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Abstract: Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each
year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion.
The spread of cancer to distant organs through metastasis is the leading cause of death due to
cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising
field for regenerative medicine that is likely to be able to provide rehabilitation procedures to
patients who have undergone surgeries, such as mastectomy and other reconstructive procedures.
Another important use of tissue engineering has emerged recently that involves the development of
realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis
therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies
in developing tissue-engineered metastasis structures. This article reports recent developments in
in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges
and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim
to reduce the cancer burden.
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1. Introduction

Cancer is emerging as a leading cause of premature death worldwide [1]. Globally, the
World Health Organization reported 9.6 million deaths in 2018, making cancer the second
leading cause of death worldwide. The large global economic burden of cancer from 2020
to 2050 was estimated to be USD 25.2 trillion [2]. Metastasis remains the primary cause of
death due to cancer [3]. In a 2022 study, it was estimated that 623,405 people were living
with metastatic cancers or metastatic melanoma in the US, and that number is expected to
increase to 693,452 by the year 2025 [4]. A 2007 study reported that the economic burden for
patients with metastatic bone diseases is USD 12.6 billion. This number represents 17% of
the total medical burden estimated by the National Institutes of Health [5]. A more recent
2022 study estimated that the bone metastasis burden has increased to 20% of the overall
oncology costs [6]. Alarmingly, most survivors with metastatic cancer of various types,
except melanoma, have a life expectance of less than five years [4]. Palliative treatments
are often the only course of treatment for metastasis. For example, at bone metastasis,
palliative treatment includes the use of drugs, such as bisphosphonates and Denosumab,
which are used to stabilize skeletal issues [7,8]. The complex cascade of biochemical and
resulting pathological events that lead to metastasis to bone is still mostly unknown. This
knowledge is further hampered by the lack of appropriate and relevant model systems
for testing new drugs and therapies. In vitro models mimicking bone metastasis are much
needed for this purpose.

All types of cancers can spread. The mechanisms of spreading cancer are varied. These
range from cancer invading normal tissue in its proximity, traveling through either the
lymphatic system or blood vessels to other parts of the body, attaching to invading blood
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vessel walls and forming tumors, to the growth of new blood vessels that enable metastatic
tumor growth. Different cancers have the propensity to metastasize to specific locations
in the body, e.g., breast cancer and prostate cancer tend to spread to the bones, and colon
cancer and pancreatic cancer spread to the liver, as shown in Figure 1. Metastasis is the
cause of most patient deaths, yet the mechanisms of metastasis remain primarily unknown.
The process is fundamentally described as a two-step process, with the initial dislocation of
cancer from its primary site and transportation of cells to a distant site through blood and
lymph systems, and the phenomenon of recolonization of cancer at the remote site [9].

Colon Cancer

Breast Cancer

Pancreatic Cancer

Prostate Cancer

Figure 1. Schematic representation showing the metastasis locations of colon, breast, pancreatic, and
prostate cancer in the human body:.

Tumorigenesis has been traditionally studied in 2D cultures of cancer cells. Although
many characteristics of cancer cells have been well explored using these 2D cell culture
systems, they do not replicate the realistic tumor microenvironment. The 3D culture systems
have been increasingly gaining attention for the past few years. These systems include 3D
spheroids of cancer cells. Extensive studies report using 3D spheroid models of cancer [10],
and their important use in screening drugs. The spheroids are fundamentally clusters of
cancer cells that are grown either in suspension or embedded in a matrix. Although the
spheroids have 3D structures, they do not accurately capture the mechanical, biological,
and chemical characteristics of the metastasis site. While extensive studies are undertaken
on the development of the complex chemo-physio-mechanical analogs of the primary site
of cancer [11], efforts in producing accurate 3D models of metastasis are rare, as they do
not represent the migration characteristics of metastasis well.

Further, transwell-based assays are useful to assess the inherent migratory and inva-
sion characteristics of cancer cells [12-14]. Migration is an important characteristic of cancer
cells that are likely to arrive at the metastatic site—they do not capture the behavior of the
cells at metastasis. Several detailed reviews illustrate the important use of transwell assay-
based models [15]. To develop a deeper understanding of the process of cancer metastasis
and to be able to aid in the development of effective therapies for metastasis prevention
and cure, in vitro and in vivo models are extensively investigated. While in vivo models
can capture the complexity of living systems and are generally considered useful models
for studying primary cancer types, they often fail to develop into cancer metastasis.

Robust in vitro models present themselves as a fast, inexpensive evaluation route for
the study of cancer metastasis. The extremely high-cost and time-intensive nature of PDX
models further necessitates robust in vitro systems that effectively represent cancer and
metastasis stages. Many in vitro models have been developed for capturing various aspects
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of tumor growth, proliferation, invasion into tissues, intra and extravasation through blood
vessels, angiogenic characteristics, and also delivery of drugs and their efficacies [15]. The
source of cancer cells, either commercial or patient-derived origins, for seeding the in vitro
models is just as important. Many commercial cell lines of several cancer types are easily
available and are used to study tumor cell biology and proliferation [16,17]. The molecular
profiles and various characterizations of human cancer cell lines are available in the Cancer
Line Encyclopedia [10,18-20]. Often, the spectrum of variabilities within a particular cancer
type is very vast, and the commercial cell lines are not able to capture such a wide spectrum
of variabilities and, thus, achieve limited clinical relevance for patients [21]. Patient-derived
cell lines are thus increasingly popular as a source in the development of in vitro cancer
models. While cell lines from patients, even with advanced cancer stages, are available [22],
the availability of cancer cell lines from metastasized tissue types is rare. This review
captures the development of metastasis tumor models of various cancer types and can help
assist in the development of appropriate metastasis models for specific cancer types.

2. Tissue Engineering

Tissue engineering provides an important platform for the design of site-specific
structural and biological similarity of metastasis. Tissue engineering is an interdisciplinary
field that aims to develop new tissue and organ substitutes using biological sciences and
engineering. The primary components of tissue engineering include biomaterials and
scaffolds, cells, and regulatory signals, such as the use of growth factors (Figure 2).

Cells
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Figure 2. Schematic showing tissue engineering: (a) three important components of tissue engineering
and (b) the tissue engineering process.

Originally proposed by Langer and Vacanti [23], it remains the forefront technology for
regenerative medicine. The three important components of tissue engineering are the cells,
regulatory signals, such as growth factors, and biomaterials, such as scaffolds (Figure 2a).
The scaffolds are designed with porous microstructures and made of degradable materials.
When seeded with appropriate human cells in the presence of growth factors, it enables the
formation of engineered tissues, while the scaffolds themselves degrade. The development
of in vitro models of cancer metastasis benefits from advances in tissue engineering of
brain, lung, liver, and bone tissue. Tissue engineering has the potential to transform
cancer research by providing mechanisms to observe tumorigenesis and migration at
metastasis directly. Inducing angiogenesis is an important hallmark of cancer [24,25]
and, thus, growth of solid tumors is often associated with neovascularization. Tissue
engineering also provides the ability to recapitulate the tumor microenvironment and its
complex and multifold characteristics [26]. The phenomenon of neovascularization around
tumors was observed over a 100 years ago [27]. Thus, the importance of angiogenesis for
tumor development also makes the tissue-engineered scaffolds with engineered porosities
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a promising platform for studying cancer metastasis. Thus, tissue-engineered constructs
can also be used to study angiogenic characteristics of tumor growth factors. Hypoxic
conditions of the tumors lead to the production of pro-angiogenic factors that enable
neovascularization in the tumors. VEGF is an important angiogenic factor that plays a
vital role in tumor growth as well as metastasis [28]. Hence, many antiangiogenic drugs
(AAD) are used clinically. The exact mechanics of the AAD in controlling metastasis
remain unknown [29]. Hence, VEGF-loaded scaffolds are extensively investigated for
bone regeneration [30,31]. Scaffolds are used to evaluate the role of angiogenic factors in
tumorigenic properties [32]. Cancer cells also secrete other growth factors and cytokines,
such as basic fibroblast growth factor and interleukin-8, which also promote blood vessel
formation and can thus be incorporated into the scaffolds.

The tissue engineering approaches toward understanding cancer have been studied
extensively over the last two decades [33], enabling the advent of bioengineered tumors that
represent viable in vitro models of cancer [34-36] using many biomaterial constructs [37-40].
It is expected that the next-generation 3D tissue-engineered constructs may replace animals
in cancer drug testing [41]. The specific role of the metastasis site microenvironment is an
important area of scientific investigation [42]. Recent advances in regenerative medicine
pave the way for new cancer therapeutics as well as methodologies for the evaluation of
fundamental cancer biology at metastasis [43,44].

In addition, in recent years, the development of bioreactors that provide important
mechanical cues through fluid-enabled shear stresses has brought further development
in viable in vitro models [45-48]. The metastasis condition is often delayed, as clinically,
cancer cells are reported to remain dormant at the distant site after the removal of the tumor
from the primary site. Tissue-engineered constructs also represent an effective methodology
to evaluate the influence of local microenvironments at the metastasis site [42]. Dormancy
of tumors is often an important issue that affects early diagnosis and intervention and,
hence, the resulting metastasis. Tissue-engineered models, albeit few as of now, are also
attempted to evaluate tumor dormancy and reactivation [49]. In vitro models are also
useful in these cases to study the behavior of the dormant cells due to the difficulty in
obtaining patient samples [50].

Tissue engineering also shows promise in providing therapeutic opportunities for
cancer treatment. Patients suffering from post-prostatectomy incontinence or erectile
dysfunction due to prostate cancer, or who need reconstructive surgeries, can be treated
with tissue engineering therapies [51-53]. Bone and other cancers are also treated with the
use of tissue-engineered scaffolds [54].

3. Cancer Metastasis 3D In Vitro Models
3.1. Breast Cancer Metastasis Models

Female breast cancer is reported as the most common cancer and the fourth highest in
mortality due to cancer [55]. Cancer originating in the breast can metastasize to the lungs,
brain, and bone. Therapies and treatments for bone metastasis of breast cancer are primarily
palliative. Metastasis of breast cancer to bone is not curable. The blood-induced mechanical
stresses and cancer cell-host (bone) interactions are the major players in bone metastasis of
breast cancer. Various material systems are used to develop scaffolds that mimic bone sites.
While extensive studies remain underway on the design of primary breast cancer with
co-cultures of various cells [56], recent works also report tissue-engineered bone metastasis
models. Mimicking the complex dynamic environment of the bone site on arrival of the
cancer cells is a useful and valuable approach currently being investigated [57]. Many
unique material models have been used to develop tissue-engineered bone structures to
evaluate the bone metastasis of breast cancer. These models use a variety of polymeric
scaffolds with and without infiltration with bone-forming minerals. A detailed overview of
the various materials used to develop the bone niche and cell lines investigated is shown in
Table 1. Each material model is tested with in vitro experimentations that validate some
hallmarks of breast/prostate cancer colonization to bone.
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Table 1. List of materials and cells for developing the bone niche for breast cancer bone metastasis models.

Material Class Material Type Cell Types References
HUVEC (human umbilical cord endothelial cells)
Collagens Collagen fibers and hydroxyapatite Breast cancer cells tested: SUM149, SUM159, [58,59]
MDA-MB-231, BT474, MCF7, T47D, ZR75
Dense collagen hydrogel MDA-MB-231 breast cancer cells and MC3T3-E1 [60]
pre-osteoblasts
Collagen-glycosaminoglycan (GAG) Murine mammary adenocarcinoma 4T1 cells [61]
Collagen gel seeded with osteo-differentiated
human bone marrow-derived mesenchymal MDA-MB-231 human breast cancer cells [62]
stem cells
A co-culture of metastatic breast cancer cells and
osteoblasts
Heavily mineralized collagen fibers for a GFP-labeled metastatic breast cancer cell line, [63]
bone-on-a-chip MDA-MB-231GFP cells, and
metastasis-suppressed breast cancer cell line,
MDA-MB-231-BRMS1GFP cells
3D Collagen matrix (GELFOAM), seeded
with endothelial, bone marrow stromal cells, MDA-MB-231, BoM1833 [59]
and fetal osteoblasts
. 3D-printed SFaffOIds made O.f . In vitro models of MDA MB231 breast cancer
PCL Piezo-electro-ceramics, such as BaTiO3 with . . . . . [41,64]
cell migration and invasion studies
polycaprolactone
. This in vitro model shows migration of
3D-printed polycaprolactone (PCL) scaffolds vy \ g 231, MCF-7, and MDA-MB-453 breast  [65,66]
with dispersed HAP
cancer cells toward the bone
PCL scaffolds coated with fibronectin and Human LM2-4 cells derived from MDA-MB-231
[67]
collagen IV cells and mouse 4T1 cells
Random and aligned PCL fibers Chemo-resistant MDA-MB-231 and T47D breast [68]
cancer cells
PCL with nano-clay-biomimetic MCEF 7, MDA 231, patient-derived cell lines [69-74]
hydroxyapatite
Polyethylene glycol hydrogel and
PEG nanocrystalline hydroxyapatite MDA-MB-231 [75]
composite scaffolds
Silk Proteins FlbI'OU.S. proteins dgrlved from natu?al fibers MDA MB 231, MCF 7 [76-78]
derived from silkworms and spiders
Silk protein scaffolds Human breast cancer cells m]ect'ed into the [49-51,77]
mammary fat pads of mice
3D-printed spatially layered bone tissues
with gelatin to generate a layered structure of
scaffpld that h.as an outer ring composed of MDA MB 231 [79]
tissue-engineered bone and a center
composed of macroporous scaffolds that host
cancer cells
Polyurethane Polyurethane foam scaffold MCF7 [80]
} Poly (lactide-co-glycolide) PLA-PGA E
PLA-PGA scaffolds dispersed with nanoHAP particles MDA-MB231 [81,82]
Chitosan NanoHAP inside a chitosan gel MDA-MB-231, MCF-7, and transfected [83]

MDA-MB-231
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The bone extracellular matrix (ECM) is considered an attractive site for cancer cell
attachment, growth, and survival [84]. Since bone ECM consists of cells, collagen fibers,
and hydroxyapatite, extensive studies have been performed using 3D structures fabricated
using collagen. Many efforts in the literature involve using collagen fibers to create bone
niches. Recent studies use these structures seeded with primary human mesenchymal stem
cells and several breast cancer cells: SUM149, SUM159, MDA-MB-231, BT474, MCF7, T47D,
and ZR75 [58,59]. Dense collagen hydrogels are fabricated to study the interactions between
triple-negative breast cancer cells and bone cells. In particular, the effect of osteolytic breast
cancer cells on osteoblast differentiation is studied [60]. Due to the osteogenic characteristic
of the mineral hydroxyapatite (HAP), often, collagen composites with HAP are investigated
as bone surrogates. Collagen fibers decorated with HAP nanocrystals were made using
porcine type 1 atelocollagen [85]. Studies performed with animal models have shown high
osteoconductivity and biosorbibility of the HAP-decorated collagen fibers [86,87], as well
as the use of these scaffolds to treat osteochondral defects via delivery of paclitaxel to breast
cancer bone metastasis in a rat model [88]. This model is potentially useful as an in vitro
system but has not been tested as such. The following figure (Figure 3) shows an SEM
image of HAP-decorated collagen fibers.
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Figure 3. Scanning electron microscope image of hydroxyapatite—collagen composite. Reprinted with
permission from [88]. Copyright © 2024 The Japanese Society for Spine Surgery and Related Research.

Mammary cells can calcify within the breast tissue, and researchers have utilized
the development of an in vitro model of mammary mineralization using murine mam-
mary adenocarcinoma 4T1 cells. These studies make use of collagen-glycosaminoglycan
(GAQG,) scaffolds to mimic the bone environment using murine mammary adenocarcinoma
4T1 cells [61].

Another use of collagen is in a gel form seeded with osteo-differentiated human bone
marrow-derived mesenchymal stem cells. This model has successfully used microflu-
idics to evaluate the extravasation process of the triple-negative and highly metastatic
MDA-MB-231 human breast cancer cells [62]. Mineralized collagen fibers were also used
for developing a bone-on-a-chip with a co-culture of metastatic breast cancer cells and
osteoblasts [63]. A 3D model of the bone niche was fabricated from a collagen matrix
(GELFOAM), using endothelial, bone marrow stromal cells, and fetal osteoblasts. This
model attempted to evaluate the genes responsible for breast cancer dormancy [59].

Polycapralactone (PCL) is a synthetic biodegradable polyester with a low melting
point (~60 °C). PCL is easily degraded by hydrolysis under physiological conditions and is,
hence, a commonly used polymer for biomaterial applications. HAP is a commonly used
osteogenic ingredient in the scaffold composite. For bone regeneration, PCL infiltrated with
various minerals has been used to enhance and/or create osteoinductive, piezoelectric, and
strength properties of the polymer. Polycaprolactone (PCL) scaffolds with dispersed HAP
have been fabricated using 3D printing to create bone-like models. This in vitro model
is used to demonstrate the migration of MDA-MB-231, MCF-7, and MDA-MB-453 breast
cancer cells toward the bone [65,66]. The 3D-printed scaffolds made of PCL infiltrated
with a piezoceramic barium titanate (BaTiO3) were used to fabricate bone, specifically for
load-bearing applications [64]. This bone analog was attempted for use in in vitro models to
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evaluate MDA MB231 breast cancer cell migration and invasion [41]. Further, microporous
PCL scaffolds with polyelectrolyte layers attached to the inner pores were also suggested for
use in drug delivery applications [89]. Besides in vitro models, tissue-engineered xenograft
models of breast cancer bone metastasis using PCL fibers have recently been attempted [90].

The cancer pre-metastatic niche is composed of ECM proteins (e.g., fibronectin and
collagen IV) that play an important role in colonization of cancer cells at the bone niche. In
a recent study, microporous ECM protein-coated PCL scaffolds were used to recruit cancer
cells in vivo. These models attempted to create a premetastatic niche and were specifically
used to evaluate proteins that aide in cancer cell bone metastasis [67]. Researchers have
also used random and aligned PCL fibers to mimic the random and organized orientation
of collagen fibers in the ECM. Chemo-resistant MDA-MB-231 and T47D breast cancer cells
were used to evaluate the efficacy of such an in vitro model, specifically for understanding
dormancy in metastasis [68].

PCL infiltrated with nanohydroxyapatite has also been fabricated through a biomimetic
process that utilized nano-clay modification with amino acids [91]. Nano-clay-HAP-PCL
scaffolds prepared using freeze extraction were used to design in vitro models of breast
cancer bone metastasis using a sequential culture of human mesenchymal stem cells and
MCF7 and MDA MB231 breast cancer cells [69]. Using this model, the same authors
were able to derive mechanics and spectroscopy-based markers of metastasis [71,72], as
well as elucidate that the WnT pathway regulates osteogenesis for breast cancer bone
metastasis [74] (Figure 4).

The PCL-HAP-nano-clay model was also used with patient-derived breast cancer
estrogen-receptor-positive (ER+) and triple-negative (TN) breast cancer tissues to study
osteolytic and osteoblastic implications of breast cancer on bone [70] as well as evaluate
drug efficacies [73]. Soft gel-like material systems incorporated with nanoHAP were
used for 3D-printed structures with vasculature and seeding with multiple cell types to
investigate breast cancer metastasis to bone [92]. The choice of gelatin in these models is
owing to the fact that gelatin is partially denatured collagen, and the biochemical properties
of gelatin are similar to the organic component of bone.

Polyethylene glycol (PEG) is an important hydrophilic polymer commonly used for
biomedical applications, due to its excellent biocompatibility, non-immunogenity, and
protein repulsion. PEG polymer composites with hydroxyapatite have been attempted
as bone biomaterials. Polyethylene glycol hydrogel with nanocrystalline hydroxyapatite
is used to make composite scaffolds to mimic the bone native environment. This in vitro
model was used to study the interaction between breast cancer cells and osteoblasts [75].

The Kaplan group has pioneered the use of silk proteins for bone tissue engineer-
ing [93]. Fibrous proteins derived from natural fibers derived from silkworms and spiders
have exceptional mechanical properties. Silk scaffolds seeded with bone marrow stromal
cells (BMSC) were implanted in mouse models of human breast cancer metastasis [76]. The
silk scaffolds represent a suitable bone niche for metastasis of human breast cancer [76-78].
These models have been used to study both breast and prostate cancer bone metastasis.

Other attempts at mimicking the bone site utilize 3D printing to generate a layered
structure of scaffold that has an outer ring composed of tissue-engineered bone and a center
composed of macro-porous scaffolds that host cancer cells. In a recent study, an innovative
design was proposed, wherein a layered structure with an outer layer of tissue-engineered
bone and a cancer cell core was fabricated to mimic in vivo metastasis development [79]
(Figures 5 and 6).

Polyurethanes are important engineering polymers that have found applications
in biomedical engineering due to their biocompatibility, biostability, and degradability.
Polyurethane foam scaffolds are investigated as bone surrogates and used as bone metasta-
sis models [80]. The advantage of the PU foam is the apparent highly porous architecture
that mimics the trabecular bone. Breast cancer cells, MCF-7-derived tumor-initiating cells
(MCEFS), were used to evaluate the metastasis condition in these studies.
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Figure 4. (a) Gene expression for breast cancer-related factors, DKK-1 and ET-1, in a bone metastasis
in vitro model for MCE-7 and MDA MB231 breast cancer. (b) Release of DKK-1 and ET-1 into culture
medium. ** p < 0.01 and *** p < 0.001 indicate significant difference. (c) Schematic showing the
inactivation and stimulation effects of DKK-1 and ET-1, respectively, on osteogenesis. Reprinted with
permission from [74]. Copyright © 2024 American Chemical Society.
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Figure 5. Schematic showing the spatially patterned 3D bone metastasis model. Reprinted with
permission from [79]. 0142-9612/© 2024 Elsevier Ltd.
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Figure 6. Confocal imaging of breast cancer cell migration into engineered tissues following seven
days in co-culture and also alizarin staining to show mineralization. The dashed line denotes
the interface with engineered tissues. Scale bar: 200 pum. Reprinted with permission from [79].
0142-9612/© 2024 Elsevier Ltd.

Similarly, the highly biocompatible and degradable nature of poly (lactide-co-glycolide)
(PLA-PGA) polymeric materials makes them useful as bone scaffolds. Scaffolds made using
PLA-PGA reinforced with nanoHAP particles were used for the evaluation of adhesion
and proliferation of MDA-MB231 breast cancer cells to bone [81,82].

Chitosan is a chitin-derived biopolymer extensively investigated for tissue regener-
ation and drug delivery applications. The high biocompatibility, degradation properties,
and additionally, broad-spectrum antimicrobial qualities, of chitosan drive its applications
in tissue engineering. In a recent study, nanoHAP infiltrated inside chitosan gel was used
to generate porous bone mimetic scaffolds (Figure 7) [83]. These scaffolds can retain the
behavior of less metastatic MCF-7 and highly metastatic MDA-MB231 breast cancer cells
(Figure 8) [83].

Figure 7. SEM images of bone mimetic scaffolds: (A) (a1,a2) chitosan scaffold control, (B) (b1,b2) nHA
chitosan scaffold, (C) (c1,c2) mHA chitosan scaffold, and (D) (d1,d2) amorphous HA chitosan scaffold.
Reprinted with permission from [83]. 1742-7061/2014 Acta Materialia Inc. Published by Elsevier Ltd.
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Figure 8. (A) SEM images of MSC-modified 10% nHA /chitosan scaffold and unmodified scaffold,
compared to unmodified nHA /chitosan scaffold. (B) Confocal microscopy images showing the
distribution of MDA-MB 231 (red color) cells in the modified scaffold after 24 h. Reprinted with
permission from [83]. 1742-7061/2014 Acta Materialia Inc. Published by Elsevier Ltd.

Further, mimicking breast cancer-induced bone metastasis was also evaluated in vivo
using human cancer cells or tissues transplanted into immunocompromised hosts to form
xenografts that replicate the bone metastasis [94].

3.2. Prostate Cancer Metastasis Models

Prostate cancer cells also metastasize to bone, exhibiting osteomimicry, and are the
subject of many investigations [40]. The interactions between the prostate cancer cells
and the bone microenvironment are crucial for metastasis progression. Understand-
ing the underlying mechanisms of metastasis of prostate cancer to bone was investi-
gated [95]. Key bone modeling and remodeling process regulatory factors, such as -kappa B
(RANK)/RANKL/OPG, the WnT pathways, growth factors, such as TGFb, and specifically,
bone morphogenic proteins, are known to be intrinsically involved in the prostate cancer
bone metastasis [74,95]. Macro-fluidic models to evaluate the process of metastasis were
also attempted [96]. Many attempts have been made to create bone-mimetic environments,
such as the bone-mimetic niche for prostate cancer metastasis. For reasons similar to those
described for breast cancer metastasis to bone, polycaprolactone scaffolds are fabricated and
used for bone scaffolds. Polymers such as PCL and gelatin are also extensively used in bone
mimicry for developing bone metastasis models of prostate cancer. Table 2 summarizes the
various polymeric, composite, and biological materials that are used in the development of
tissue-engineered scaffolds to mimic the bone site of prostate cancer metastasis.

Table 2. List of materials and cells for developing the bone niche for prostate cancer bone metasta-
sis models.

Materials Material Form Cell Types References
System
Co-culture of human MG-63 osteoblast-like
Collagens Collagen gel cells with highly metastatic human PC3 [97]

prostate cancer cells

Collagen-glycosaminoglycan and
nanohydroxyapatite composites

PC3 and LNCaP [98]

Collagen nanofibers with nanohydroxyapatite

grafted with SPARC LNCaP [99-101]

Collagen-hydroxyapatite scaffolds PC3 and DU145 [102]
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Table 2. Cont.

Materials
System

Material Form

Cell Types

References

Gelatin

3D printing to generate a layered structure of
scaffold that has an outer ring composed of

tissue-engineered bone and a center composed

of macroporous scaffolds that host cancer cells

PC3

[79]

PCL

Medical-grade polycaprolactone—calcium
phosphate (mPCL-CaP) scaffolds

PC3 and LNCaP

[103-105]

Medical-grade PCL: culturing primary human
osteoprogenitor cells on melt electrowritten
PCL scaffolds

LNCaP, C4-2B, and PC3

[106]

Electrospun PCL fibers and PCL/gelatin
composite scaffolds modified with perlecan
domain IV (PInDIV) peptide

C4-2B cancer cells

[107]

PCL-nano-clay—nanohydroxyapatite scaffolds

PC3 and PCa

[91,108,109]

Tubular PCL scaffolds coated with calcium
phosphate were fabricated by melt
electro-writing PCL

LuCaP35

[110]

Silk Proteins

Scaffolds fabricated from silk proteins derived
from Bombyx mori.

PC3

[78]

Scaffolds fabricated using silk protein fibroin
from Bombyx mori and recombinant spider
silk protein spidroin (SSP1) with gelatin,
collagen, and chitosan, indicating
potential advantages

LNCaP

[111]

PLA-PLGA

PLGA and nanohydroxyapatite scaffolds

PC3

[112]

Curcumin-impregnated poly(lactic-co-glycolic)
acid (PLGA) scaffolds

[113]

PEG

Polyethylene glycol hydrogel

PCa and LNCaP

[114]

Scaffolds fabricated with poly(ethylene
glycol)-fibrinogen matrix supplemented with
poly(ethylene glycol)-diacrylate

PC3 with BJ-5ta fibroblasts

[115]

One of the early studies reported the development of a three-dimensional type I

collagen gel cell culture system with co-culture of human MG-63 osteoblast-like cells with
highly metastatic human PC3 prostate cancer cells. This model was used to study the
pathophysiology of prostate cancer at the bone [97].

Recent studies using collagen 3D scaffolds include collagen composites with gly-
cosaminoglycan and nanoHAP [98]. This model was effectively used to study chemosen-
sitivity, cell migration, and proliferation, as well as evaluating the efficacy of delivery
of nanoparticle-based gene therapeutics. Other studies reported the use of collagen-
nanohydroxyapatite scaffolds containing 5-fold nanohydroxyapatite to collagen by weight,
followed by seeding with prostate cancer cells, PC3 and DU145 [102]. New therapeutic stud-
ies that evaluate the efficacy of anisamide-targeted amphiphilic cyclodextrin nanoparticles
for therapeutic gene silencing are enabled using this model.

Researchers have fabricated scaffolds made using collagen fibers infiltrated with
nanoHAP that are further grafted with the glycoprotein SPARC (secreted protein, acidic,
and rich in cysteine), known to play a role in bone mineralization. The experiments
conducted on the model indicated that the addition of SPARC enabled the survival and
growth of the PCa cell line (LNCaP) on the bone-mimetic scaffold.

In the same study where a layered structure with an outer layer of tissue-engineered
bone and a breast cancer cell core was fabricated to mimic in vivo metastasis develop-
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ment [79], the authors also used the layered structure for evaluation of prostate cancer
metastasis development using PC3 and LNCaP prostate cancer cells. In this study, the
authors demonstrated the integration of the layered 3D in vitro model with single-cell RNA
sequencing to study fundamental signaling drivers of metastasis [79].

Polycaprolactone is commonly used in bone scaffold development, as described earlier,
for developing breast cancer bone metastasis models. A cell-sheet-based technique that
consists of wrapping medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP)
scaffolds within hOB sheets was used [103]. An innovative scaffold design consisting
of assembly of porcine bone marrow stromal cell (BMSC) cell sheets with medical-grade
polycaprolactone—calcium phosphate (mPCL-CaP) scaffolds was utilized to develop bone
grafts [105]. Interactions between the prostate cancer cells PC3 or LNCaP with hOBs
were investigated. The interactions of PC3 and LNCaP prostate cancer cells with human
osteoblasts were studied on these scaffold assemblies [103], followed by animal model
experiments [104]. Studies conducted using this model indicate that the prostate cancer
cell-bone matrix interactions resulted in elevated levels of metastasis markers, such as
elevated MMPs, PSA, and steroidogenic enzymes.

In a recent work, electrospun PCL fibers and PCL/gelatin composite scaffolds were
modified with perlecan domain IV (PInDIV) peptide and used to develop a pharmacokinetic
model to evaluate the proliferation, survival, and migration of C4-2B cancer cells [107]
(Figure 9). These studies indicated that PInDIV peptide plays an important role in the 3D
model by helping in the proliferation, survival, and migration of C4-2B cancer cells.

Unmodified +PInDIV
3

Figure 9. Image showing the reorganization of the cytoskeleton by C4-2B cells on membranes modi-
fied by PInDIV. PCL-gelatin composite membrane with HFIP. (a) Unmodified PCL-gelatin composite
membrane (b) PCL-gelatin composite membrane with HFIP modified with PInDIV. (c) PCL-gelatin
composite membrane with TFE. (d) PCL—-gelatin composite membrane with TFE modified with
PInDIV. HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol; TCE: 2,2,2-trifluoroethanol. Scale bar 10 pm. Repro-
duced with permission from [107]. 0142-9612/$ e see front matter 2010 Elsevier Ltd.

As described earlier for breast cancer models, PCL infiltrated with biomimetic nanohy-
droxyapatite using nano-clay modification with amino acids [91] was also used to develop
a prostate cancer bone-mimetic model using a sequential culture of human mesenchy-
mal stem cells, with the highly metastatic PC3 and low metastatic PCa prostate cancer
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cells [108,109]. This model was also used in combination with perfusion flow and hori-
zontal flow bioreactors, indicating the role of flow-derived shear stresses in the process of
metastasis [46—48] (Figure 10).

(B)

0.05 ml/min Flow rate

80, [ Static ##
M 0.05 ml/min Flow rate ==
c
##
'% 60 Fekek
B T
£
2 40
g *
€
@
o
o 20
a |_—|—_‘
v Wiﬂ‘lOI'.l‘ bone With'bone

4 B3 (D)

Fluid flow

Relative fold change
~N

ol
With bone Without bone With bone

6 & 3 *

# @ MMP9 4 3 K
*x

0000000,
0o’ oo,
0® o,
e, e
o, o*
. o
*00sscoss®

Relative fold change

ol
With bone Without bone With bone

Figure 10. Evaluating the migration of PC3 cancer cells using transwell inserts showing the influence
of bone under static and dynamic conditions. (A) Cell migration using crystal violet dye under static
and dynamic conditions. (B) Plot showing the percentage of cell migration in static and dynamic
conditions. (C) Plot showing the gene expression of genes related to cellular migration. (D) Schematic
showing the mechanism of the role of CXCR4 and «y and (33 integrins in the increase in MMP-9 levels.
Here * p < 0.05, ** p < 0.01, and *** p < 0.001 indicating a significant difference between static condition
without bone. Similarly, # p < 0.05 and ## p < 0.0lindicating a significant difference between dynamic
sample without bone and other conditions. Likewise & p < 0.05 indicating a significant difference
between the static and dynamic samples with bone. Reproduced with permission from [47]. CC
license permission.

Tubular PCL scaffolds coated with calcium phosphate were fabricated by melt electro-
writing PCL and seeded with human osteoprogenitor cells to form bone-mimetic scaf-
folds [110]. These scaffolds were used to create patient-derived xenograft (PDX) models of
lymph node metastasis (LuCaP35) and bone metastasis (BM18) tissues from patients with
primary prostate cancer and represent a viable route to derive osteomimicry environments
with patient-derived tissues. In a recent study, primary human osteoprogenitor cells were
cultured on melt electro-written PCL scaffolds from medical-grade PCL [106]. On these
scaffolds, the co-culture of prostate cancer cell lines (LNCaP, C4-2B, and PC3) enables the
evaluation of molecular features on these cancer types, as observed in vivo.

The Kaplan group developed an in vitro model using silk proteins derived from
Bombyx mori and seeded with prostate cancer cells, PC3 [78]. Experiments conducted
with this model indicated that BMP-2 stimulates cancer cell migration. The 3D cultivation
of epithelial prostate cancer cells (LNCaP) has also been attempted using silk protein
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fibroin from Bombyx mori and recombinant spider silk protein spidroin (SSP1) with gelatin,
collagen, and chitosan [111], indicating potential advantages.

In a recent work, 3D PLGA and nanohydroxyapatite were fabricated using electro-
spraying, compacting, and foaming techniques. These scaffolds were used to evaluate drug
toxicity and PC3 cells” proliferation in bone-like environments [112]. Researchers have
also impregnated curcumin into poly(lactic-co-glycolic) acid (PLGA) scaffolds [113]. These
studies indicated that curcumin-impregnated PLGA shows increased efficacy against PCa
and PC3 bone metastasis using xenograft models.

Co-cultures of human PCa, LNCaP, and human osteoblast cells were seeded onto
polyethylene glycol hydrogel scaffolds to study the proliferation of LNCaP prostate cancer
cells [114]. These studies illustrate a paracrine effect that promotes osteomimicry and
provides insight into the prostate cancer-bone crosstalk. To modulate the mechanical
properties of the matrix, researchers have attempted to develop a poly (ethylene glycol)—-
fibrinogen matrix supplemented with excess poly(ethylene glycol)-diacrylates. In this
work, the authors used PC3 prostate cancer cells with BJ-5ta fibroblasts, and presented this
new model to study drug treatments and cancer progression [115].

3.3. Colon Cancer Metastasis Models

Worldwide, colon cancer remains the fourth most common cancer and the third
highest cause of death [55]. Colorectal tumor cells metastasize to the liver and lungs
through hematogenous processes or lymphatics. Several attempts to use biomaterials have
been made toward controlled drug delivery to colorectal cancer [116,117]. Metastasis is
the most common cause of death due to colorectal cancer, with the liver being the most
common metastasis site. Due to the high number of fatalities due to colorectal cancer
metastasis, there is interest in developing 3D models of metastasis. A detailed description
of the material systems and 3D models used to create the metastatic niche of colon cancer
is shown in Table 3.

Table 3. List of materials and cells for developing the colon cancer metastasis models.

Material Class

Material Form Cell Types References

Decellularized tissue scaffolds

Liver decellularized scaffolds seeded
with colorectal cancer cells in HT-29, CRC119, SW480, and Caco2 [118]
mice models

Patient-derived decellularized

. HT-29 [119-121]
colon tissue
Decellularized porcine livers to HCT116 [122]
generate scaffolds
Decellularized porcine small intestine SW480 and SW480 colon cancer cells [123]

submucosa + mucosa scaffolds

PLGA

HCT-116 and LoVo human colon
cancer cell lines, and p53-null
(knockout) human colon cancer cell
line (HCT-116 p53~/)

E-jet 3D printing of PLGA [124]

A recent study showed promising results in the use of liver decellularized scaffolds
seeded with colorectal cancer cells in mice models [118]. Some researchers have attempted
to use decellularized colorectal cancer tissue from biopsies [121] and patient-derived decel-
lularized colon tissue to recapitulate colorectal cancer liver metastasis [119,120]. Generally,
decellularized matrices represent the current methodologies in in vitro development of
metastasized tissue for the development of new therapeutic agents. Another recent study
used decellularized porcine livers to generate scaffolds. On these scaffolds, HCT116 colorec-
tal spheroids were created [122]. In another study, decellularized porcine small intestine
submucosa + mucosa was used to create 3D scaffolds that were seeded with SW480 and
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SW480 colon cancer cells and presented as a tool for testing metastasis mechanisms as well
as the efficacy of drugs [123].

One attempt at creating a synthetic polymeric biomaterial scaffold involved scaf-
folds prepared using E-jet 3D printing of PLGA seeded with HCT-116 and LoVo human
colon cancer cell lines, as well as the p53-null (knockout) human colon cancer cell line
(HCT-116 p53~/7) [124]. The authors demonstrated the use of this scaffold system for
evaluating the key role of p53 in cellular migration responsible for metastasis (Figure 11).
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Figure 11. The culture of cancer cells culture on films (control), spheroids, and 3D scaffolds
for seven days. (A) Fluorescence images of HCT-116 cells cultured on spheroids and scaffolds.
Scale bar = 200 um. (B) Plot showing HCT-116 cells” glucose consumption on spheroids and scaf-
folds. (C) Plot showing lactic acid production by HCT-116 cells cultured on spheroids and scaffolds.
(D) Rate of cell death in spheroids and scaffolds. *** p < 0.005. ns not significant. Reproduced with
permission from [124]. © 2024 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Although the advantages of a true metastatic niche using tissue engineering are
known, these attempts are limited to liver metastasis of colon cancer. In vivo models
have been studied to evaluate the metastasis potential of colon cancer cells [125-128].
Many recent studies have focused on use of patient-derived organoids for evaluation of
metastatic potential [129]. Tissue engineering and biomaterials are needed to create 3D
in vitro models of colorectal cancer metastasis [130]. There is an unmet need to develop
liver mimetic tissue-engineered scaffolds to evaluate metastasis therapeutics and colon
cancer progression.
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3.4. Pancreatic Cancer Metastasis Models

Although the incidence of pancreatic cancer is lower, ranking fourteenth in cancer
incidence worldwide, mortality is 94% of the incidence [55]. The common sites of metastasis
of pancreatic cancer are the liver (76-80% of patients), peritoneum (48%), and the lungs
(45%) [131]. The liver metastasis of pancreatic cancer is a multistage and multistep process.
The primary pancreatic tumor is highly invasive and, hence, in vitro models are mainly
developed at the primary site. Mouse models have traditionally been extensively studied
to understand the pathobiology of pancreatic cancer tumors [132].

The in vitro models of pancreatic cancer create the primary site of cancer. The 3D
organoid structures are currently being investigated to evaluate the pathology and migra-
tion of primary site pancreatic cancer [133,134]. Recently, 3D organoids developed from
patient tissue sources or genetically engineered mouse models have been developed as tools
for patient-specific therapies of primary site pancreatic cancer and are suitable as preclinical
models of pancreatic cancer [135]. Decellularized tissue scaffolds have also been attempted
for use as viable models of late-stage pancreatic cancer. In one study, decellularized human
pancreas and livers were seeded with PANC-1 and MIA PaCa-2 cell lines and PK-1 cells
(liver-derived metastatic pancreatic cancer cell line) [136]. A novel recent study used tissue
engineering approaches with a porous polyurethane scaffold modified with fibronectin
and seeded with pancreatic cancer cells (PANC-1). In vitro hypoxia was administered in
this model to study the impact of radiotherapy treatment [137].

4. Comparative Differences between the Various In Vitro Models of Metastasis

Use of decellularized tissues and complex polymeric and composite scaffolds has been
attempted for many models, as shown in Tables 1-3. The ready availability and manu-
facturability of the polymeric and composite models make them more likely candidates
for clinical applications. The other important variable is the complex array of co-cultures
needed in the scaffolds. While many studies point to the in vitro models needing the whole
array of cell types at the metastasis site, there is increasing evidence that mimicking some
of the characteristics of migration, osteogenesis (in particular for the bone metastasis),
and MET characteristics is adequate to build in vitro models that may be used for clinical
applications of personalized medicine design with ease of manufacturability and low cost.

5. Emerging Areas and Future Perspectives

Due to the significant economic and human impacts of cancer metastasis worldwide,
extensive efforts are undertaken for developing tissue-engineered complex constructs and
co-cultures simulating the metastasis site, as demonstrated in this review. Two emerging
areas can be identified that present a promising future avenue for the use of in vitro models
for treatment and understanding of cancer metastasis. These areas, in combination with
the development of realistic cellular co-culture models with patient-derived cell lines,
present a very optimistic future for the use of in vitro cancer metastasis models. The
first area is the use of hydrodynamic considerations in tissue growth. While many of the
studies in the development of accurate 3D models that recapitulate the metastasis site are
being conducted, recent developments in cell culture under fluid flow conditions have
shown significant importance. Various bioreactor designs have been attempted to provide
physiologically relevant flow velocity and velocity contours through the culture media
during cellular growth and proliferation in tissue engineering [138]. These bioreactors
provide the important input of fluid-derived shear stresses that are known to greatly
impact cell proliferation and metastasis [46,48]. Bioreactor experiments also indicate that
the scaffold interstitial flow-induced shear stress is a critical factor for enabling migration of
cancer cells at their extravasation stage [47]. Incorporation of tissue-engineered bioreactor-
enabled 3D in vitro models are likely to be the next-generation models for evaluation of
metastasis potential, as well as a route toward personalized medicine. Additionally, the use
of microfluidics approaches shows promise in potential for developing cancer-on-a-chip
models [139,140]. With the advances in tissue engineering technologies, more effective
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cancer-on-a-chip models that effectively capture the tumor microenvironment nuances and
flow characteristics will be developed.

The second area of potential high impact involves using computational tools to eval-
uate metastasis. Modeling studies, in particular multiscale models of tissue engineering
scaffolds, are gaining acceptance due to their ability to reproduce in vivo effects [141-145].
As a result, in silico oncology approaches also show promise [146-151]. With develop-
ments in exa-scale computing, real-time oncology modeling is a real possibility [151]. The
use of tissue engineering scaffolds as therapies for cancer is also a promising area of ap-
plication, as a source of new engineered tissue [152]. Recently, a new area has evolved
that attempts to use tissue-engineered cancer metastasis as a therapy, using it as a cancer
vaccine [153]. Further, spatial transcriptomics has arisen as a new option to characterize
the vast spatiotemporal heterogeneity of cancers [154]. While this technique benefits di-
agnosis and predictions, future studies will likely use in vitro scaffold models for spatial
transcriptomics investigations.

Thus, while significant advances have been accomplished in some areas of metastasis
models, e.g., bone sites for prostate and breast cancer, other 3D models are also gaining
importance. Reduced use of animal models with the help of advanced predictable in vitro
systems is likely to speed up research development of methods to combat metastasis and
provide reconstruction therapies to patients. Many material systems and processes were
investigated, as reviewed here, and generally, each presented new insights toward under-
standing metastasis, the heterogeneity of cancer types, and the spatiotemporal existence
of cancer metastasis in patients. It is unlikely that a single material system will prove to
be the magic key for metastasis, but several unique material scaffolds will be utilized for
patient-specific treatments.
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