraethoxysilane (TEOS):acetic acid (1:2 w/w) | Hydrophobic SiO2 SNPs | 8.2 wt% PU, 5 wt% SNP, 14 kV voltage, 0.2 mL/h feed rate, 18 cm tip-to-collector distance | Superhydrophobic webs | Static contact angle (151.3 ± 5.9), shedding angle (32.6 ± 1.7) | Textile laminate materials | [85] |
PU | DMF:BuAc (4:6 v/v) | Superhydrophobic silica NPs (SSNPs), Tetraethoxysilane (TEOS) | 18 wt% PU, 9 wt% SSNPs relative to the PU concentration, 6 wt% TEOS, 12 kV voltage, 0.6 mL/h feed rate, 100 rpm rotating rate | Hydrophobic nanofibrous webs | Hydrostatic pressure (23.5 × 103 Pa), water contact angle (139°) | Various applications | [95] |
PU | N,N-dimethylformamide (DMF) | Hydrophobic silica gel (HSG) | 18 wt% PU/HSG, 3 wt% HSG with respect to the polymer PU, 15 kV voltage, 0.6 mL/h feed rate, 20 cm tip-to-collector distance, 300 rpm rotating rate of the collector | Fibrous membranes with an average diameter of 331 nm | Hydrostatic pressure (5.45 × 103 Pa), contact angle (~142°) | Various applications (protective clothing, water purification, and tissue engineering) | [80] |
Waterborne PU (WPU) | Water | Polycarbodiimide (PCD) and long-chain alkyl polymer (LAP) emulsions (PCE and LAE), PEO | 9 wt% PCE, 15 wt% LAE, 40 kV voltage, 4 mL/h feed rate, 22 cm tip-to-collector | Fluorine-free nanofibrous membranes with an average fiber diameter of 548 nm and thickness of 150 ± 5 μm | Hydrostatic pressure (35.9 × 103 Pa), water contact angle (137.1°) | Green and high-performance fibrous materials used for medical hygiene, wearable electronics, water desalination, and oil/water separation | [8] |
Waterborne PU (WPU) | Water | Trimethylolpropane tris (2-methyl-1-aziridine propionate) (TTMA), PEO, Water-based fluoropolymer emulsions (WPE) | 35 wt% PU solid content in emulsion, 0.6 wt% PEO, 3 wt% TTMA, 22 wt% WPE, 30 kV voltage, 2 mL/h feed rate, 22 cm tip-to-collector, 50 rpm roller speed | Nanofibrous membranes with an average fiber diameter of 680 nm | Hydrostatic pressure (76.9 × 103 Pa), water contact angle (143.4°) | Medical hygiene, wearable electronics, and outdoor clothing | [97] |
Silicon-based PU (SiPU), PMMA | DMAC:acetone (4:6 v/v) | Octadecanethiol (thiol), 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra-vinylcyclotetrasiloxane (TMTVSi) | 13 wt% Si-PU/PMMA, 20 wt% TMTVSi, 30 wt% thiol, 25 kV voltage, 0.08 mL/min feed rate, 18 cm tip-to-collector | Nanofibrous membranes with an average fiber diameter of ~470 nm | Hydrostatic pressure (64.43 × 103 Pa), Water contact angle (131°) | Protective garments and oil–water separation | [99] |
Siliceous PU (SIPU) | DMAC:acetone (2:3 v/v) | Stearic acid (SA) | 11 wt% SIPU, 50 wt% SA, 25.5 kV voltage, 22 cm tip-to-collector | Nanofibrous membranes with a thickness of 60 ± 5 μm and average fiber diameter of 390 nm) | Hydrostatic pressure (87.5 × 103 Pa), water contact angle (~133°) | Outdoor protective clothing, medical clothing, intelligent clothing, and military products | [98] |
PU, PAN | N,N-dimethylacetamide (DMAc) | TiO2 NPs, fluorinated acrylic copolymer (FAC) | 10 wt% PAN/PU (8/2 mass ratio), 1 wt% TiO2 NPs, 2 wt% FAC, 30 kV voltage, 1 mL/h feed rate, 20 cm tip-to-collector distance | Nanofibrous membranes with an average diameter of ~350 nm | Hydrostatic pressure (62 × 103 Pa), water contact angle (152.1°) | High-altitude garments, protective clothing, covering materials, self-cleaning materials, and other medical products, etc. | [102] |
FPU | DMF:THF (1:2 w/w) | SiO2 NPs | FPU 18 wt%, SiO2 1 wt%, 18 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector distance | Superamphiphobic nanofibrous membranes with an average fiber diameter of 915 nm and thickness of 50 μm | The membranes could load 1.5 kg water and oil (olive oil) superhydrophobicity (water contact angle of 165°) and superoleophobicity (oil contact angle of 151°) | Protective clothing, bioseparation, water purification, tissue engineering, microfluidic systems, etc. | [83] |
PU | N,N-dimethylacetamide (DMAc) | PU elastomer (C4FPU), AgNO3 | 2% C4FPU solution, 0.015 wt% AgNO3, 45 kV voltage, 2 mL/h feed rate, 22 cm tip-to-collector distance | Fibers with a diameter of 641 nm | Hydrostatic pressure (102.8 × 103 Pa) | Protective textiles | [96] |
Ethanol-soluble PU (EPU), FPU | Ethanol | 8 wt% FPU, 1:8 w/w FPU/EPU, 11 kV voltage, 1.5 mL/h feed rate, 12 cm tip-to-collector distance | Nanofibrous membranes with a thickness of 20 ± 2 μm and an average fiber diameter of 249 nm | Hydrostatic pressure (4.95 × 103 Pa), water contact angle (~144°) | Wound dressings, flexible electronic sensors | [94] | |
Silicon-based PU (SiPU) | N, N-dimethylacetamide (DMAc):acetone (6:4), | PMMA, Polyvinyl butyral (PVB), Lithium chloride (LiCl) | 13 wt% Si-PU and PMMA, 7:3 (w/w) Si-PU/PMMA, 0.01 wt% LiCl, 40 wt% PVB, 25 kV voltage, 0.48 cm h−1 feed rate, 18 cm tip-to-collector, 80 °C temperature heat treatment | Nanofiber membrane | Hydrostatic pressure (65.29 × 103 Pa), water contact angle (139°) | Protective clothing, outdoor equipment, and high-altitude garment | [100] |
PVA | Water | Zinc oxide (ZnO) NPs | 10% by weight PVA, 9% by weight ZnO, 14 kV voltage, 12 cm tip-to-collector | Nanofibers | Water contact angle (118°) | Medical surgeon | [44] |
PCL | Formic acid:acetic acid (7:3 v/v) | 20 wt% PCL, 24 kV voltage, 0.77 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 119.1 ± 24.6 nm | Water contact angle (140.5°) | Health products (wound healing, wound dressings for burn injuries) | [53] |
2.6. UV-Protection
2.6.1. PVA-Based
2.6.2. PU-Based
2.6.3. Other Polymers
2.7. Thermal Prοtection
2.7.1. Thermal Regulation
2.7.2. Flame Retardancy
2.8. Chemical Protection
2.9. Shape Memory
2.9.1. PU-Based
2.9.2. PCL-Based
2.9.3. PLA-Based
2.10. E-Textiles and E-Skins
2.10.1. PU-Based
2.10.2. PVA-Based
Material Used for Electrospinning | Optimum Electrospinning Conditions | Process Steps for the Preparation of Smart Textile | Type of Smart Textile | Potential Application | Reference |
---|---|---|---|---|---|
TPU (matrix), DMF (solvent) | 15 kV voltage, 0.8 mL/h feed rate, 30 cm tip-to-collector distance, ∼50 rpm rotating speed of drum |
| Mechanically stretchable and electrically conductive textile | Wearable electronics | [130] |
TPU (matrix), DMF:THF (1:1) (solvent) | 20 kV voltage, 3 mL/h feed rate, 15 cm tip-to-collector distance |
| Flexible resistive-type strain sensors | Smart wearable device | [131] |
TPU (matrix), DMF:THF (1:3) (solvent) | 8 wt%. TPU in DMF:THF, 23 kV voltage, 2.5 mL/h feed rate, 10 cm tip-to-collector distance |
| Durable, stretchable piezoresistive strain sensor | E-skin for detecting body motions | [132] |
TPU (matrix), DMF:THF (1:1) (solvent) | 15 wt%. TPU in DMF:THF, 30 kV voltage, 5 mL/h feed rate, 16 cm tip-to-collector distance |
| High-performance, durable strain sensor for monitoring motion changes | Wearable sensing device, e-skin for human motion monitoring | [133] |
PU (matrix), DMF:THF (1:1) (solvent), GO (dopant) | 19 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector distance, 400 rpm rotating speed of drum |
| Highly sensitive and stretchable electronic fabric | Wearable electronic devices | [134] |
PU (matrix), DMF:THF (1:1) (solvent), carbon nanotubes—CNT (dopant) | 15 kV voltage, 0.3 mL/h feed rate, 15 cm tip-to-collector distance, 400 rpm rotating speed |
| Highly sensitive pressure sensors for human motion and physiological signal monitoring | Smart textiles and wearable electronics | [135] |
PU (matrix), DMF:THF (1:1) (solvent), Ag NWs ethanol dispersion (dopant) | ∼18 wt% PU in DMF:THF, +20 and −1 kV voltage, 0.3 mL/h feed rate of PU and 3 mL/h feed rate of AgNWs ethanol dispersion |
| Multifunctional sensing yarn textile-based sensor with piezoresistive ability to quantify mechanical deformations | Smart yarns and textiles for personalized healthcare and human–machine interfaces | [136] |
PU (matrix), DMF (solvent), AgNWs (additive) | 25 wt% PU in DMF, 3 wt% CB in CA, 12 kV voltage, 0.15 mL/h feed rate, 10 cm tip-to-collector distance |
| High-conductive, flexible, and sensitive yarns | Wearable electronics | [137] |
PU(matrix), DMF:THF (2:3) (solvent) | 13 wt% PU in DMF/THF solution, 8 kV voltage, 1 mL/h feed rate, 7.5 cm tip-to-collector distance |
| Stretchable thin-film generator based on electrification for body motion energy harvesting | Wearable energy harvester attached on cloth or self-powered e-skin | [127] |
TPU (matrix), THF:DMSO (1:1) (solvent), AgNW and Ti3C2Tx (additives) | 12 wt% TPU in THF:DMSO, 2 wt% AgNW and 4 wt% MXene, 15.8 kV voltage, 3 mL/h feed rate, 15 cm tip-to-collector distance |
| Capacitive e-skin for monitoring various mechanical stimuli | Wearable device | [138] |
PVA (matrix), water (solvent), Carbon black—CB (conductive material), polyindole–PIND (conductive material) | 15 kV voltage, 0.5 mL/h feed rate, 8 cm tip-to-collector distance |
| Fully flexible tough electroactive yarns | Wearable smart textiles | [139] |
- PVA (matrix), water (solvent) - PLGA (matrix), hexafluoro-2-propanol-HFIP (solvent) | - 8 to 11 wt% PVA in water, 25–28 kV voltage, 15 cm tip-to-collector distance - 6.5 to 9.5 wt% PLGA in HFIP, 9–18 kV voltage, 0.3–1.0 mL/h feed rate, 15 cm tip-to-collector distance |
| Breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators | E-skin with real-time and self-powered monitoring of whole-body physiological signal and joint movement | [128] |
- TPU (matrix), DMF: THF (1:1) (solvent); - PVA (matrix of the 3rd layer), water (solvent), CS (matrix of the 3rd layer), acetic acid (solvent) | 20 wt% PU in DMF: THF, 10 wt% PVA in water, 2 wt% CS in acetic acid, 26 and 11 kV voltage |
| Flexible, breathable and antibacterial triboelectric nanogenerator (TENG)-based e-skin for self-powered sensing | Wearable electronic device with self-powered sensors | [140] |
CA (matrix), DMAc:acetone (2:1) (solvent), CB (dopant) | 17 wt% CA in DMAc:acetone, 3 wt% CB in CA, 18 kV voltage, 10 μL/min feed rate, 10 cm tip-to-collector distance |
| Conductive nanofibres | E-textile, on-skin bio-potential measurement sensor | [141] |
gelatin (matrix), PBS (solvent) | 10 wt% gelatin in PBS, 15 kV voltage, 2 mL/h feed rate |
| Stretchable, conductive, breathable, and moisture-sensitive e-skin | Wound monitoring, home medical diagnosis, and human–machine interactions | [142] |
Silk Fibroin and PEO (matrices), water (solvent) | 1:89 w/w PEO/silk fibroin, 18 kV voltage, 20 μL/min feed rate, 20 cm tip-to-collector distance |
| Wearable all-fiber multifunctional sensor | Smart clothing | [129] |
PLA and TPU (matrixes), DMF:THF (1:1) (solvent), | 25:75 wt% TPU:PLA, 20 kV voltage, 3 mL/h feed rate, 12 cm tip-to-collector distance |
| Large strain flexible strain sensors with programmable shape memory | Wearable electronics | [143] |
2.10.3. Natural-Polymer-Based
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Definition | Abbreviation |
Aerosol particles | APs |
Carbon black | CB |
Carbon nanotubes | CNTs |
Carbon nanowires | CNWs |
Cellulose acetate | CA |
Chitosan | CS |
Fluorinated polyurethane | FPU |
Graphene oxide | GO |
Nanoparticles | NPs |
Phase-changing materials | PCMs |
Poly (2-acrylamido-2-methylpropane sulfonic acid) | PAMPS |
Poly (3-hydroxybutyrate) | PHB |
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) | PHBV |
Polyacrylonitrile | PAN |
Poly (butylene-adipate-co-terephthalate) | PBAT |
Poly (butylenes succinate) | PBS |
Polycaprolactone | PCL |
Polyethylene glycol | PEG |
Polyethylene Oxide | PEO |
Polyethylene terephthalate | PET |
Polylactic acid | PLA |
Polymethyl methacrylate | PMMA |
Polyurethane | PU |
Polyvinyl alcohol | PVA |
Polyvinyl chloride | PVC |
Polyvinylidene fluoride | PVDF |
Thermoplastic Polyurethane | TPU |
Waterborne Polyurethane | WPU |
References
- Yang, E.; Xu, Z.; Chur, L.K.; Behroozfar, A.; Baniasadi, M.; Moreno, S.; Huang, J.; Gilligan, J.; Minary-Jolandan, M. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer. ACS Appl. Mater. Interfaces 2017, 9, 24220–24229. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Y.; Liu, P.; Qin, X. Polyacrylonitrile Nanofiber Yarns and Fabrics Produced Using a Novel Electrospinning Method Combined with Traditional Textile Techniques. Text. Res. J. 2016, 86, 1716–1727. [Google Scholar] [CrossRef]
- Suen, D.W.-S.; Chan, E.M.-H.; Lau, Y.-Y.; Lee, R.H.-P.; Tsang, P.W.-K.; Ouyang, S.; Tsang, C.-W. Sustainable Textile Raw Materials: Review on Bioprocessing of Textile Waste via Electrospinning. Sustainability 2023, 15, 11638. [Google Scholar] [CrossRef]
- Scott, R.A. Textiles for Protection; Woodhead Publishing Limited: Cambridge, UK, 2005. [Google Scholar]
- Karim, N.; Afroj, S.; Lloyd, K.; Oaten, L.C.; Andreeva, D.V.; Carr, C.; Farmery, A.D.; Kim, I.-D.; Novoselov, K.S. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano 2020, 14, 12313–12340. [Google Scholar] [CrossRef]
- Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. [Google Scholar] [CrossRef]
- Han, X.-J.; Huang, Z.-M.; He, C.-L.; Liu, L.; Wu, Q.-S. Coaxial Electrospinning of PC(Shell)/PU(Core) Composite Nanofibers for Textile Application. Polym. Compos. 2008, 29, 579–584. [Google Scholar] [CrossRef]
- Zhou, W.; Gong, X.; Li, Y.; Si, Y.; Zhang, S.; Yu, J.; Ding, B. Waterborne Electrospinning of Fluorine-Free Stretchable Nanofiber Membranes with Waterproof and Breathable Capabilities for Protective Textiles. J. Colloid Interface Sci. 2021, 602, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Yi, Y.; Fu, Y.; Xiong, J.; Li, N. Durable Polyurethane/SiO2 Nanofibrous Membranes by Electrospinning for Waterproof and Breathable Textiles. ACS Appl. Nano Mater. 2022, 5, 10686–10695. [Google Scholar] [CrossRef]
- Jahandideh, A.; Ashkani, M.; Moini, N. Biopolymers in Textile Industries. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–218. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, C.H.; Tijing, L.D.; Lee, D.H.; Yu, M.H.; Pant, H.R.; Kim, Y.; Kim, C.S. Preparation and Characterization of (Polyurethane/Nylon-6) Nanofiber/(Silicone) Film Composites via Electrospinning and Dip-Coating. Fibers Polym. 2012, 13, 339–345. [Google Scholar] [CrossRef]
- Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N.C. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer 2001, 42, 261–272. [Google Scholar] [CrossRef]
- Brown, T.D.; Dalton, P.D.; Hutmacher, D.W. Direct Writing by Way of Melt Electrospinning. Adv. Mater. 2011, 23, 5651–5657. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Xia, Y. Putting Electrospun Nanofibers to Work for Biomedical Research. Macromol. Rapid Commun. 2008, 29, 1775–1792. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Hatton, T.A.; Rutledge, G.C. Aerosol Filtration Using Electrospun Cellulose Acetate Fibers. J. Mater. Sci. 2016, 51, 204–217. [Google Scholar] [CrossRef]
- Bock, N.; Woodruff, M.A.; Steck, R.; Hutmacher, D.W.; Farrugia, B.L.; Dargaville, T.R. Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles. Macromol. Biosci. 2014, 14, 202–214. [Google Scholar] [CrossRef]
- Park, J.S. Electrospinning and Its Applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 2010, 1, 043002. [Google Scholar] [CrossRef]
- Haider, S.; Al-Zeghayer, Y.; Ahmed Ali, F.A.; Haider, A.; Mahmood, A.; Al-Masry, W.A.; Imran, M.; Aijaz, M.O. Highly Aligned Narrow Diameter Chitosan Electrospun Nanofibers. J. Polym. Res. 2013, 20, 105. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Toriello, M.; Afsari, M.; Shon, H.; Tijing, L. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. Membranes 2020, 10, 204. [Google Scholar] [CrossRef]
- dos, P.; Ramos, S.; Giaconia, M.A.; Assis, M.; Jimenez, P.C.; Mazzo, T.M.; Longo, E.; De Rosso, V.V.; Braga, A.R.C. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021, 26, 1206. [Google Scholar] [CrossRef]
- Buzgo, M.; Mickova, A.; Doupnik, M.; Rampichova, M. Blend Electrospinning, Coaxial Electrospinning, and Emulsion Electrospinning Techniques; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mishra, P.; Verma, K.; Mondal, A.; Chaudhary, R.G.; Abolhasani, M.M.; Loganathan, S. Electrospinning Production of Nanofibrous Membranes. Environ. Chem. Lett. 2019, 17, 767–800. [Google Scholar] [CrossRef]
- Pelipenko, J.; Kristl, J.; Janković, B.; Baumgartner, S.; Kocbek, P. The Impact of Relative Humidity during Electrospinning on the Morphology and Mechanical Properties of Nanofibers. Int. J. Pharm. 2013, 456, 125–134. [Google Scholar] [CrossRef]
- Awal, A.; Sain, M.; Chowdhury, M. Preparation of Cellulose-Based Nano-Composite Fibers by Electrospinning and Understanding the Effect of Processing Parameters. Compos. B Eng. 2011, 42, 1220–1225. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C. One-Dimensional Nanostructures; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.-K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Shi, S.; Si, Y.; Han, Y.; Wu, T.; Iqbal, M.I.; Fei, B.; Li, R.K.Y.; Hu, J.; Qu, J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. Adv. Mater. 2022, 34, 2107938. [Google Scholar] [CrossRef]
- Boel, E.; Koekoekx, R.; Dedroog, S.; Babkin, I.; Vetrano, M.R.; Clasen, C.; Van den Mooter, G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics 2020, 12, 625. [Google Scholar] [CrossRef]
- Kakoria, A.; Sinha-Ray, S. A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing and Their Applications. Fibers 2018, 6, 45. [Google Scholar] [CrossRef]
- European Bioplastics (EUBP) e.V. Bioplastics Market Development Update 2023; European Bioplastics e.V.: Berlin, Germany, 2023. [Google Scholar]
- Skoczinski, P.; Carus, M.; Tweddle, G.; Ruiz, P.; de Guzman, D.; Ravenstijn, J.; Käb, H.; Hark, N.; Dammer, L. Bio-Based Building Blocks and Polymers—Global Capacities, Production and Trends 2022–2027; Michael Carus (V.i.S.d.P.): Hürth, Germany, 2023. [Google Scholar] [CrossRef]
- Sheikh, F.A.; Barakat, N.A.M.; Kanjwal, M.A.; Chaudhari, A.A.; Jung, I.-H.; Lee, J.H.; Kim, H.Y. Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications. Macromol. Res. 2009, 17, 688–696. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Jang, R.S.; Choi, W.C.; Kim, H.Y.; Park, S.J. Synthesis, Characterization, and Antibacterial Performance of Ag-Modified Graphene Oxide Reinforced Electrospun Polyurethane Nanofibers. Carbon Lett. 2017, 23, 17–21. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers 2019, 11, 1185. [Google Scholar] [CrossRef]
- Mohraz, M.H.; Golbabaei, F.; Yu, I.J.; Mansournia, M.A.; Zadeh, A.S.; Dehghan, S.F. Preparation and Optimization of Multifunctional Electrospun Polyurethane/Chitosan Nanofibers for Air Pollution Control Applications. Int. J. Environ. Sci. Technol. 2019, 16, 681–694. [Google Scholar] [CrossRef]
- Lakshman, L.R.; Shalumon, K.T.; Nair, S.V.; Jayakumar, R.; Nair, S.V. Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-Fibrous Mat for Wound Dressing. J. Macromol. Sci. Part A 2010, 47, 1012–1018. [Google Scholar] [CrossRef]
- Mamtha, V.; Murthy, H.N.N.; Raj, V.P.; Tejas, P.; Puneet, C.S.; Venugopal, A.; AanMankunipoyil, S.; Manjunatha, C. Electrospun PU/MgO/Ag Nanofibers for Antibacterial Activity and Flame Retardency. Cloth. Text. Res. J. 2023, 41, 236–253. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Park, M.K.; Kwak, S.Y. Silver-Titania/Polyurethane Composite Nanofibre Mat for Chemical and Biological Warfare Protection. Int. J. Nanotechnol. 2013, 10, 771. [Google Scholar] [CrossRef]
- Viscusi, G.; Lamberti, E.; D’Amico, F.; Tammaro, L.; Vigliotta, G.; Gorrasi, G. Design and Characterization of Polyurethane Based Electrospun Systems Modified with Transition Metals Oxides for Protective Clothing Applications. Appl. Surf. Sci. 2023, 617, 156563. [Google Scholar] [CrossRef]
- Desai, K.; Kit, K.; Li, J.; Michael Davidson, P.; Zivanovic, S.; Meyer, H. Nanofibrous Chitosan Non-Wovens for Filtration Applications. Polymer 2009, 50, 3661–3669. [Google Scholar] [CrossRef]
- Lin, C.M.; Chang, Y.C.; Cheng, L.C.; Liu, C.H.; Chang, S.C.; Hsien, T.Y.; Wang, D.M.; Hsieh, H.J. Preparation of Graphene-Embedded Hydroxypropyl Cellulose/Chitosan/Polyethylene Oxide Nanofiber Membranes as Wound Dressings with Enhanced Antibacterial Properties. Cellulose 2020, 27, 2651–2667. [Google Scholar] [CrossRef]
- Vongsetskul, T.; Wongsomboon, P.; Sunintaboon, P.; Tantimavanich, S.; Tangboriboonrat, P. Antimicrobial Nitrile Gloves Coated by Electrospun Trimethylated Chitosan-Loaded Polyvinyl Alcohol Ultrafine Fibers. Polym. Bull. 2015, 72, 2285–2296. [Google Scholar] [CrossRef]
- Khan, M.Q.; Kharaghani, D.; Nishat, N.; Shahzad, A.; Hussain, T.; Khatri, Z.; Zhu, C.; Kim, I.S. Preparation and Characterizations of Multifunctional PVA/ZnO Nanofibers Composite Membranes for Surgical Gown Application. J. Mater. Res. Technol. 2019, 8, 1328–1334. [Google Scholar] [CrossRef]
- Yang, S.; Lei, P.; Shan, Y.; Zhang, D. Preparation and Characterization of Antibacterial Electrospun Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide Composite Nanofibrous Membrane. Appl. Surf. Sci. 2018, 435, 832–840. [Google Scholar] [CrossRef]
- Purwar, R.; Sai Goutham, K.; Srivastava, C.M. Electrospun Sericin/PVA/Clay Nanofibrous Mats for Antimicrobial Air Filtration Mask. Fibers Polym. 2016, 17, 1206–1216. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S. Multifunctionality of Poly(Vinyl Alcohol) Nanofiber Webs Containing Titanium Dioxide. J. Appl. Polym. Sci. 2012, 124, 4038–4046. [Google Scholar] [CrossRef]
- Khanzada, H.; Salam, A.; Qadir, M.B.; Phan, D.-N.; Hassan, T.; Munir, M.U.; Pasha, K.; Hassan, N.; Khan, M.Q.; Kim, I.S. Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing. Materials 2020, 13, 3884. [Google Scholar] [CrossRef] [PubMed]
- Paneva, D.; Manolova, N.; Argirova, M.; Rashkov, I. Antibacterial Electrospun Poly(ε-Caprolactone)/Ascorbyl Palmitate Nanofibrous Materials. Int. J. Pharm. 2011, 416, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Malik, H.N.; Singhal, D.K.; Mukherjee, A.; Malakar, D.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials with Antibacterial and Cell Adhesion Properties. J. Polym. Res. 2014, 21, 347. [Google Scholar] [CrossRef]
- Ghosal, K.; Kováčová, M.; Humpolíček, P.; Vajďák, J.; Bodík, M.; Špitalský, Z. Antibacterial Photodynamic Activity of Hydrophobic Carbon Quantum Dots and Polycaprolactone Based Nanocomposite Processed via Both Electrospinning and Solvent Casting Method. Photodiagnosis Photodyn. Ther. 2021, 35, 102455. [Google Scholar] [CrossRef]
- Costa, S.M.; Pacheco, L.; Antunes, W.; Vieira, R.; Bem, N.; Teixeira, P.; Fangueiro, R.; Ferreira, D.P. Antibacterial and Biodegradable Electrospun Filtering Membranes for Facemasks: An Attempt to Reduce Disposable Masks Use. Appl. Sci. 2021, 12, 67. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, L.; Ruan, H.; Zhang, L.; Wang, J.; Jiang, H.; Wu, Y.; Feng, S.; Chen, J. Electrospun Chitosan Oligosaccharide/Polycaprolactone Nanofibers Loaded with Wound-Healing Compounds of Rutin and Quercetin as Antibacterial Dressings. Int. J. Biol. Macromol. 2021, 183, 1145–1154. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Kim, I.S.; Ogasawara, H.; Ni, Q.-Q. Characterizations and Application of CA/ZnO/AgNP Composite Nanofibers for Sustained Antibacterial Properties. Mater. Sci. Eng. C 2019, 105, 110077. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Akbarinejad, A.; Swift, S.; Perera, J.; Kilmartin, P.A.; Travas-Sejdic, J. Cellulose Acetate Electrospun Nanofibers Encapsulating Lemon Myrtle Essential Oil as Active Agent with Potent and Sustainable Antimicrobial Activity. React. Funct. Polym. 2020, 157, 104769. [Google Scholar] [CrossRef]
- Li, B.; Yang, X. Rutin-Loaded Cellulose Acetate/Poly(Ethylene Oxide) Fiber Membrane Fabricated by Electrospinning: A Bioactive Material. Mater. Sci. Eng. C 2020, 109, 110601. [Google Scholar] [CrossRef]
- Tian, L.; Wang, P.; Zhao, Z.; Ji, J. Antimicrobial Activity of Electrospun Poly(Butylenes Succinate) Fiber Mats Containing PVP-Capped Silver Nanoparticles. Appl. Biochem. Biotechnol. 2013, 171, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Tobías, H.; Morales, G.; Ledezma, A.; Romero, J.; Saldívar, R.; Langlois, V.; Renard, E.; Grande, D. Electrospinning and Electrospraying Techniques for Designing Novel Antibacterial Poly(3-Hydroxybutyrate)/Zinc Oxide Nanofibrous Composites. J. Mater. Sci. 2016, 51, 8593–8609. [Google Scholar] [CrossRef]
- Duygulu, N.E.; Ciftci, F.; Ustundag, C.B. Electrospun Drug Blended Poly(Lactic Acid) (PLA) Nanofibers and Their Antimicrobial Activities. J. Polym. Res. 2020, 27, 232. [Google Scholar] [CrossRef]
- Zhang, R.; Han, Q.; Li, Y.; Cai, Y.; Zhu, X.; Zhang, T.; Liu, Y. High Antibacterial Performance of Electrospinning Silk Fibroin/Gelatin Film Modified with Graphene Oxide-sliver Nanoparticles. J. Appl. Polym. Sci. 2019, 136, 47904. [Google Scholar] [CrossRef]
- Xu, J.; Lei, Z.; Liu, S.; Chen, J.; Gong, G.; Cai, X. Preparation and Characterization of Biodegradable Electrospinning PHBV/PBAT/TiO2 Antibacterial Nanofiber Membranes. J. Eng. Fibers Fabr. 2022, 17, 155892502211365. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, J.; Liu, X.; Wei, D.; Zhou, H.; Xiao, H.; Zhang, Z.; Yu, H.; Chen, S. Bactericidal and Antifouling Electrospun PVA Nanofibers Modified with a Quaternary Ammonium Salt and Zwitterionic Sulfopropylbetaine. Mater. Sci. Eng. C 2020, 111, 110855. [Google Scholar] [CrossRef]
- Permyakova, E.S.; Manakhov, A.M.; Kiryukhantsev-Korneev, P.V.; Leybo, D.V.; Konopatsky, A.S.; Makarets, Y.A.; Filippovich, S.Y.; Ignatov, S.G.; Shtansky, D.V. Electrospun Polycaprolactone/ZnO Nanocomposite Membranes with High Antipathogen Activity. Polymers 2022, 14, 5364. [Google Scholar] [CrossRef]
- He, Q.; Zhao, W.; Luo, P.; Wang, L.; Sun, Q.; Zhang, W.; Yin, D.; Zhang, Y.; Cai, Z. Contamination Profiles and Potential Health Risks of Environmentally Persistent Free Radicals in PM2.5 over Typical Central Chinese Megacity. Ecotoxicol. Environ. Saf. 2023, 264, 115437. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Keresztesi, Á.; Bodor, Z. Temporal Evolution of PM2.5, PM10, and Total Suspended Particles (TSP) in the Ciuc Basin (Transylvania) with Specific Microclimate Condition from 2010 to 2019. Environ. Monit. Assess. 2023, 195, 798. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Raza, A.; Si, Y.; Yu, J.; Sun, G.; Ding, B. Tortuously Structured Polyvinyl Chloride/Polyurethane Fibrous Membranes for High-Efficiency Fine Particulate Filtration. J. Colloid Interface Sci. 2013, 398, 240–246. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, D.S.; Martins, L.D.; Muniz, E.C.; Rudke, A.P.; Squizzato, R.; Beal, A.; de Souza, P.R.; Bonfim, D.P.F.; Aguiar, M.L.; Gimenes, M.L. Biodegradable CA/CPB Electrospun Nanofibers for Efficient Retention of Airborne Nanoparticles. Process Saf. Environ. Prot. 2020, 144, 177–185. [Google Scholar] [CrossRef]
- Hao, W.; Zheng, Q.; Zhang, X.; Li, Y.; Qiu, L.; Lu, H.; Wang, W.; Yang, W. Flame Retardant and Water Repellent Poly(Lactic Acid) Electrospun Fabrics. Thermochim. Acta 2023, 722, 179468. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, C.; Pan, Z. Porous Bead-on-String Poly(Lactic Acid) Fibrous Membranes for Air Filtration. J. Colloid Interface Sci. 2015, 441, 121–129. [Google Scholar] [CrossRef]
- Lo, J.S.C.; Daoud, W.; Tso, C.Y.; Lee, H.H.; Firdous, I.; Deka, B.J.; Lin, C.S.K. Optimization of Polylactic Acid-Based Medical Textiles via Electrospinning for Healthcare Apparel and Personal Protective Equipment. Sustain. Chem. Pharm. 2022, 30, 100891. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, S.; Wang, C.; Jeong, D.; Wang, Z.L.; Ren, K. Biodegradable Electrospun Poly(Lactic Acid) Nanofibers for Effective PM 2.5 Removal. Macromol. Mater. Eng. 2019, 304, 1900259. [Google Scholar] [CrossRef]
- Buluş, E.; Sakarya Buluş, G.; Yakuphanoglu, F. Production of Polylactic Acid-Activated Charcoal Nanofiber Membranes for COVID-19 Pandemic by Electrospinning Technique and Determination of Filtration Efficiency. J. Mater. Electron. Devices 2020, 4, 21–26. [Google Scholar]
- Maksoud, F.J.; Lameh, M.; Fayyad, S.; Ismail, N.; Tehrani-Bagha, A.R.; Ghaddar, N.; Ghali, K. Electrospun Waterproof Breathable Membrane with a High Level of Aerosol Filtration. J. Appl. Polym. Sci. 2018, 135, 45660. [Google Scholar] [CrossRef]
- Souzandeh, H.; Wang, Y.; Zhong, W.-H. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases. RSC Adv. 2016, 6, 105948–105956. [Google Scholar] [CrossRef]
- Strain, I.N.; Wu, Q.; Pourrahimi, A.M.; Hedenqvist, M.S.; Olsson, R.T.; Andersson, R.L. Electrospinning of Recycled PET to Generate Tough Mesomorphic Fibre Membranes for Smoke Filtration. J. Mater. Chem. A Mater. 2015, 3, 1632–1640. [Google Scholar] [CrossRef]
- Kang, Y.K.; Park, C.H.; Kim, J.; Kang, T.J. Application of Electrospun Polyurethane Web to Breathable Water-Proof Fabrics. Fibers Polym. 2007, 8, 564–570. [Google Scholar] [CrossRef]
- Sadighzadeh, A.; Valinejad, M.; Gazmeh, A.; Rezaiefard, B. Synthesis of Polymeric Electrospun Nanofibers for Application in Waterproof-Breathable Fabrics. Polym. Eng. Sci. 2016, 56, 143–149. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, X.; Li, Y.; Jiao, W.; Si, Y.; Yu, J.; Ding, B. Green-Solvent-Processed Fibrous Membranes with Water/Oil/Dust-Resistant and Breathable Performances for Protective Textiles. ACS Appl. Mater. Interfaces 2021, 13, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Amini, G.; Samiee, S.; Gharehaghaji, A.A.; Hajiani, F. Fabrication of Polyurethane and Nylon 66 Hybrid Electrospun Nanofiber Layer for Waterproof Clothing Applications. Adv. Polym. Technol. 2016, 35, 419–427. [Google Scholar] [CrossRef]
- Gu, X.; Li, N.; Cao, J.; Xiong, J. Preparation of Electrospun Polyurethane/Hydrophobic Silica Gel Nanofibrous Membranes for Waterproof and Breathable Application. Polym. Eng. Sci. 2018, 58, 1381–1390. [Google Scholar] [CrossRef]
- Chung, S.E.; Park, C.H.; Yu, W.-R.; Kang, T.J. Thermoresponsive Shape Memory Characteristics of Polyurethane Electrospun Web. J. Appl. Polym. Sci. 2011, 120, 492–500. [Google Scholar] [CrossRef]
- Gorji, M.; Jeddi, A.A.A.; Gharehaghaji, A.A. Fabrication and Characterization of Polyurethane Electrospun Nanofiber Membranes for Protective Clothing Applications. J. Appl. Polym. Sci. 2012, 125, 4135–4141. [Google Scholar] [CrossRef]
- Wang, J.; Raza, A.; Si, Y.; Cui, L.; Ge, J.; Ding, B.; Yu, J. Synthesis of Superamphiphobic Breathable Membranes Utilizing SiO2 Nanoparticles Decorated Fluorinated Polyurethane Nanofibers. Nanoscale 2012, 4, 7549. [Google Scholar] [CrossRef] [PubMed]
- Gorji, M.; Sadeghian Maryan, A. Breathable-Windproof Membrane via Simultaneous Electrospinning of PU and P(AMPS-GO) Hybrid Nanofiber: Modeling and Optimization with Response Surface Methodology. J. Ind. Text. 2018, 47, 1645–1663. [Google Scholar] [CrossRef]
- Jin, S.; Park, Y.; Park, C.H. Preparation of Breathable and Superhydrophobic Polyurethane Electrospun Webs with Silica Nanoparticles. Text. Res. J. 2016, 86, 1816–1827. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, R.; Yang, X.; Chen, F.; Ning, X. Bicomponent Pla Nanofiber Nonwovens as Highly Efficient Filtration Media for Particulate Pollutants and Pathogens. Membranes 2021, 11, 819. [Google Scholar] [CrossRef]
- Fadil, F.; Affandi, N.D.N.; Harun, A.M.; Alam, M.K. Improvement of Moisture Management Properties of Face Masks Using Electrospun Nanofiber Filter Insert. Adsorpt. Sci. Technol. 2022, 2022, 9351778. [Google Scholar] [CrossRef]
- Ge, J.; Si, Y.; Fu, F.; Wang, J.; Yang, J.; Cui, L.; Ding, B.; Yu, J.; Sun, G. Amphiphobic Fluorinated Polyurethane Composite Microfibrous Membranes with Robust Waterproof and Breathable Performances. RSC Adv. 2013, 3, 2248–2255. [Google Scholar] [CrossRef]
- Ho, S.; Luo, Y.; Yu, W.; Chung, J. Physical and Physiological Health Effects of Intimate Apparel. In Innovation and Technology of Women’s Intimate Apparel; Elsevier: Amsterdam, The Netherlands, 2006; pp. 132–150. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, S. Designing Waterproof Breathable Materials Based on Electrospun Nanofibers and Assessing the Performance Characteristics. Fibers Polym. 2011, 12, 57–64. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Yu, J.; Ding, B. Hydrophobic Fibrous Membranes with Tunable Porous Structure for Equilibrium of Breathable and Waterproof Performance. Adv. Mater. Interfaces 2016, 3, 1600516. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Yu, J.; Ding, B. Fluorinated Polyurethane Macroporous Membranes with Waterproof, Breathable and Mechanical Performance Improved by Lithium Chloride. RSC Adv. 2015, 5, 79807–79814. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Yu, J.; Ding, B. Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Appl. Mater. Interfaces 2015, 7, 13538–13546. [Google Scholar] [CrossRef]
- Yue, Y.; Gong, X.; Jiao, W.; Li, Y.; Yin, X.; Si, Y.; Yu, J.; Ding, B. In-Situ Electrospinning of Thymol-Loaded Polyurethane Fibrous Membranes for Waterproof, Breathable, and Antibacterial Wound Dressing Application. J. Colloid Interface Sci. 2021, 592, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Q.; Chadyagondo, T.T.; Li, G.; Gu, H.; Li, N. Designing Waterproof and Breathable Fabric Based on Polyurethane/Silica Dioxide Web Fabricated by Electrospinning. Fibers Polym. 2020, 21, 1444–1452. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Liu, L.; Yu, J.; Ding, B. Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Appl. Mater. Interfaces 2018, 10, 30887–30894. [Google Scholar] [CrossRef]
- Zhou, W.; Gong, X.; Li, Y.; Si, Y.; Zhang, S.; Yu, J.; Ding, B. Environmentally Friendly Waterborne Polyurethane Nanofibrous Membranes by Emulsion Electrospinning for Waterproof and Breathable Textiles. Chem. Eng. J. 2022, 427, 130925. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, G.; Tian, L.; Li, B.; Li, Z.; Yu, H.; Wang, R.; He, J. Environmentally Friendly Waterproof and Breathable Nanofiber Membranes with Thermal Regulation Performance by One-Step Electrospinning. Fibers Polym. 2022, 23, 2139–2148. [Google Scholar] [CrossRef]
- Tian, L.; Ren, G.; Zhang, P.; Li, B.; Chang, S.; Yu, H.; Wang, R.; He, J. Preparation of Fluorine-Free Waterproof and Breathable Electrospun Nanofibrous Membranes via Thiol-ene Click Reaction. Macromol. Mater. Eng. 2022, 307, 2100757. [Google Scholar] [CrossRef]
- Ren, G.; Li, Z.; Tian, L.; Lu, D.; Jin, Y.; Zhang, Y.; Li, B.; Yu, H.; He, J.; Sun, D. Environmentally Friendly Waterproof and Breathable Electrospun Nanofiber Membranes via Post-Heat Treatment. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130643. [Google Scholar] [CrossRef]
- Gorji, M.; Karimi, M.; Nasheroahkam, S. Electrospun PU/P(AMPS-GO) Nanofibrous Membrane with Dual-Mode Hydrophobic–Hydrophilic Properties for Protective Clothing Applications. J. Ind. Text. 2018, 47, 1166–1184. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, J.; Yin, X.; Yu, J.; Ding, B. Functional Modification of Breathable Polyacrylonitrile/Polyurethane/TiO2 Nanofibrous Membranes with Robust Ultraviolet Resistant and Waterproof Performance. J. Colloid Interface Sci. 2017, 508, 508–516. [Google Scholar] [CrossRef]
- Sinha, M.K.; Das, B.R. Chitosan Nanofibrous Materials for Chemical and Biological Protection. J. Text. Fibrous Mater. 2018, 1, 251522111878837. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, J.; Hu, M.; Pi, H.; Wang, R.; Zhang, X. Polylactic Acid Based Janus Membranes with Asymmetric Wettability for Directional Moisture Transport with Enhanced UV Protective Capabilities. RSC Adv. 2022, 12, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ahmed Babar, A.; Huang, G.; Zhao, J.; Yan, W.; Yu, H.; Feng, Q.; Wang, X. Moisture Wicking Textiles with Hydrophilic Oriented Polyacrylonitrile Layer: Enabling Ultrafast Directional Water Transport. J. Colloid Interface Sci. 2023, 645, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhu, W.; Yan, W.; Wang, X.; Liu, L.; Yu, J.; Ding, B. Tailoring Waterproof and Breathable Properties of Environmentally Friendly Electrospun Fibrous Membranes by Optimizing Porous Structure and Surface Wettability. Compos. Commun. 2019, 15, 40–45. [Google Scholar] [CrossRef]
- Li, C.; Shu, S.; Chen, R.; Chen, B.; Dong, W. Functionalization of Electrospun Nanofibers of Natural Cotton Cellulose by Cerium Dioxide Nanoparticles for Ultraviolet Protection. J. Appl. Polym. Sci. 2013, 130, 1524–1529. [Google Scholar] [CrossRef]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human Health in Relation to Exposure to Solar Ultraviolet Radiation under Changing Stratospheric Ozone and Climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. UV Radiation Did You Know? United States Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
- Lee, E.; Song, Y.; Lee, S. Crosslinking of Lignin/Poly(Vinyl Alcohol) Nanocomposite Fiber Webs and Their Antimicrobial and Ultraviolet-Protective Properties. Text. Res. J. 2019, 89, 3–12. [Google Scholar] [CrossRef]
- Vahabi, H.; Wu, H.; Saeb, M.R.; Koo, J.H.; Ramakrishna, S. Electrospinning for Developing Flame Retardant Polymer Materials: Current Status and Future Perspectives. Polymer 2021, 217, 123466. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, Y.; Shao, Y.; Huang, T.; Zhang, N.; Yang, J.; Qi, X.; Wang, Y. Coaxial Electrospun Membranes with Thermal Energy Storage and Shape Memory Functions for Simultaneous Thermal/Moisture Management in Personal Cooling Textiles. Eur. Polym. J. 2021, 145, 110245. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Abdalkarim, S.Y.H.; Marek, J.; Militky, J.; Li, Y.; Yao, J. Electrospun Polyethylene Glycol/Polyvinyl Alcohol Composite Nanofibrous Membranes as Shape-Stabilized Solid–Solid Phase Change Materials. Adv. Fiber Mater. 2020, 2, 167–177. [Google Scholar] [CrossRef]
- Baniasadi, H.; Madani, M.; Seppälä, J.; Zimmerman, J.B.; Yazdani, M.R. Form-Stable Phase Change Electrospun Nanofibers Mat with Thermal Regulation and Biomedical Multi-Functionalities. J. Energy Storag. 2023, 68, 107660. [Google Scholar] [CrossRef]
- Chen, C.; Liu, K.; Wang, H.; Liu, W.; Zhang, H. Morphology and Performances of Electrospun Polyethylene Glycol/Poly (Dl-Lactide) Phase Change Ultrafine Fibers for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2013, 117, 372–381. [Google Scholar] [CrossRef]
- Chai, X.; Zhao, T.; Yue, J.; Yang, J.; Zhang, S.; Du, J.; Zhang, A.; Feng, Z. Flexible and Degradable Polycaprolactone Based Phase Change Composites for Thermal Energy Management. React. Funct. Polym. 2022, 181, 105451. [Google Scholar] [CrossRef]
- Quan, Z.; Xu, Y.; Rong, H.; Yang, W.; Yang, Y.; Wei, G.; Ji, D.; Qin, X. Preparation of Oil-in-Water Core-Sheath Nanofibers through Emulsion Electrospinning for Phase Change Temperature Regulation. Polymer 2022, 256, 125252. [Google Scholar] [CrossRef]
- Hang, Z.-S.; Tan, L.-H.; Cao, X.-M.; Ju, F.-Y.; Ying, S.-J.; Xu, F.-M. Preparation of Melamine Microfibers by Reaction Electrospinning. Mater. Lett. 2011, 65, 1079–1081. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Advances and Applications of Chemical Protective Clothing System. J. Ind. Text. 2019, 49, 97–138. [Google Scholar] [CrossRef]
- Leonés, A.; Sonseca, A.; López, D.; Fiori, S.; Peponi, L. Shape Memory Effect on Electrospun PLA-Based Fibers Tailoring Their Thermal Response. Eur. Polym. J. 2019, 117, 217–226. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Wang, L.; Liu, L.; Liu, Y.; Leng, J. Conductive Shape Memory Microfiber Membranes with Core–Shell Structures and Electroactive Performance. ACS Appl. Mater. Interfaces 2018, 10, 35526–35532. [Google Scholar] [CrossRef] [PubMed]
- Iregui, A.; Irusta, L.; Martin, L.; González, A. Analysis of the Process Parameters for Obtaining a Stable Electrospun Process in Different Composition Epoxy/Poly ε-Caprolactone Blends with Shape Memory Properties. Polymers 2019, 11, 475. [Google Scholar] [CrossRef]
- Zhuo, H.; Hu, J.; Chen, S. Electrospun Polyurethane Nanofibres Having Shape Memory Effect. Mater. Lett. 2008, 62, 2074–2076. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ishiguro, T.; Konosu, Y.; Minagawa, M.; Tanioka, A.; Richau, K.; Kratz, K.; Lendlein, A. Shape-Memory Properties of Electrospun Non-Woven Fabrics Prepared from Degradable Polyesterurethanes Containing Poly(ω-Pentadecalactone) Hard Segments. Eur. Polym. J. 2012, 48, 1866–1874. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Liu, Y.; Cheng, W.; Huang, Y.; Leng, J. Thermosetting Epoxy Reinforced Shape Memory Composite Microfiber Membranes: Fabrication, Structure and Properties. Compos. Part A Appl. Sci. Manuf. 2015, 76, 54–61. [Google Scholar] [CrossRef]
- Iregui, A.; Irusta, L.; Llorente, O.; Martin, L.; Calvo-Correas, T.; Eceiza, A.; González, A. Electrospinning of Cationically Polymerized Epoxy/Polycaprolactone Blends to Obtain Shape Memory Fibers (SMF). Eur. Polym. J. 2017, 94, 376–383. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Chen, H.; Zhang, J.; Su, Z.; Cheng, X.; Meng, B.; Zhang, H. Stretchable Thin-Film Generator with Dual Working Modes for Body Motion Energy Harvesting. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 869–872. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A Breathable, Biodegradable, Antibacterial, and Self-Powered Electronic Skin Based on All-Nanofiber Triboelectric Nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.L.; Pang, Y.X.; Huang, P.; Wang, Y.L.; Zhang, X.R.; Deng, H.T.; Zhang, X.S. Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing. Adv. Fiber Mater. 2022, 4, 873–884. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, W.; Wang, W.; Fong, H.; Zhu, Z. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications. ACS Appl. Mater. Interfaces 2017, 9, 30014–30023. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hao, J.; Huang, Z.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Flexible Electrically Resistive-Type Strain Sensors Based on Reduced Graphene Oxide-Decorated Electrospun Polymer Fibrous Mats for Human Motion Monitoring. Carbon 2018, 126, 360–371. [Google Scholar] [CrossRef]
- Karlapudi, M.C.; Vahdani, M.; Bandari, S.M.; Peng, S.; Wu, S. A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors. Sensors 2023, 23, 3245. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, M.; Wu, K.; Schubert, D.W.; Liu, X. High Sensitive Electrospun Thermoplastic Polyurethane/Carbon Nanotubes Strain Sensor Fitting by a Novel Optimization Empirical Model. Adv. Compos. Hybrid. Mater. 2023, 6, 63. [Google Scholar] [CrossRef]
- You, X.; He, J.; Nan, N.; Sun, X.; Qi, K.; Zhou, Y.; Shao, W.; Liu, F.; Cui, S. Stretchable Capacitive Fabric Electronic Skin Woven by Electrospun Nanofiber Coated Yarns for Detecting Tactile and Multimodal Mechanical Stimuli. J. Mater. Chem. C Mater. 2018, 6, 12981–12991. [Google Scholar] [CrossRef]
- Qi, K.; Wang, H.; You, X.; Tao, X.; Li, M.; Zhou, Y.; Zhang, Y.; He, J.; Shao, W.; Cui, S. Core-Sheath Nanofiber Yarn for Textile Pressure Sensor with High Pressure Sensitivity and Spatial Tactile Acuity. J. Colloid Interface Sci. 2020, 561, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Qi, K.; Ou, K.; Song, Y.; Zhou, Y.; Zhou, M.; Song, H.; He, J.; Wang, H.; Wang, R. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles. ACS Appl. Mater. Interfaces 2023, 15, 11244–11258. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Zhang, Q.; Cai, G.; Xu, A.; Yan, S. Highly Stretchable and Durable Electrospinning Polyurethane Nanofiber Composite Yarn for Electronic Devices. Fibers Polym. 2022, 23, 352–359. [Google Scholar] [CrossRef]
- Du, H.; Zhou, H.; Wang, M.; Zhao, G.; Jin, X.; Liu, H.; Chen, W.; Weng, W.; Ma, A. Electrospun Elastic Films Containing AgNW-Bridged MXene Networks as Capacitive Electronic Skins. ACS Appl. Mater. Interfaces 2022, 14, 31225–31233. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Xu, Z.; Li, W.; Wang, X.; Marriam, I.; Peng, S.; Ramkrishna, S.; Yang, S.; Zhu, M. Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Appl. Energy Mater. 2018, 1, 377–386. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, X.; Wang, K.; He, D.; Yuan, Z.; Xu, J.; Wu, Z.; Wang, Z.L. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337. [Google Scholar] [CrossRef] [PubMed]
- Thenuwara, H.; Rathanayaka, N.; Weerasinghe, V.; Wanasekara, N. Direct Electrospun Cellulose-Based Conductive Nanofibres for Electronic Textiles. In Proceedings of the MERCon 2020—6th International Multidisciplinary Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 28–30 July 2020; pp. 443–447. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Peng, B.; Li, X.; Fang, T.; Liu, S.; Liu, J.; Li, B.; Li, F. Stretchable, Conductive, Breathable and Moisture-Sensitive e-Skin Based on CNTs/Graphene/GelMA Mat for Wound Monitoring. Biomater. Adv. 2022, 143, 213172. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.; Asif, H.; Naguib, H.E. Towards Development of Nanofibrous Large Strain Flexible Strain Sensors with Programmable Shape Memory Properties. Smart Mater. Struct. 2018, 27, 055002. [Google Scholar] [CrossRef]
Electrospinning Parameters | Effects on Fiber Morphology | |
---|---|---|
Solution parameters | Polymer molecular weight ↑ | Uniform, beadless electrospun nanofibers Mean fiber diameter ↑ |
Polymer concentration (a) ↑ | From beaded to uniform fibers Mean fiber diameter ↑ | |
Viscosity (a) ↑ | Uniform, beadless electrospun nanofibers Mean fiber diameter ↑ | |
Surface tension ↑ | Greater probability of beaded fibers formation, non-uniform nanofibers Mean fiber diameter ↑ | |
Conductivity ↑ | Uniform nanofibers Mean fiber diameter ↓ | |
Processing parameters | Flow rate (b) ↑ | Mean fiber diameter ↑ |
Voltage (b) ↑ | Formation of beads Mean fiber diameter ↓ | |
Needle-to-collector distance (b) ↑ | Mean fiber diameter ↓ | |
Ambient parameters | Temperature ↑ | Mean fiber diameter ↓ |
Humidity (b) ↑ | Mean fiber diameter ↑ |
Matrix | Solvent | Antimicrobial Agent | Optimum Process Conditions | Structure | Tested Microbes | Target Application | Reference |
---|---|---|---|---|---|---|---|
PU | Tetrahydrofuran (THF):N,N-dimethylformamide (DMF) (1:1, w/w) | Ag NPs | 10 wt% AgNO3/DMF, 20 kV voltage, 15 cm tip-to-collector distance | Nanofibers | E. coli, S. typhimurium | Antimicrobial wound dressing materials | [33] |
PU | Tetrahydrofuran (THF):N,N dimethylformamide (DMF) (1:1 v/v) | GO, Ag NPs | 10 wt% PU, 15 kV voltage, 15 cm tip-to-collector | Nanofibers | E. coli (79%) | Tissue engineering, wound healing, drug delivery systems | [34] |
PU | THF:DMF (1:1 w/w) | Ag NPs | 10% PU with AgNPs, 18 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 300 ± 50 nm | S. aureus (diameter of inhibition zone 11.4 mm), E. coli (diameter of inhibition zone 10.8 mm) | Water filtration, wound dressings | [35] |
PU, CS | TFA:DCM (7:3) | CS | PU/CS (85/15), 17 kV voltage, 0.3 mL/h feed rate, 10 cm tip-to-collector | Fibers with a mean diameter of 226 nm | E. coli (inhibition zone 4.27 mm) | Air filters, face masks | [36] |
PU | DMF (Dimethyl Formamide):THF (Tetrahydrofuran) | Ag NPs | 0.015% Ag in 12 wt% PU, 13 kV voltage, 5 mL/h feed rate, 10 cm tip-to-collector distance | Nanofiber mat with a diameter of 150–250 nm | Klebsiella bacteria (diameter of inhibition zone 1.1 cm) | Wound dressing | [37] |
PU | DMF:THF (1:1.5) | MgO NPs, Ag NPs | PU/MgO/Ag 2 wt, 13 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 116 nm | E. coli (inhibition zone 21 mm), S. aureus (inhibition zone 30 mm) | Protective clothing, firefighting and industrial protective clothing | [38] |
PU | N,N-dimethylformamide (DMF):tetrahydrofuran (THF) (3:1, v/v) | TiO2 NPs | 18 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector | Nanofiber mat | S. aureus (>99.9%) | Protective clothing, protection layer against chemical and biological warfare agents | [39] |
PU | Dimethylformamide:tetrahydrofuran (1:1 v/v) | Copper (Cu) | 20% w/w PU, 24 kV voltage, 1 mL/h feed rate, 23.5 cm tip-to-collector | Fiber membranes | E. coli (98% growth inhibition), S. aureus (98% growth inhibition) | Protective clothing applications | [40] |
HMW CS | Acetic acid | CS/PEO | HMW CS/PEO (90:10), 30 kV voltage, 0.08 mL/min feed rate, 10 cm tip–target distance | Nanofibrous filter media | E. coli (>2 log reduction in 6 h) | Filtration applications, water purification, air filter media | [41] |
CS, Hydroxypropyl cellulose (H), PEO (P) | 25 wt% acetic acid aqueous solution | Graphene (G) | H: 4.5 wt%/CS: 4.5 wt%/P: 0.75 wt%/G: 0.5 wt%, 25 kV voltage, 0.6 mL/h feed rate, 20 cm tip-to-collector | Nanofibers | S. aureus, E.coli (survival rates < 0.01%) | Wound dressing | [42] |
Trimethylated CS (TMC)-loaded PVA | TMC/PVAl (4:8% w/v), 16 kV voltage, ~0.5 mL/h, feed rate, 12 cm tip-to-collector | Ultrafine fibers with a diameter of 101 ± 28 nm | E. coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Candida albicans | Gloves | [43] | ||
PVA | Water | Zinc oxide (ZnO) NPs | 9% by weight PVA/ZnO, 14 kV voltage, 12 cm tip-to-collector | Nanofibers | S. aurous (inhibition zone of 10 mm), E. coli (inhibition zone of 10 mm) | Medical surgeon | [44] |
PVA, CS | DMAc:acetone (60:40, w/w) | Ag NPs | PVA/CS (92/8 weight ratio) with 1 wt% Ag, 15 kV voltage, 0.1 mL/h feed rate, 10 cm tip-to-collector | Nanofibers | E. coli (3 log CFU/mL at 16 h) | Membranes for fuel cell, wound dressing, smart textiles | [17] |
CS, PVA | Distilled water with 5% w/w acetic acid | GO | 23 kV voltage, 15 cm tip-to-collector | Nanofibrous membranes with a diameter of 83 ± 10 nm | E. coli (inhibition zone of 1.25 mm, CS:PVA:GO = 1:9:0.03), S. aureus (inhibition zone of 1.40 mm, CS:PVA:GO = 3:7:0) | Wound dressing | [45] |
PVA/Sericin | Water | Clay | 10% (w/v) solution of Sericin/PVA (1:1 wt/wt), Clay concentration 0.75%, 27.5 kV voltage, 0.8 mL/h flow rate, 8 cm tip-to-collector | Nanofibrous mats with an average diameter of 300 nm | E. coli (98.3%), S. aureus (97%) | Air filtration mask | [46] |
PVA | Distilled water | TiO2 NPs | 11 wt% PVA solution containing 3 wt% TiO2 NPs, 20 kV voltage, 0.2 mL/h feed rate, 13 cm tip-to-collector | Nanocomposite fibers with a diameter of 300–400 nm | S. aureus (99.3% with 2 wt% TiO2), Klebsiella pneumoniae (85.3% with 3 wt% TiO2) | Sports/outdoor textiles and technical textiles, medical applications | [47] |
PVA | Deionized water | Aloe Vera | 3% aloe vera, 17 kV voltage, 0.5 mL/h feed rate, 20 cm tip-to-collector | Nanofibers with a diameter of 179.59 ± 0.04312 nm | S. aureus (inhibition zone 12.3 mm), E. coli (inhibition zone 11.08 mm) | Surgical gowns, gloves, protective clothing | [48] |
PVA | Water | Quaternary ammonium salt (IQAS) | 7.0 wt% PVA, 0.5% IQAS, 10 kV voltage, 1 mL/h feed rate 12 cm, tip-to-collector, rotation rate 1000 rpm | Nanofibers | S. aureus (99.9%), E. coli (99.9%) | Wound dressings, textile, food packaging and air filtration, public health settings, surgical equipment | [62] |
PCL | DCM:DMF (9:1, v/v) | Ag, Ascorbyl palmitate (AP) | 10% w/v PCL, PCL/AP (30%), 25 kV voltage, 3.3 mL/h feed rate, 15 cm tip-to-collector, 75 rpm | Nanofibers with a diameter of 380 nm | S. aureus | Application in medicine and cosmetics | [49] |
PCL | Acetone | Zinc oxide (ZnO) NPs | 15 wt% PCL in acetone, PCL/6% ZnO, 18 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector | Nanocomposite fiber membranes with an average diameter of 2000 nm | E. coli (Inhibition zone diameter 9.81 ± 0.8 mm), S. aureus (Inhibition zone diameter 10.22 ± 1.3 mm) | Tissue engineering scaffold material | [50] |
PCL | Chloroform:methanol (4:1 v/v) | Hydrophobic carbon quantum dots (hCQDs) | 15% w/v PCL with 0.3% w/w hCQDs, 25 kV voltage, 1.0 mL/h feed rate, 13 cm tip-to-collector distance | Fibers with no beads | S. aureus (8.2 × 101 cfu/cm2), Listeria monocytogenes (1.9 × 101 cfu/cm2), E. coli (6.3 × 101 cfu/cm2), Klebsiella pneumoniae (9.4 × 103 cfu/cm2) | Wound dressing | [51] |
PCL | Chloroform (CHF):N,N-Dimethylformamide (DMF ) (4:1) | MgO NPs | 15% (w/v) of PCL, 25 kV voltage, 1 mL/h feed rate, 26 cm tip-to-collector | Nanofiber membrane | S. aureus (inhibition zone 25.3 ± 0.6 mm), E. coli (13.5 ± 0.7 mm) | Facemasks | [52] |
PCL | Acetic acid:formic acid (2:1) | ZnO NPs | 9 wt% PCL, 55 kV voltage, 10 cm tip-to-collector | Nanofibers with a thickness of 100 μm | S. aureus, E. coli, Candida parapsilosis, Neurospora crassa | Biomedical applications, including in a protective filter layer | [63] |
PCL/CS oligosaccharides (COS) | Formic acid:acetic acid (7:3 v/v) | Quercetin (Qe) | 15% w/w (COS/PCL), 32 kV voltage, 0.77 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 119.1 ± 24.6 nm | E. coli, S. aureus | Wound healing, wound dressings for burn injuries | [53] |
CA | DMF:acetone (1:2, wt/wt) | ZnO/AgNPs | 10 wt% ZnO/AgNPs, 18 kV voltage, 0.06 mm/min feed rate, 15 cm tip-to-collector | Nanofibers | E. coli (inhibition zone of 1.27 ± 0.17 mm), S. Aureus (inhibition zone of 1.32 ± 0.15 mm) | Antibacterial wound dressings | [54] |
CA | Acetone:dimethylformamide (DMF) (2:1 v/v) | Lemon myrtle essential oil (LMEO) | 17% w/v CA with 5–20 wt% LMEO, 17.5 kV voltage, ~0.5 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 493–515 nm | E. coli and S. aureus (100% elimination) | Active packaging or wound-dressing materials | [55] |
CA/PEO | DMF:DCM (1/1 w/w) | Rutin | 8 wt% CA, 1.6 wt% PEO, 2 wt% Rutin, 15 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector | Fiber membrane | S. aureus (97.2%), E. coli (98.5%) | Applications at pharmaceutical and cosmetic industries | [56] |
PBS | PBS was dissolved in chloroform with 15% w/v ratio | Ag NPs | PBS solution to PVP-capped AgNPs solution was 4:1 v/v, 1.16 wt% Ag, 20 kV voltage, 50 μL/min feed rate, 15 cm tip-to-collector | Fiber mats with a diameter of 291.9 ± 82.4 nm | S.aureus (99%), E. coli (99%) | Biocidal membranes | [57] |
PHB | 2,2,2-trifluoroethanol (TFE) | ZnO NPs | 1 wt% ZnO, 25 kV voltage, 2.5 mL/h feed rate, 25 cm tip-to-collector | Uniform fibers with a fiber diameter of 380 μm | S. aureus (2.10 CFU/mL), E. coli (3.20 CFU/mL) | [58] | |
PLA | Chloroform:N, N Dimethylformamide:tetrahydrofuran (1:1:1) | Drug blended 8 wt%/v PLA, 15 kV voltage, 1 mL/h feed rate | Fiber with a diameter of 375 nm | B. cereus (inhibition zones 7.84 ± 0.28 mm), L. monocytogenes (inhibition zones 23.16 ± 1.89 mm), E. coli (inhibition zones 28.33 ± 1.44 mm), S. typhi (inhibition zones 22.66 ± 0.76 mm) | Antimicrobial activities | [59] | |
Silk fibroin/gelatin | 98% formic acid | GO–Ag NPs | SF/GT 15% w/w, 18 kV voltage, 15 cm tip-to-collector | Nanofiber film | E. coli | Biomedical applications | [60] |
PHBV, PBAT | Chloroform:DMF (7:3) | TiO2 NPs | 1.0 wt% TiO2, 17 kV voltage, 1.5 mL/h feed rate, 15 cm tip-to-collector | Nanofiber membrane | S. aureus (98.5%), E. coli (99.7%) | Biomedical application, medical protection | [61] |
Matrix | Solvent | Filtration Agent | Optimum Process Conditions | Structure | Filtration Efficiency | Target Application | Reference |
---|---|---|---|---|---|---|---|
HMW CS | Acetic acid | CS/PEO | HMW CS/PEO (90:10), 30 kV voltage, 0.08 mL/min feed rate, 10 cm tip–target distance | Nanofibrous filter media with a diameter of 65 nm | Aerosol filtration efficiency 70% | Filtration applications, water purification, air filter media | [41] |
PVC/PU | THF:DMF (1:9, w/w) | PVC:PU (8/2, w/w), 28 kV voltage, 2.5 mL/h feed rate, 20 cm tip-to-collector distance | Fiber with diameter of 960 mm | Air filtration efficiency 99.5% towards NaCl APs (diameter of 300–500 nm) | Filtration technology, vehicle engine air filter, cabin air filter, and gas turbine dust collection systems | [66] | |
CA | Acetone:N,N-dimethylacetamide (DMAc) (3:1 w/w) | 75–80 kV voltage, 0.2 mL/h feed rate, 20 cm tip-to-collector, 11.2 rpm | Fiber with a diameter of 23.8 μm | 100% air filtration efficiency towards NaCl (dp 120 nm) and diethyl hexyl sebacate (DEHS) APs | Air filters | [15] | |
CA, Cetylpyridinium bromide (CPB) | Acetic acid/Distilled water (3:1 v/v) | 21% (w/v) of CA and 0.5% (w/v) of the surfactant CPB, 18 kV voltage, 0.7 mL/h feed rate, 10 cm tip-to-collector | Nanofibers with average diameter of 239 nm | 100% filtration efficiency for APs which can include black carbon (BC) | Facial masks, indoor air filter materials in air conditioning equipment | [67] | |
PLA | DCM:DMAC (10:1, w/w) | 5 wt% PLA, 15 kV voltage, 5.5 m/min feed rate, 12 cm tip-to-collector | Fiber with a diameter of 273.6 ± 41.0 nm | Air filtration efficiency 99.997% towards NaCl APs (average diameter of 260 nm) | Respiratory protection, indoor air purification, and other filtration applications | [69] | |
PLA | DMF:Acetone at a ratio of 4:6 v/v | 25 kV voltage, 1 mL/h feed rate, 20 cm tip-to-collector | Nanofibers with mean diameter of 646 ± 368 nm | Filtration efficiency 80.5% (single layer) Filtration efficiency 95.0% (dual layer) | Face mask filter | [70] | |
Piezoelectric PLA | DCM:DMF (7:3 v/v) | 10 wt% PLA, 15 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector, 120 rpm | Fibers with an average diameter of 500 nm | Air filtration efficiency 99% for PM 2.5 and 99.8% for PM 10 | Air cleaning systems and personal air purifier applications | [71] | |
PLA | DMF | Activated carbon (A.C.) | 10% PLA-8% A.C, 30 kV voltage, 3.0 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with an average diameter of 80–240 nm | Bacterial Filtration Efficiency (BFE) ≥ 98%, Differential Pressure (Delta P) < 5.0 mm H2O/cm2, Submicron Particle Filtration Efficiency ≥ 98%, Penetration Resistance (Synthetic Blood) 160 mm Hg | Protective equipment production and filtration applications | [67,72] |
Sericin/PVA | Water | Clay | Clay concentration 0.75%, 10% (w/v) solution of Sericin/PVA (1:1 wt/wt), 27.5 kV voltage, 0.8 mL/h feed rate, 8 cm tip-to-collector | Nanofibrous mats with an average diameter of 300 nm | Filtered 0.725 mg/m3/s of PM of 1 μm Filtered 1.407 mg/m3/s of PM of 2.5 μm. Filtered 4.175 mg/m3/s of PM of 10 μm | Air filtration mask | [46] |
PCL | Chloroform (CHF)/N,N-Dimethylformamide (DMF) (4:1) | MgO NPs | 15% (w/v) of PCL, 25 kV voltage, 1 mL/h feed rate, 26 cm tip-to-collector | Nanofiber membrane with a thickness of 0.147 mm | Filtration efficiency 99.4% | Facemasks | [52] |
PU/CS | TFA:DCM (7:3) | CS | PU/CS (85/15), 17 kV voltage, 0.3 mL/h feed rate, 10 cm tip-to-collector | Fibers with a mean diameter of 226 nm | 75–100% for KCl particles with a size of 10–1000 nm | Air filters, face masks | [36] |
PU | N,N-dimethylformamide (DMF) | 10 wt% PU in N,N-dimethylformamide, 25 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector, 680 rpm | Fibers with an average diameter of 200 nm | Air filtration efficiency 100% for particle size > 0.6 μm Air filtration efficiency 92–95% for particle size < 0.6 μm | Protection against hazardous chemicals, and for specialized medical and military uses | [73] | |
Gelatin powder | Acetic acid:DI water (80:20 v/v) | Area density of 3.43 g/m2 (thickness = 16 μm), 18–20 kV voltage, 0.6 mL/h feed rate, 10 cm tip-to-collector | Fibers with a diameter of 69 ± 17 nm | Removal efficiency of 99.51 ± 0.23% for PM2.5. Removal efficiency of 99.63 ± 0.11% for PM10–2.5 | Green air-filtering materials | [74] | |
Recycled PET | Trifluoroacetic acid (TFA):Dichloromethane (DCM) (70:30) | 10 wt% PET, 5 μL/min feed rate, 25 cm tip-to-collector | Fiber with a diameter of 0.4 μm | Smoke filtration. 43.7 times its own weight of absorbed smoke components | Industrial filters | [75] |
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Air Permeability | Target Application | Reference |
---|---|---|---|---|---|---|---|
PU | N,N-dimethylacetamide (DMAc) | 12% w/w PU, 13 kV voltage, 10 cm tip-to-collector distance | Fibers with an average diameter of 1.45 μm—PU web/fabric | 5.50 × 10−1 cm3/s/cm2 | Protective and specialty textiles | [76] | |
PCL based PU | N,N-dimethylformamide:tetrahydrofuran (1:1 v/v) | 6.5 kV voltage, 1.0 mL/h feed rate | Electrospun web | 7.00 cm3/s/cm2 | Intelligent clothing material | [81] | |
PU | THF:N,N-dimethylformamide (60:40 v/v) | 13 wt%/v of commercial PU, 13 kV voltage, 13 cm tip-to-collector distance, 150 rpm rotating speed, 400 mm/min traverse speed of the drum, 12 h of electrospinning | Fibers with an average diameter of 480 nm | 3.56 × 10−7 cm3/s/cm2 | Protective clothing | [82] | |
PU | THF:N,N dimethylformamide (DMF) (60:40, v/v) | 14 kV voltage, 0.6 mL/h feed rate, 17 cm tip-to-collector distance, 4 h electrospinning of PU | Fiber with a diameter of 447 mm | 4.20 cm3/s/cm2 | Sportswear, protective clothing, and orthopedic dressing | [79] | |
PU | DMF:THF (3:2 v/v) | 12% (w/w) PU, 12 kV voltage, 0.2 mL/h feed rate, 13 cm tip-to-collector distance | Uniform nanofiber web with an average diameter of 890 nm | 2.5 cm3/s | Army combat, sports uniforms | [77] | |
PU | N,N-dimethylformamide (DMF) | Hydrophobic silica gel (HSG) | 18 wt% PU/HSG, 3 wt% HSG with respect to the polymer PU, 15 kV voltage, 0.6 mL/h feed rate, 20 cm tip-to-collector distance, 300 rpm rotating rate of the collector | Fibrous membranes with an average diameter of 331 nm | 9.20 × 10−1 cm3/s/cm2 | Protective clothing, water purification, tissue engineering | [80] |
FPU | DMF:THF (weight ratio of 1:2) | SiO2 NPs | FPU 18 wt%, SiO2 1 wt%, 18 kV voltage, 0.5 mL/h feed rate, 15 cm tip-to-collector distance | Superamphiphobic nanofibrous membranes with an average diameter of 915 nm | 1.48 × 10−1 cm3/s/cm2 | Protective clothing | [83] |
PU, FPU | DMF | 4 wt% PU, 0.5 wt% FPU, 20 kV voltage, 2 mL/h feed rate, 15 cm tip-to-collector distance | Microfibrous membranes with a thickness of 30 μm | 8.46 × 10−1 cm3/s/cm2 | Protective clothing | [88] | |
PVC/PU | THF:DMF (1:9, w/w) | PVC:PU (8/2 w/w), 28 kV voltage, 2.5 mL/h feed rate, 20 cm tip-to-collector distance | Fiber with a diameter of 960 mm | 15.41 cm3/s/cm2 | Applications in filtration technology | [66] | |
PU, PAMPS | THF:DMF (Nozzle 1: 60:40, Nozzle 2: 0:100) | GO | Nozzle 1: 6 w/w% PU, 12 kV voltage, 0.5 mL/h feed rate, 14 cm tip-to-collector distance Nozzle 2: 20 w/w% PAMPS, 14 kV voltage, 0.1 mL/h feed rate, 14 cm tip-to-collector distance 100 rpm speed of collector, 16 cm/min traverse motion of collector | Nanofibrous membrane | 1.57 cm3/s/cm2 | Protective clothing, wound dressing | [84] |
PU | Dimethylformamide (DMF) (>98%):tetrahydrofuran (THF) (4:1 v/v) | SiO2 NPs | 8.2 wt% PU, 5 wt% SiO2, 14 kV voltage, 0.2 mL/h feed rate, 18 cm tip-to-collector distance | Webs with diameters of 600 to 700 nm | 211.60 cm3/s/cm2 | Textile laminate materials | [85] |
PU | Water | Polycarbodiimide (PCD) and long-chain alkyl polymer (LAP) emulsions (PCE and LAE), PEO | 9 wt% PCE, 15 wt% LAE, 40 kV voltage, 4 mL/h feed rate, 22 cm tip-to-collector | Nanofibrous membranes with an average fiber diameter of 548 nm and thickness of 150 ± 5 μm | 1.99 cm3/s/cm2 | Medical hygiene, wearable electronics, water desalination, and oil/water separation. | [8] |
PCL | Chloroform (CHF):N,N-Dimethylformamide (DMF) (4:1 v/v) | Functionalization with MgO NPs | 15% (w/v) of PCL in CHF/DMF, 25 kV voltage, 1 mL/h feed rate, 26 cm tip-to-collector | Nanofiber membrane with a diameter of 2.02 μm | 2.00 cm3/s/cm2 | Facemasks | [52] |
PLA | N,N-dimethylformamide (DMF):dichloromethane (DCM) 8:2 m/m | AlCl3 | 1 wt% AlCl3, 25 kV voltage, 1 mL/h feed rate, 17 cm tip-to-collector | Fibers with a diameter of 559 nm | 10.90 cm3/s/cm2 | Filtration, separation, biomedical, personal protection | [86] |
PVA | Water | 10 wt% PVA solution, 15 kV voltage, 0.5 mL/h feed rate, 10 cm tip-to-collector | Nanofibers with a diameter of 12–13 μm | 28.55 cm3/s/cm2 | Face masks | [87] |
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | UV Protection | Target Application | Reference |
---|---|---|---|---|---|---|---|
PVA | Water | TiO2 NPs | 11 wt% PVA solution with 2 wt% TiO2 NPs, 20 kV voltage, 0.2 mL/h feed rate, 13 cm tip-to-collector | Layered fabric system of nanocomposite fibers with a diameter of 300–400 nm and web area density of 3.0 g m−2 | UPF (ultraviolet protection factor) = 50+, UV-A transmittance (%) = 8.8, UV-B transmittance (%) = 0.3 | Sports/outdoor textiles and technical textiles, medical applications | [47] |
PVA | Water | ZnO NPs | 10 wt% PVA, 9 wt% ZnO, 14 kV voltage, 12 cm tip-to-collector | Nanofibers with a diameter of ~0.5 nm | UV transmission (%) = 0 | Medical surgical gowns | [44] |
Lignin/PVA | Water | Lignin | 50 wt% lignin, 25 kV voltage, 0.4 mL/h feed rate, 10 cm tip-to-collector | Nanocomposite fiber webs with fiber diameter of 95–230 nm and web area density of 3.0 g m−2 | UPF = 50+, UV-A transmittance (%) = 0.1, UV-B transmittance (%) = 0.1 | Functional fibers and textiles | [110] |
PU, PAN | N,N-dimethylacetamide (DMAc) | Core material: TiO2 NPs. Coating modification with fluorinated acrylic copolymer (FAC), 2-hydroxy-4-n-octoxybenzophenone (UV531) | 10 wt% PAN/PU (8/2 mass ratio), 1 wt% TiO2 NPs, 2 wt% FAC, 0.5 wt% UV531, 30 kV voltage, 1 mL/h feed rate, 20 cm tip-to-collector distance | Nanofibrous membranes with an average diameter of ~350 nm | UPF = 1485 | High-altitude garments, protective clothing, covering materials, self-cleaning materials, and other medical products | [102] |
PU | Dimethylformamide:tetrahydrofuran (1:1 v/v) | Modification with zinc and copper (Cu) salt | 20% w/w PU, 24 kV voltage, 1 mL/h feed rate, 23.5 cm tip-to-collector, modification with: 0.036 mol Cu salt in 100 mL water and 0.0183 mol NH4Cl | fiber membranes with an average fiber diameter of 1.58 ± 0.22 μm | UPF= 50+, UV-A Blocking (%) = 99.99, UV-B Blocking (%) = 100 | Protective clothing | [40] |
Cotton cellulose | LiCl:DMAc (8.0% w/v LiCl) | After electrospinning: immersion in Ce(NO3)3 6H2O/Hexamethylenetetramine (HMT) | 1.15% activated cellulose (w/v), 21 kV voltage, 0.8 mL/h feed rate, 12 cm tip-to-collector distance | Nanofibers with a diameter of 100–200 nm | UV absorbance = 2.5–3.2 at 200–350 nm | Medical, military, biological, and optoelectronic industrial fields | [107] |
PLA | Dichloromethane (DCM):N,N-Dimethylformamide (DMF) (7:3 w/w) | Collection of PLA fibers on PLA fabric with TiO2 NPs | 10% PLA (w/v), 18 kV voltage, 0.03–0.08 mL/min feed rate, 15 cm tip-to-collector | Fibers with an average diameter of ~0.5 μm | UV-B transmittance (%) = 14–16 | Multifunctional personal protective materials | [104] |
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Thermal Properties | Target Application | Reference |
---|---|---|---|---|---|---|---|
Temperature resistance/thermal regulation | |||||||
PEG, PCL | DCM:DMF (70:30, v/v) for shell layer precursor solution DCM:DMF (50:50, v/v) for core layer precursor solution | 10 wt% PCL, 70 wt% PEG, 18 kV voltage, 2.20 mL/h feed rate of the shell solution, 0.22 mL/h feed rate of the core solution 13 cm tip-to-collector | Fibers with average diameter of 1200 nm | Melting enthalpy: 39.5 × 103 J/kg Thermal conductivity: 0.1662 W/mK | Smart fabrics, medical items, and biosensors | [116] | |
PEG, PVA | Distilled water | PEG:PVA (7:3), 18–20 kV voltage, 1 mL/h feed rate | Fiber with an average diameter of 780 ± 31 nm | Heat enthalpy: 78.10 × 103 J/kg | Smart textile and energy storage systems | [113] | |
PVA, dodecanol (DD) | Ultrapure water | 10 wt% PVA, 8 wt% DD, 15 kV voltage, 0.5 mL/h feed rate, 16 cm tip-to-collector | Fibers | Phase transition enthalpy: 67 × 103 J/kg Good thermal cycle stability with a loss rate of melting enthalpy as low as 0.3% | [117] | ||
Siliceous PU (SIPU), PU | DMAC:Acetone (2:3 v/v) | Stearic acid (SA) | SIPU solution 11 wt%, SIPU:PU (1:1), SA 30 wt%, 25.5 kV voltage, 22 cm tip-to-collector | Fiber with an average diameter of 230 nm | Good thermal stability up to the temperature of 200 °C Medium latent heat enthalpy of phase change of 40 × 103 J/kg | Outdoor protective clothing, medical clothing, intelligent clothing, and military products | [98] |
Melamine, PVA | Formaldehyde | 8 wt% PVA, 15–21 kV voltage, 0.5 mL/h feed rate | Fibers with a diameter of 0.53 ± 0.13 μm | Heat resistance up to 370 °C | High-temperature-resistant filter | [118] | |
PCL | Chloroform (CHF):N,N-Dimethylformamide (DMF) (4:1) | MgO NPs | 15% (w/v) PCL, 25 kV voltage, 1 mL/h feed rate, 26 cm tip-to-collector | Nanofiber membrane | Facial temperature Nose: 34.1 °C Mouth: 33.5 °C Cheek: 30.6 °C | Facemasks | [52] |
PEG, PCL | HFIP | Gelatin, Circumin | 20 kV voltage, 25 μL/min feed rate, 11 cm tip-to-collector, 300 rpm | Fiber with a diameter of 220–370 nm | Latent heat of 61.7 × 103 J/kg and reliable energy absorption release cyclability over 100 heating–cooling cycles. | Medical textiles for biomedical dressing applications | [114] |
PEG, PLA | Dichloromethane (DCM):N,N-dimethyl-formamide (DMF) (4:1, v/v) | PEG:PLA 200:100 mass ratio, 13 kV voltage, 3 mL/h feed rate, 15 cm tip-to-collector | Fibers with an average diameter of 1540 ± 204 nm | Melting enthalpy: 74.70 × 103 J/kg, degradation temperature higher than 320 °C | Applications in smart textiles, medicine cares, and electric devices for thermal energy storage and temperature regulation | [115] | |
PU/PEG | PU was dissolved in THF:DMF (1:1 w/w) PEG was dissolved in DMF | 25 wt% PU, 70 wt% PEG, 11–14 kV voltage, 2 mL/h feed rate of the shell solution, 0.5 mL/h feed rate of the core solution, 13 cm tip-to-collector | Fibers with an average diameter of 3.23 ± 0.58 μm | Melting enthalpy: 60.40 × 103 J/kg | Next-generation of thermal regulation textiles | [112] | |
Flame retardancy | |||||||
PU | DMF:THF (1:1.5) | MgO NPs | PU/MgO 4 wt%, 13 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector | Nanofibers with a diameter of 116 nm | Flame Retardancy: After flame time: 26.51 s After glow time: 7.67 s Char length: 8.5 cm UL 94 rating: V1 | Protective clothing, firefighting, and industrial protective clothing | [38] |
PLA, DiDOPO (derivative of 6H-dibenz(C,E) (1,2)oxaphosphorin-6-oxide (DOPO)) | DCM:DMF (7:3 v/v) | 12% w/v PLA, 30% w/w DiDOPO, 20 kV voltage, 2 mL/h feed rate, 15 cm tip-to-collector | Fiber with a diameter of 2–12 μm | UL 94 rating: V0 Limited oxygen index (LOI): 27.3% | [68] |
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Chemical Properties | Target Application | Reference |
---|---|---|---|---|---|---|---|
PVA | Distilled water | TiO2 NPs | 11 wt% PVA solution containing 3 wt% TiO2 NPs, 20 kV voltage, 0.2 mL/h feed rate, 13 cm tip-to-collector | Layered fabric system of nanocomposite fibers with a diameter of 300–400 nm and web area density of 3.0 g m−2 | Formaldehyde decomposition efficiency = 80% (15 h UV irradiation) Ammonia deodorization efficiency = 32.2% (2 h UV irradiation) | Sports/outdoor textiles and technical textiles, medical applications. | [47] |
CS | Trifluroacetic acid:Dichloromethane (2:8 ratios) | ZnO NPs | 13% CS, 65 kV voltage, 13.5 cm distance between spinning electrodes, 8 rpm rotation of drum spinning electrode | Nanoweb with an average fiber diameter of 700–715 nm | DCP (Dichloropropane) penetration time = 270 s (=> chemical protection of 40 h) | Next-generation lightweight NBC suit for soldiers | [103] |
CA/PEO | DMF and DCM (1/1 w/w) | Rutin | 8 wt% CA, 1.6 wt% PEO, 2 wt% Rutin in membrane (0.2 wt% in solution), 15 kV voltage, 1 mL/h feed rate, 15 cm tip-to-collector | Fiber membrane with average fiber diameter of ~700 nm | Antioxidant activity = 98.3% (p < 0.05) | Applications in pharmaceutical and cosmetic industries | [56] |
Matrix | Solvent | Additional Agent | Optimum Process Conditions | Structure | Shape Memory Properties | Target Application | Reference |
---|---|---|---|---|---|---|---|
PCL-based PU | DMF | 3.0–12.0 wt% PU:DMF, 12–25 kV voltage, 0.04–0.1 mm/min feed rate, 15 cm tip-to-collector distance | Nanofibers with average diameter of 50–700 nm | Rrec: 98%, Rf: 80% | Smart materials | [123] | |
PCL-based PU | N,N-dimethylformamide:tetrahydrofuran (1:1) | 4 wt% PU, 6.5 kV voltage, 1.0 mL/h feed rate, 5–20 cm tip-to-collector distance | Films with a thickness of 40 μm | Rret: 86%, Rrec: 85% | Protective and thermally intelligent textiles | [81] | |
PU (shell), PEG (core) | THF:DMF (1:1 w/w) for PU DMF for PEG | 30 wt% PEG, 11–14 kV voltage, 2 mL/h feed rate of the shell solution, 0.5 mL/h feed rate of the core solution, 13 cm tip-to-collector | Fibers | Full shape recovery at 23 s at 60 °C | Next generation of thermal regulation textiles | [112] | |
Poly(x-pentadecalactone) hard segments (PPDL) and PCL/CA | Chloroform | 5–15 wt% PDLCL:Chloroform, 15 kV voltage, 20 μL/min feed rate, 15 cm tip-to-collector distance | Fibers with an average diameter of 1.8–3.1 μm | Rrec: 89–95%, Rf: 82–83% | High-performance filter media, protective clothes, composites, drug delivery systems, and biomaterial scaffolds for tissue engineering | [124] | |
PCL, epoxy composite | CH2Cl2:DMF (4:1) | 15 wt% PCL, 15 kV voltage, 0.002 mm/s feed rate of PCL, 0.0005 mm/s feed rate of epoxy composite, 18 cm tip-to-collector distance | Nanofibers | Rrec only in 6.2 s (T = 70 °C) | Smart structures, biomedical, or other practical fields | [125] | |
Bisphenol A diglycidyl ether (DGEBA), PCL | Acetone:DMF (3:1 v/v) | Iodonium salt | PCL:DGEBA 50:50 wt ratio, 9 kV voltage, 0.30 mL/h feed rate, 15 cm tip-to-collector distance | Fibers with an average diameter of 1.04 μm | Rrec: 88–100%, Rf: 95–99% | Smart separation membranes | [126] |
Bisphenol A diglycidyl ether (DGEBA), PCL | Acetone:DMF (3:1 v/v) | Iodonium salt | 8 kV voltage, 0.20 mL/h feed rate, 20 cm tip-to-collector distance | Fibers with an average diameter of 1.05 μm | Rrec: >95%, Rf: >95% | Tissue engineering, drug delivery, composites, or separation membranes | [122] |
PLA, Lactic acid oligomer (OLA) | CHCl3:DMF (4:1 v/v) | 80 wt% PLA, 20 wt% OLA, 20 kV voltage, 0.50 mL/h feed rate, 14 cm tip-to-collector distance | Fibers with an average diameter of 620 ± 121 nm | Rrec: 100% (T = 45 °C) Rrec: >79% (T = 40 °C) Rf: >95% (T = 45 °C) Rf: =98% (T = 40 °C) | Biomedical application | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stramarkou, M.; Tzegiannakis, I.; Christoforidi, E.; Krokida, M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers 2024, 16, 514. https://doi.org/10.3390/polym16040514
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers. 2024; 16(4):514. https://doi.org/10.3390/polym16040514
Chicago/Turabian StyleStramarkou, Marina, Ioannis Tzegiannakis, Erifyli Christoforidi, and Magdalini Krokida. 2024. "Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications" Polymers 16, no. 4: 514. https://doi.org/10.3390/polym16040514
APA StyleStramarkou, M., Tzegiannakis, I., Christoforidi, E., & Krokida, M. (2024). Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers, 16(4), 514. https://doi.org/10.3390/polym16040514