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Abstract: Aniline compounds, as a class of widely used but highly toxic chemical raw materials,
are increasingly being released and accumulated in the environment, posing serious threats to
environmental safety and human health. Therefore, developing detection methods for aniline
compounds is of particular significance. Herein, we synthesized the fluorescent third monomer cyano-
stilbene epoxide M and ternary copolymerized it with carbon dioxide (CO2) and propylene oxide (PO)
to synthesize carbon dioxide-based polycarbonate (PPCM) with fluorescence recognition functions, as
well as excellent performance, for the first time. The results revealed that the PPCM fluorescent probe
exhibited typical aggregation-induced luminescence properties and could be quenched by aniline
compounds. The probe presented anti-interference-specific selectivity for aniline compounds, and the
detection limit was 1.69 × 10−4 M. Moreover, it was found to be a highly sensitive aniline detection
probe. At the same time, the aniline biomarker p-aminophenol in urine could also be detected, which
could expand the potential applications of polymers in the fluorescence-sensing field.

Keywords: carbon dioxide; functional material; polycarbonate; fluorescent probe; aniline; para-amino
phenol

1. Introduction

With the rapid developments in modern industry, the excessive use of fossil fuels has
resulted in a continuous increase in carbon dioxide (CO2) emissions, leading to serious
greenhouse effects and environmental pollution [1,2]. Currently, CO2 management is pri-
marily divided into two categories: one involves reducing the production of CO2 from the
source, while the other involves capturing and utilizing CO2 that is already produced [3,4].
From the perspective of such CO2 resource utilization, CO2 is not only a greenhouse gas but
also a low-priced and widely available renewable carbon resource [5–7]. Such CO2 utiliza-
tion can not only reduce its concentration in the environment but also aid in the production
of energy products, chemicals, and materials, thus alleviating environmental pressure while
simultaneously reaping economic benefits. Accordingly, some methods have been devel-
oped for the chemical conversion of CO2; these include the electrochemical method [8], the
thermal catalytic method [9], and the photocatalytic method [10], which can convert CO2
into methanol [11], formic acid [12], dimethyl carbonate [13], polyurethane [14], polyether
ester polyol [15], polycarbonate [16], and other high value-added chemicals. Among these,
poly(propylene carbonate) [17] (PPC) prepared through the copolymerization of CO2 and
propylene oxide (PO) is a biodegradable polymer with a good oxygen barrier, transparency,
and biocompatibility. It is widely used in food packaging [18], film materials [19], barrier
materials [20], biomedical materials [21], and other fields. Despite these advantages, PPC
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still has some defects. On the one hand, PPC synthesized by this pathway is an amorphous
polymer with flexible chain structures, low glass transition temperatures [22], poor thermal
stability, and inferior mechanical properties. On the other hand, the limited availability of
functional groups that can be modified by PO complicates the preparation of functional PPC
with special uses. Therefore, PPC modification has emerged as an urgent problem [23–25].
Currently, PPC modification methods primarily include physical and chemical methods.
Among these, in the physical methods, PPC is modified by blending it with other polymers
or inorganic substances, and the methods are mainly divided into solution [26] and melt
blending [27]. Although physical methods can more easily improve the thermal stabil-
ity as well as the mechanical properties of PPC, issues such as poor compatibility and
phase separation are often encountered between the blends, and structurally changing the
polymer properties is not feasible. Chemical methods involve the selective introduction
of appropriate units into the polymer chain and the modulation of the molecular chain
structure of the polymer through the chemical reaction copolymerization to obtain poly-
merization products with more sophisticated stereo and regionally controlled structures.
The primary chemical methods used to modify PPC include terpolymerization [28], block
copolymerization [29], crosslinking [30], chain transfer [31], and graft copolymerization
reactions [32]. Among these, terpolymerization is currently the main method adopted in
the study of modified PPC, owing to its flexible third monomer selectivity. In this case,
the introduction of a third monomer can not only selectively adjust the structure of PPC
and improve its performance but also endow it with unique functions. However, current
studies primarily focus on the adhesive, flame-retardant, hydrophilic, and hydrophobic
properties [33–36] of PPC, while studies on PPC with fluorescent properties are rare. This
is because PPC synthesized from CO2 and PO lacks modifiable functional groups for the
introduction of luminescent groups. Therefore, the introduction of luminescent groups is
of great research significance for the preparation of PPC with fluorescent properties.

To date, several studies have reported the introduction of luminescent groups into
polymers to make them fluorescent, and scientists have discovered that a great variety
of fluorescent polymers can be synthesized by introducing different luminescent groups
with fluorescent properties into polymer materials. In 2016, Ma et al. [37] polymerized
the luminescent moiety tetrastyrene with N-isopropylacrylamide (NIPAM) to prepare a
fluorescent polymer material with a low critical eutectic melting temperature (LCST) of
37.5 ◦C. Owing to the temperature-sensitive properties of the material itself, a sol–gel phase
transfer could be observed upon changes near the LCST, which induced a fluorescent
response. In 2020, Lenora et al. [38] introduced benzimidazole-based luminescent groups
to synthesize a 2,6-bis(2-benzimidazolyl)pyridine-conjugated sesquisiloxane-based semi-
branched polymer and investigated its photophysical properties and metal-sensitizing
properties. The polymer was found to emit a blue color in both solid and solution states and
was expected to be used as a Zn(II) fluorescent sensor. In 2021, Zeng et al. [39] synthesized
a coumarin@GDP-Tb dual-emission fluorescent polymer by introducing coumarin-like
luminescent groups. These coumarin@GDP-Tb polymers were then found to not only be
rich in metal-binding sites but also to have moderate ion-binding power, which made them
suitable as fluorescent probes that could be used for S2− detection. Thus, the emergence
of numerous fluorescent polymers containing different luminescent groups provides new
ideas and good support for the preparation of PPCs with fluorescent properties.

Luminescent groups currently used in polymers include stilbenes [40], tetrastilbenes [41],
benzimidazoles [42], rhodamine [43], fluoresceins [44], and coumarins [45]. Among
these, cyanostilbene compounds, as a typical class of aggregation-induced emission (AIE)
molecules, have not only significant optical properties but also possess simple synthesis
routes and allow easy modifications of structures. They have been extensively utilized
in various application fields such as detection sensors, organic photoelectric materials,
and solar cells [46–48]. To prepare PPCs with fluorescent properties, herein, cyanostilbene
epoxy compound M was synthesized using the cyanostilbene group [49] as the luminescent
group, and PPCM with fluorescent properties was prepared through the copolymerization
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of cyanostilbene epoxy compound M with CO2 and PO for the first time. Following this, the
structure and properties of PPCM were characterized and analyzed. The results revealed
that PPCM not only had good thermal and mechanical properties but also demonstrated
stable luminescence performance in water with aggregation-induced luminescence effects.
In addition, PPCM has been previously demonstrated to show good selectivity and anti-
interference specificity for aniline [50,51] compounds among several organic compounds
while also being capable of detecting aniline pollutants in different environmental water
media with high sensitivity and detecting p-aminophenol in urine. It is a novel polymer flu-
orescent probe that can be used to detect aniline in the environment and aniline biomarkers
in urine.

2. Experimental
2.1. Materials and Methods

PO (99%) was purchased from China, Shanghai Aladdin Co., Ltd. (Shanghai, China)
and purified using calcium hydride reflux for 8 h under a nitrogen atmosphere before
use. Cobalt acetate tetrahydrate was vacuum-dried at 140 ◦C to remove crystal water, and
toluene was distilled with sodium metal before use. The purified reagents were stored
in a dryer containing 4A molecular sieves for later use. CO2 (99.99%) was purchased
from China, Xi’an Tenglong Chemical Co., Ltd. (Xi’an, China). All other reagents were of
analytical grade and used without further purification.

Fourier-transform infrared (FT-IR) spectrometry (Nicolet 6700; Thermo Scientific,
Waltham, MA, USA) with attenuated total reflection accessories was used to characterize
the structure of the product. Proton nuclear magnetic resonance (1H NMR) spectra were
obtained (400 M, Bruker, Karlsruhe, Germany) using deuterochloroform as the solvent.
The polymers’ molecular weights (Mw) and the molecular weight distributions (PDI) were
measured using gel chromatography (PL-GPC 50, Agilent, Santa Clara, CA, USA) with
tetrahydrofuran as an eluent. The glass transition temperature (Tg) was determined using a
DSC-3 differential scanning calorimeter (DSC) under a nitrogen atmosphere at a heating rate
of 10 ◦C/min from 25 to 110 ◦C. Thermogravimetric testing (TGA) was performed using a
thermogravimetric analyzer (TGA/DSC-1) under a nitrogen atmosphere at a heating rate
of 10 ◦C/min from 25 to 500 ◦C. Each polymer sample was prepared in a dumbbell-shaped
strip of 25 mm × 4 mm × 1 mm (length × breadth × thickness) using a universal material
testing machine (CMT) and following the ASTM E-104 standard; subsequently, the tensile
properties were tested under 50% ± 5% humidity at 25 ◦C at a tensile speed of 50 mm/min.
A Hitachi F-7000 spectrometer equipped with a quartz cuvette of 1 cm optical range and a
xenon lamp as the excitation source was used for fluorescence spectroscopy, with excitation
and emission slit widths of 10.0 nm.

2.2. Synthesis of Monomer M

P-hydroxybenzeneacetonitrile (1.33 g, 0.01 mol) and epichlorohydrin (9.25 g, 0.10 mol)
were added to a 250 mL single-necked flask with a magnet and heated to 68 ◦C. After the
ingredients were dissolved, tetrabutylammonium bromide (0.322 g, 0.001 mol) was added;
after approximately 8 h of reaction, terephthalaldehyde (0.6000 g, 0.0045 mol) and 150 mL
of anhydrous ethanol were added, followed by solid sodium hydroxide (1.20 g, 0.03 mol).
The reaction continued for approximately 4–6 h before stopping. After the reaction system
had cooled to room temperature, filtration was performed. The solid product was collected,
washed with water, and dried to obtain the crude product, which was recrystallized with
a mixed solvent of N, N-Dimethylformamide (DMF) and ethanol (v:v = 1:1) to obtain
1 g of a yellow-green product, i.e., the ((2Z,2′Z)-3,3′-(1,4-phenylene)bis(2-(4-(oxiranyl-2-
methoxy)phenyl)acrylonitrile)- epoxide compound, which is referred to as M, as shown
in Scheme 1.
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Scheme 1. Synthesis route of monomer M.

2.3. Terpolymerization of CO2, PO, and M

The terpolymerization of CO2, PO, and M is shown in Scheme 2. The novel catalyst
dinuclear cobalt-coordinated salen[Co(III)TFA]2 (0.05 g) synthesized previously by our
group [52] and a certain proportion of M were added into a 250 mL autoclave reactor
equipped with a magnetic stirrer and dried for 2 h at 80 ◦C under vacuum. The autoclave
was carefully purged with nitrogen. Subsequently, 11.6 g PO was injected into the autoclave,
which was then filled with CO2 at 3 MPa. The reaction was carried out at 70 ◦C for
24 h. Afterward, the reactants were then cooled to room temperature and the pressure was
released. The obtained viscous mixture was washed with an anhydrous ethanol solution
containing 5% HCl, and the crude product was dissolved in an appropriate amount of
CH2Cl2 and filtered to remove the catalyst. Finally, methanol was precipitated, centrifuged,
collected, and dried under a vacuum until a constant weight was achieved. The polymer
yield was then calculated.

Polymers 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

phenylene)bis(2-(4-(oxiranyl-2-methoxy)phenyl)acrylonitrile)- epoxide compound, which 
is referred to as M, as shown in Scheme 1. 

 
Scheme 1. Synthesis route of monomer M. 

2.3. Terpolymerization of CO2, PO, and M 
The terpolymerization of CO2, PO, and M is shown in Scheme 2. The novel catalyst 

dinuclear cobalt-coordinated salen[Co(III)TFA]2 (0.05 g) synthesized previously by our 
group [52] and a certain proportion of M were added into a 250 mL autoclave reactor 
equipped with a magnetic stirrer and dried for 2 h at 80 °C under vacuum. The autoclave 
was carefully purged with nitrogen. Subsequently, 11.6 g PO was injected into the auto-
clave, which was then filled with CO2 at 3 MPa. The reaction was carried out at 70 °C for 
24 h. Afterward, the reactants were then cooled to room temperature and the pressure was 
released. The obtained viscous mixture was washed with an anhydrous ethanol solution 
containing 5% HCl, and the crude product was dissolved in an appropriate amount of 
CH2Cl2 and filtered to remove the catalyst. Finally, methanol was precipitated, centri-
fuged, collected, and dried under a vacuum until a constant weight was achieved. The 
polymer yield was then calculated. 

 
Scheme 2. Synthesis route of PPCM. 

3. Results and Discussion 
3.1. Monomer Structure Characterization 

The 1H NMR spectrum of the prepared M is shown in Figure 1. The signals at 2.73, 
2.86, and 3.56 ppm were assigned to the hydrogen in CH2 and CH on the ring in epichlo-
rohydrin, whereas the signals at 3.93 and 3.41 ppm were assigned to the hydrogen in CH2 
on the side chain in epichlorohydrin. Further, the signals at 7.76–8.04 ppm were attributed 
to the benzene ring, and the signal at 8.04 ppm was attributed to the hydrogen in the un-
saturated double bond. We confirmed that the monomer was successfully synthesized. 

Scheme 2. Synthesis route of PPCM.

3. Results and Discussion
3.1. Monomer Structure Characterization

The 1H NMR spectrum of the prepared M is shown in Figure 1. The signals at 2.73, 2.86,
and 3.56 ppm were assigned to the hydrogen in CH2 and CH on the ring in epichlorohydrin,
whereas the signals at 3.93 and 3.41 ppm were assigned to the hydrogen in CH2 on the
side chain in epichlorohydrin. Further, the signals at 7.76–8.04 ppm were attributed to the
benzene ring, and the signal at 8.04 ppm was attributed to the hydrogen in the unsaturated
double bond. We confirmed that the monomer was successfully synthesized.
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3.2. CO2 Terpolymerization Reaction

Feed ratio is the main factor affecting the copolymerization reaction. Five groups
with different feed ratios of PO and M were used to explore the effect of feed ratio on the
ternary copolymerization reaction. In the presence of aggregation-induced luminescent
monomer M, the ternary copolymerization of CO2, PO, and M can be efficiently catalyzed
using the dinuclear cobalt complex salen [Co(III)TFA]2, and polycarbonate PPCM can be
successfully prepared. With the increase in monomer M content in the reaction system, the
Mn of the copolymer increased from 6352 to 14,577 g mol−1 and then gradually decreased
to 7335 g mol−1; similarly, the yield of the polymer also first increased and then decreased
(Table 1). This is because PO, which has been ring-opened and has activity, is more likely
to bind to the third monomer M at a higher concentration in the system with the increase
in M content in the reaction substrate, and it can quickly link to the molecular chain to
obtain a polymer with a high molecular weight. However, when more M monomers are
introduced, the relative concentration of PO decreases and the number of active centers
decreases, which is not conducive to the polymerization reaction [53]. At this point, the
reaction attains equilibrium. In summary, the Mn of PPCM was controllable in the range
between 6352 and 14,577 g mol−1. The yield and molecular weight of the polymer increased
with the addition of an appropriate amount of monomer M, and the optimal feed ratio was
PO/M = 100:3.

Table 1. Catalytic results of copolymerization of PO and M in different molar ratios a.

Polymer n[PO]:n[M] Yield (%) Mn (g/mol) b PDI c

PPCM1 100:1 32 6352 1.43
PPCM2 100:2 55 8570 1.14
PPCM3 100:3 70 14577 1.27
PPCM4 100:4 68 8530 1.64
PPCM5 100:5 65 7335 1.86

a Polymerization conditions: 0.05 g of dinuclear cobalt complex salen[Co(III)TFA]2 catalyst; CO2 pressure,
3.0 MPa; 70 ◦C; 24 h. b Mn: the average molecular weight (g·mol−1) determined via gel permeation chromatog-
raphy. c PDI: polydispersity index (Mw/Mn); Mw: average molecular weight (kg·mol−1) determined via gel
permeation chromatography.
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3.3. Confirmation of the Copolymer Structure

The polymer’s structure was characterized using FT-IR spectroscopy and 1H NMR. The
FT-IR spectra of monomer M and PPCM are shown in Figure 2. Evidently, the characteristic
absorption peak of the cyano group appeared at 2200 cm−1 in both the M and PPCM spectra.
The peaks at 1250 and 1120 cm−1 were the characteristic absorptions of the aromatic ether
C-O-C, and the characteristic absorption peak of the double bond near 1610 cm−1 was
retained, thus indicating that the carbon–carbon double bond did not participate in the
polymerization reaction. Additionally, the difference between the PPCM and M spectra is
that the C=O stretching vibration of the ester bond appeared near 1740 cm−1, thus indicating
that the epoxy bond of monomer M was broken into an ester bond of the carbonate chain
during the polymerization process. Synthesis of the ternary polymerization product was
initially judged to be successful.
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The 1H NMR spectrum of PPCM is shown in Figure 3. The signals at 1.38, 2.74, and
4.89 ppm were assigned to the hydrogen atoms in CH3, CH2, and CH in the carbonate unit
of PPC, respectively. The signals at 7.13–7.93 ppm were assigned to the hydrogen in the
benzene ring of the M monomer. The signal at 8.03 ppm was attributed to hydrogen in
the unsaturated double bond in the M monomer. These results demonstrate the successful
formation of the PPCM polymers.
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3.4. Copolymer Properties
3.4.1. Thermal Properties

Thermal properties significantly affect the processing and application of polymer
materials. Figure 4a shows the DSC curves of PPC and PPCM copolymers with different
feed ratios. Evidently, the Tg of the PPCMs was higher than that of PPC. In particular,
the Tg of PPCM3 was 42.3 ◦C, which is 36% higher than that of PPC (31.0 ◦C). This is
because introducing a third monomer containing a benzene ring structure changes the
chain structure and effectively improves the thermal stability of PPC [54]. Figure 4b shows
the TGA curves of the polymers. PPC decomposes at 155 ◦C, and the maximum thermal
decomposition temperature (Td, max) is 270 ◦C. After adding the third monomer M, the
Td, −5% and Td, max of PPCM3 could reach 225 and 329 ◦C, which are 45% and 22% higher
than that of PPC, respectively, which is a breakthrough improvement. This improvement in
thermal stability was attributed to the incorporation of a rigid third monomer with double
bonds, redistribution of the main chain structure of the molecular chain, and improvement
in the stiffness of the polymer. This broadens the thermal processing temperature range of
the copolymers, thereby enabling a more comprehensive range of applications.
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3.4.2. Mechanical Properties of the Polymer

The main chain of PPC comprises ester bonds and a small number of ether bonds;
further, no strong forces exist between the molecules. The molecular chain slides easily,
and its mechanical strength is low [55]. Therefore, the PPC must be modified mechanically.
The mechanical properties of PPC and PPCMs are shown in Figure 5. Evidently, the
tensile strength and Young’s modulus of the PPCMs are higher than those of pure PPC,
and their elongation at break is lower than that of pure PPC. In particular, the maximum
tensile strength of PPCM3 was 21.4 MPa, and Young’s modulus was 415.3 MPa, which is
nearly four times that of PPC, and its elongation at break was only 153%. The significant
improvement in the mechanical properties of PPCM is closely related to the introduction
of a third monomer, M, which is attributed to the rigid benzene ring group in M and its
large steric hindrance. The introduction of M changes the main chain structure and limits
the chain movement of PPC, thus improving the rigidity of the main chain of PPC. PPCM
is not only stable at high temperatures but can also withstand greater pressures, further
expanding its industrial application range.
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3.4.3. Aggregation-Induced Luminescence Properties of the Polymer

Reportedly, cyanostilbene derivatives are typical aggregation-induced luminescent
molecules that emit weak or even no light in dilute solutions, whereas the aggregated state
or solid film state produces intense fluorescence. Considering the mutual solubility of
good and poor solvents, tetrahydrofuran was selected as the good solvent, while water
was selected as the poor solvent. Polycarbonate PPCM was dissolved in a mixed solvent
of THF and H2O (the volume ratios of H2O:THF were 9:1 (corresponding to 90% in the
graph), 8:2 (corresponding to 80% in the graph), 6:4 (corresponding to 60% in the graph),
4:6 (corresponding to 40% in the graph), 2:8 (corresponding to 20% in the graph) or 0:10
(corresponding to 0% in the graph)). Figure 6 shows the photoluminescence spectra of
PPCM in a mixture of THF and H2O for various volume ratios. The fluorescence intensity of
the polymer increases with an increase in the content of poor solvent water, thus indicating
AIE properties. Owing to the poor solubility of PPCM in water, the system demonstrated
aggregated behavior, and the free rotational movement of the benzene ring was restricted;
that is, intramolecular rotation was blocked, causing the compound molecules to transition
from the distorted conformation to the near-planar conformation, thus increasing the
effective conjugation length of the molecules and gradually enhancing the fluorescence
luminescence intensity [56]. This shows that PPCM synthesized through copolymerization
with CO2 as the raw material still exhibits aggregation-induced luminescence properties.
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3.5. Applications of Copolymer Probes in the Environment
3.5.1. Recognition of Aniline Compounds via Copolymer PPCM

In order to investigate the recognition function of copolymer PPCM on specific organic
compounds, several common organic compounds (formic acid (FA), ethanol (EtOH), bu-
tanone (MEK), phenol, benzaldehyde (BzH), methyl tert-butyl ether (MTBE), aniline) were
selected for comparison, and 2 mL of 2 × 10−4 g/mL PPCM solution (THF/H2O = 1:9, v/v)
was added to the fluorescence cuvette, after which 20 µL of different organic compounds,
and the changes in the fluorescence intensity of the solutions were tested via fluorescence
spectroscopy. As can be seen in Figure 7, the fluorescence intensity did not change much
when formic acid, ethanol, butanone, phenol, benzaldehyde, and methyl tert-butyl ether
were added. When aniline was added, the fluorescence intensity decreased a lot. In or-
der to further investigate the identification of aniline via the copolymer PPCM, different
amine compounds (diisopropylamine (DIPA), diethylamine (DEA), triethylamine (TEA),
tetramethyldiethylamine (TEMED), cyclohexylamine (CHA), and benzylamine (BZA))
were selected for comparison. In the fluorescence cuvette, 2 mL of 2 × 10−4 g/mL PPCM
solution (THF/H2O = 1:9, v/v) was added, and in this, 20 µL solutions of different amines
(at a concentration of 1 mol/L) were added, respectively. Changes in the fluorescence
intensities of the solutions were measured via fluorescence spectrometry. As can be seen in
Figure 7, when DIPA, DEA, TEA, TEMED, and BZA were added, the fluorescence intensi-
ties did not change significantly and decreased by approximately 15% in all cases. When
CHA was added, the fluorescence intensity decreased by approximately 55%. By contrast,
when aniline was added, the fluorescence intensity decreased by approximately 90%, thus
exhibiting the best bursting effect. These results suggest that PPCM has high selectivity for
aniline and no obvious fluorescence response to other amines.

We also observed comparative plots of the PPCM solution (far left) with the addition
of 20 µL, 1 mol/L of amines (aniline, DIPA, DEA, TEMED, BZA, and CHA, from left to
right) with the naked eye, under ultraviolet (UV) light irradiation (365 nm) (Figure 8), and
the same conclusions were drawn.
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Figure 8. Fluorescence of PPCM solution under UV lamp (365 nm) after addition of different amine
compounds.

To explain the fluorescence sensing of aniline using the PPCM copolymer, we inves-
tigated its detection mechanism. Molecular orbital theory focuses on the fact that any
electron in a molecule can be viewed as a charged particle focuses on the fact that any
electron in a molecule can be viewed as a charged particle moving in a potential field
composed of all nuclei and the rest of the electrons. The wavefunction of a single-electron
motion state in a molecule is a molecular orbital. The molecular orbital can be obtained by
a linear combination of the atomic orbital wave functions in the molecule, and each molec-
ular orbital has a corresponding energy. In molecular orbital theory, the most energetic
molecular orbitals are generally referred to as the highest occupied molecular orbitals in
the presence of an electron arrangement.
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This study investigated the structure and electronic properties of molecules and
polymers using Gaussian 16 (Revison A.03 WIN64) software based on the density functional
theory (DFT) calculation method B3LYP/6–31g (d, p). The energy level diagrams of seven
amine compounds (aniline, DIPA, DEA, TEA, TEMED, CHA, and BZA), two aromatic
compounds (phenol and BzH), and the polymer PPCM(C4H6O3)n-C30H26O4N2-(C4H6O3)m
(where n and m are taken as 1, 2, or 3) were calculated and obtained. The results are shown
in Figure 9. Evidently, the HOMO energy levels of aniline are higher than those of DIPA,
DEA, TEA, TEMED, CHA, BZA, phenol and BzH. And, only the HOMO energy level of
aniline was higher than that of the polymer PPCM(C4H6O3)n-C30H26O4N2-(C4H6O3)m (n,
m are taken as 1, 2, and 3 respectively). Based on the experimental results, the fluorescence
burst of the polymer PPCM was observed only for aniline, and the detection mechanism
was hypothesized to be the photoinduced electron transfer [57] (PET) mechanism. The
fluorescence quenching can be attributed to the donor–acceptor electron transfer between
aniline and the polymer PPCM. When the PPCM system receives a certain amount of
energy under light irradiation, the electrons in the highest occupied orbital are excited and
move to the lowest unoccupied orbital. Because the HOMO energy level of aniline is higher
than that of PPCM, the electrons in the HOMO energy level of aniline move to the HOMO
energy level of PPCM, resulting in the fluorescence quenching of the system [58,59].
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3.5.2. Anti-Interference Experiments on Aniline Using the Copolymer PPCM

When detecting the fluorescence recognition of PPCM, we observed the specific selec-
tive recognition of aniline and investigated its anti-interference ability during the recogni-
tion process. The competitive experiments (Figure 10) suggested that the presence of other
amine compounds did not affect the response of aniline, except for the expected complete
quenching of aniline. These results indicate that PPCM has anti-interference selectivity
toward aniline and can be used as an effective method for detecting aniline.
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3.5.3. Sensitivity Testing of the Copolymer PPCM to Aniline

To explore the sensitivity of the PPCM copolymer to aniline, we investigated the
changes in the intensity of its fluorescence spectrum with the addition of different amounts
of aniline; PPCM was excited at 365 nm. In a fluorescence cuvette, separate solutions
were prepared by adding 2 mL of 2 × 10−4 g/mL PPCM solution (THF/H2O = 1:9, v/v)
and 20 µL of aniline at different concentrations. Figure 11a shows that the fluorescence
intensity in the system decreased significantly with increasing the aniline concentration.
When 1 M of aniline was added, the fluorescence intensity decreased to its lowest value.
Simultaneously, the Stern–Volmer equation {I0/I = 1 + Ksv[M]} was fitted to this part of
the data [60] (Figure 11b). I0 and I represent the initial fluorescence intensity of PPCM
at 475 nm and the fluorescence intensity after the addition of aniline, respectively. [M]
represents the concentration of aniline, and Ksv is the quenching constant. As can be seen
from Figure 11, the fluorescence intensity of the system showed a linear decrease with the
addition of aniline (R2 = 0.993, Ksv = 8.4 × 102 M−1), with a larger value of Ksv, which
indicates that PPCM has a better sensing sensitivity to aniline.
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The primary measure of the sensitivity of a fluorescent chemosensor is the determi-
nation of the lowest detection limit of the substance under test; the lower the detection
limit, the higher the sensitivity. The detection limit of aniline can be easily calculated
from the fluorescence titration data. The fitted curves showed excellent linearity at high
concentrations in the aniline concentration range of 0–10 mM (Figure 12).
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In addition, the limit of detection (LOD) of PPCM for aniline was calculated using the
following two formulae:

σ =

√
∑(F − F0)

2

N − 1

LOD =
3σ

k
where σ is the standard deviation of the blank group, F0 is the fluorescence intensity of
the sample at the excitation (475 nm), F is the average value of F0, and k is the slope of
the relationship curve between the fluorescence intensity at the excitation (475 nm) and
the low concentration range of aniline. According to the formula of LOD, the calculated
detection limit of PPCM is 1.69 × 10−4 M. This demonstrates the suitability of PPCM for
detecting environmental aniline with high sensitivity and a low detection limit. The above
experiments showed that the PPCM solution had a significant effect on aniline detection
and high sensitivity.

3.5.4. Application of Copolymer PPCM in Different Water Samples

To investigate the practical application of copolymer PPCM in the environment, we
studied its response to aniline in real environmental water samples (tap water, river water,
and wastewater). These water samples were all filtered before use. Two milliliters of
the 2 × 10−4 g/mL PPCM solution (THF/H2O = 1:9, v/v) was added to a fluorescent
cuvette, and this was followed by the addition of 20 µL of aniline solutions with varying
concentrations (0.1, 0.5, and 1 M). The standard addition recovery method was adopted to
evaluate the feasibility of the PPCM probe for detecting aniline from actual water samples.
The corresponding results are summarized in Table 2. The recovery rate of aniline from the
different water samples was between 94.2% and 109.0%, indicating that the PPCM probe
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had high selectivity for aniline in these water samples. Thus, fluorescence detection can be
applied to aniline detection in actual water samples.

Table 2. Analysis of the detection results of aniline in actual water samples via probe PPCM
(2 × 10−4 g/mL).

Sample Spiked (M) Found (M) Recovery (%)

Tap water
0.10 0.109 109.0
0.50 0.514 102.8
1.0 0.963 96.3

River water
0.10 0.104 104.0
0.50 0.508 101.6
1.0 1.085 108.5

Waste water
0.10 0.097 97.0
0.50 0.516 103.2
1.0 0.942 94.2

3.5.5. Recognition of Aniline Compounds via Polymer PPCM

In addition to aniline, aniline compounds, as important chemical raw materials and
intermediates, are also highly toxic, and a small amount can be a poison, which can cause
hemolytic anemia, liver damage resulting in toxic liver disease, and carcinogenic, terato-
genic, and mutagenic effects. The emission of aniline compounds into the environment
is increasing with the development of agriculture and industry, and the damage to the
environment and human health is becoming increasingly severe. Therefore, the identifi-
cation of aniline compounds is of great significance. Five common aniline compounds
(aniline, o-toluidine, o-methoxyaniline, 2,6-dimethylaniline, and N-methylaniline) in envi-
ronmental pollutants were selected to analyze the response effect of the polymer PPCM.
Moreover, 2 mL of 2 × 10−4 g/mL PPCM solution (THF/H2O = 1:9, v/v) was added to
the fluorescence cuvette. Then, 20 µL solutions of aniline, o-toluidine, o-methoxyaniline,
2,6-dimethylaniline and N-methylaniline (all at a concentration of 1 mol/L) were added
to form sample solutions for analysis. Changes in the fluorescence intensity of the system
were observed via fluorescence spectrometry. Figure 13 shows that the PPCM polymer
has a good fluorescence quenching effect on the five aniline compounds. These results
broaden the detection range of polymer PPCM in the environment, thus making PPCM
more practical and promising for practical detection.
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3.6. Recognition of Aniline Biomarkers in Urine by Polymer PPCM

Aniline, as a ubiquitous, highly toxic environmental pollutant, can be enriched by
inhalation, skin absorption, and the food chain. High concentrations of aniline can lead
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to toxic methemoglobinemia, causing damage to the human liver, kidney, skin, and other
tissues, and is considered to be a potential carcinogen [61]. However, due to individual
differences, the concentration level of aniline in the environment cannot accurately and truly
reflect its concentration level in the human body. Aniline absorbed by the human body can
be metabolized into a biomarker p-aminophenol in the body, which is then excreted with
urine [62]. P-aminophenol, a metabolite of aniline in urine, is considered to be an important
exposure biomarker for the effective monitoring of aniline. Therefore, the effective detection
of p-aminophenol in human urine is of great significance in occupational health. In order to
investigate the sensitivity of copolymer PPCM to p-aminophenol, we studied the change in
fluorescence spectral intensity under different amounts of p-aminophenol. In a fluorescence
cuvette, separate solutions were prepared by adding 2 mL of 2 × 10−4 g/mL PPCM solution
(THF/H2O = 1:9, v/v) and 20 µL of p-aminophenol at different concentrations. Figure 14a
shows that the fluorescence intensity in the system decreased significantly with increasing
aniline concentration. When 1 M of aniline was added, the fluorescence intensity decreased
to its lowest value. A study was carried out to investigate the practical application of
copolymer PPCM in urine. Since the pH of human urine is generally weakly acidic, we
studied the response of copolymer PPCM to p-aminophenol in artificial urine (pH = 4.7,
pH = 5.7). The results are shown in Figure 14b,c. The probe PPCM has good sensing
performance for the metabolite p-aminophenol of aniline in simulated human urine.
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4. Conclusions

In this study, the ternary copolymerization of CO2, PO, and the cyanostilbene-like
monomer M produced a fluorescent functional copolymer PPCM. The results revealed
that the modified PPCM exhibited superior thermal and mechanical properties. The Tg of
PPCM reached a maximum of 42.3 ◦C, and the minimum Tg was also higher than that of
PPC. The Td, −5% increased from 155 to 225 ◦C, and the Td, max also increased from 270 to
329 ◦C. Mechanically, the tensile strength of the copolymer increased from 10.5 to 21.4 MPa
with a significant increase in M content. Moreover, after releasing the tensile force, the
tensile permanent deformation of the crosslinked material reduced significantly, and the
elongation at break reduced from 420% to 153%. The improvement of mechanical properties
was distinct. As a novel fluorescent probe with an aggregation-induced luminescence effect,
PPCM showed high selectivity and sensitivity for aniline compounds among different
compounds, with a detection limit of 1.69 × 10−4 M. The application of this fluorescent
probe to the detection of aniline compounds in real water samples yielded good spiked
recoveries, indicating that this PPCM fluorescent probe has a potential practical application
value in the selective identification of aniline compounds. In addition, the polymer PPCM
has great potential as a fluorescent sensor for the detection of aniline biomarkers in human
urine, which is of great significance to human health.
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