Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Resin Characterisation
2.2.1. Viscosity
2.2.2. Thermal Stability
2.2.3. Density
2.2.4. Surface Tension
2.2.5. Monomer Conversion
2.3. Fabrication Technologies
2.4. Accuracy and Surface Characterisation
2.5. Bulk Material Characterisation
2.5.1. Water Contact Angle
2.5.2. Degradation
2.5.3. Biological Evaluation
2.5.4. Mechanical Evaluation
3. Results and Discussion
3.1. Resin Properties
3.2. Fabrication of Bioinspired Structures
3.2.1. Bioinspired Structures
3.2.2. Macroscale Structures Fabricated via 3D Inkjet Printing Using PolyJetTM Technology
3.2.3. Macroscale Structures Fabricated via Digital Light Processing
3.2.4. Microscale Structures Fabricated via Inkjet Printing
3.2.5. Micro and Submicroscale Structures Fabricated via Nanoimprint Lithography
3.3. Bulk Material Properties
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shick, T.M.; Abdul Kadir, A.Z.; Ngadiman, N.H.A.; Ma’aram, A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J. Bioact. Compat. Polym. 2019, 34, 415–435. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Yu, C.; Schimelman, J.; Wang, P.; Miller, K.L.; Ma, X.; You, S.; Guan, J.; Sun, B.; Zhu, W.; Chen, S. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem. Rev. 2020, 120, 10695–10743. [Google Scholar] [CrossRef]
- Muehlberger, M. Nanoimprinting of Biomimetic Nanostructures. Nanomanufacturing 2022, 2, 17–40. [Google Scholar] [CrossRef]
- Moroni, L.; Boland, T.; Burdick, J.A.; De Maria, C.; Derby, B.; Forgacs, G.; Groll, J.; Li, Q.; Malda, J.; Mironov, V.A.; et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2018, 36, 384–402. [Google Scholar] [CrossRef] [PubMed]
- Skliutas, E.; Lebedevaite, M.; Kasetaite, S.; Rekštytė, S.; Lileikis, S.; Ostrauskaite, J.; Malinauskas, M. A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Sci. Rep. 2020, 10, 9758. [Google Scholar] [CrossRef] [PubMed]
- Sänger, J.C.; Schwentenwein, M.; Bermejo, R.; Günster, J. Hybridizing Lithography-Based Ceramic Additive Manufacturing with Two-Photon-Polymerization. Appl. Sci. 2023, 13, 3974. [Google Scholar] [CrossRef]
- Oesterreicher, A.; Moser, A.; Edler, M.; Griesser, H.; Schlögl, S.; Pichelmayer, M.; Griesser, T. Investigating Photocurable Thiol-Yne Resins for Biomedical Materials. Macromol. Mater. Eng. 2017, 302, 1600450. [Google Scholar] [CrossRef]
- Oesterreicher, A.; Wiener, J.; Roth, M.; Moser, A.; Gmeiner, R.; Edler, M.; Pinter, G.; Griesser, T. Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polym. Chem. 2016, 7, 5169–5180. [Google Scholar] [CrossRef]
- Wu, Y.; Simpson, M.; Jin, J. Fast Hydrolytically Degradable 3D Printed Object Based on Aliphatic Polycarbonate Thiol-Yne Photoresins. Macromol. Chem. Phys. 2021, 222, 2000435. [Google Scholar] [CrossRef]
- Wu, Y.; Simpson, M.C.; Jin, J. 3D Printing of Thiol-Yne Photoresins through Visible Light Photoredox Catalysis. ChemistrySelect 2022, 7, e202200319. [Google Scholar] [CrossRef]
- Badria, A.; Hutchinson, D.J.; del Olmo, N.; Malkoch, M. Acrylate-free tough 3D printable thiol-ene thermosets and composites for biomedical applications. J. Appl. Polym. Sci. 2022, 139, e53046. [Google Scholar] [CrossRef]
- Herwig, G.; Pérez-Madrigal, M.M.; Dove, A.P. Customized Fading Scaffolds: Strong Polyorthoester Networks via Thiol–Ene Cross-linking for Cytocompatible Surface-Eroding Materials in 3D Printing. Biomacromolecules 2021, 22, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Mautner, A.; Steinbauer, B.; Orman, S.; Russmüller, G.; Macfelda, K.; Koch, T.; Stampfl, J.; Liska, R. Tough photopolymers based on vinyl esters for biomedical applications. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1987–1997. [Google Scholar] [CrossRef]
- Husár, B.; Heller, C.; Schwentenwein, M.; Mautner, A.; Varga, F.; Koch, T.; Stampfl, J.; Liska, R. Biomaterials based on low cytotoxic vinyl esters for bone replacement application. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4927–4934. [Google Scholar] [CrossRef]
- Heller, C.; Schwentenwein, M.; Russmueller, G.; Varga, F.; Stampfl, J.; Liska, R. Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6941–6954. [Google Scholar] [CrossRef]
- Russmueller, G.; Liska, R.; Stampfl, J.; Heller, C.; Mautner, A.; Macfelda, K.; Kapeller, B.; Lieber, R.; Haider, A.; Mika, K.; et al. 3D Printable Biophotopolymers for in Vivo Bone Regeneration. Materials 2015, 8, 3685–3700. [Google Scholar] [CrossRef]
- Hofstetter, C.; Orman, S.; Baudis, S.; Stampfl, J. Combining cure depth and cure degree, a new way to fully characterize novel photopolymers. Addit. Manuf. 2018, 24, 166–172. [Google Scholar] [CrossRef]
- Orman, S.; Hofstetter, C.; Aksu, A.; Reinauer, F.; Liska, R.; Baudis, S. Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 110–119. [Google Scholar] [CrossRef]
- Dellago, B.; Altun, A.A.; Liska, R.; Baudis, S. Exploring the limits of toughness enhancers for 3D printed photopolymers as bone replacement materials. J. Polym. Sci. 2023, 61, 143–154. [Google Scholar] [CrossRef]
- Heller, C.; Schwentenwein, M.; Porodec, M.; Schulz-Siegmund, M.; Stampfl, J.; Varga, F.; Liska, R. Poly (vinyl alcohol) based monomers for lithography-based 3D fabrication. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Springer: Berlin/Heidelberg, Germany, 2010; Volume 25/X—Biomaterials, Cellular and Tissue Engineering, Artificial Organs, pp. 303–306. [Google Scholar]
- Qin, X.-H.; Torgersen, J.; Saf, R.; Mühleder, S.; Pucher, N.; Ligon, S.C.; Holnthoner, W.; Redl, H.; Ovsianikov, A.; Stampfl, J.; et al. Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4799–4810. [Google Scholar] [CrossRef]
- Qin, X.-H.; Esfandiari, P.; Ligon, S.; Liska, R. Storage stable thiol-ene formulations and advanced applications thereof. In Proceedings of the RadTech Europe Conference, Basel, Switzerland, 15–17 October 2013; p. 14. [Google Scholar]
- Ligon, S.C.; Qin, X.-H.; Esfandiari, P.; Tomasikova, Z.; Gruber, P.; Ovsianikov, A.; Liska, R. Advanced applications of thiol-ene formulations. In Proceedings of the 2014 UV & EB Technical Conference Proceedings, Rosemont, IL, USA, 12–14 May 2014. [Google Scholar]
- Sušec, M.; Liska, R.; Russmüller, G.; Kotek, J.; Krajnc, P. Microcellular Open Porous Monoliths for Cell Growth by Thiol-Ene Polymerization of Low-Toxicity Monomers in High Internal Phase Emulsions. Macromol. Biosci. 2015, 15, 253–261. [Google Scholar] [CrossRef]
- Sušec, M.; Paljevac, M.; Kotek, J.; Krajnc, P. Microcellular open porous polyester membranes from thiol-ene polymerisations of high internal phase emulsions. Monomers Polym. 2016, 19, 577–583. [Google Scholar] [CrossRef]
- Hobiger, V.; Paljevac, M.; Krajnc, P. Emulsion Templated Porous Poly(thiol-enes): Influence of Photopolymerisation, Emulsion Composition, and Phase Behaviour on the Porous Structure and Morphology. Polymers 2022, 14, 1338. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-H.; Ovsianikov, A.; Stampfl, J.; Liska, R. Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMaterials 2014, 15, 49–70. [Google Scholar] [CrossRef]
- Mautner, A.; Qin, X.; Wutzel, H.; Ligon, S.C.; Kapeller, B.; Moser, D.; Russmueller, G.; Stampfl, J.; Liska, R. Thiol-ene photopolymerization for efficient curing of vinyl esters. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 203–212. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Lee, T.Y.; Roper, T. Thiol–enes: Chemistry of the past with promise for the future. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5301–5338. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- ISO 6721-4:2019; Plastics: Determination of Dynamic Mechanical Properties—Part 4: Tensile Vibration: Non-Resonance Method. ISO: Geneva, Switzerland, 2019.
- ISO 527-2:2012; Plastics: Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- ISO 604:2002; Plastics—Determination of Compressive Properties. ISO: Geneva, Switzerland, 2002.
- Esfandiari, P.; Ligon, S.C.; Lagref, J.J.; Frantz, R.; Cherkaoui, Z.; Liska, R. Efficient stabilization of thiol-ene formulations in radical photopolymerization. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4261–4266. [Google Scholar] [CrossRef]
- Kim, D.-O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 2004, 44, 253–273. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef]
- Vogler, M.; Wiedenberg, S.; Mühlberger, M.; Bergmair, I.; Glinsner, T.; Schmidt, H.; Kley, E.-B.; Grützner, G. Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography. Microelectron. Eng. 2007, 84, 984–988. [Google Scholar] [CrossRef]
- Kuhnt, T.; Morgan, F.L.C.; Baker, M.B.; Moroni, L. An efficient and easily adjustable heating stage for digital light processing set-ups. Addit. Manuf. 2021, 46, 102102. [Google Scholar] [CrossRef]
- Ermis, M.; Antmen, E.; Hasirci, V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018, 3, 355–369. [Google Scholar] [CrossRef]
- Martínez Cendrero, A.; Franco Martínez, F.; Solórzano Requejo, W.G.; Díaz Lantada, A. Open-source library of tissue engineering scaffolds. Mater. Des. 2022, 223, 111154. [Google Scholar] [CrossRef]
- Lantada, A.D.; Cendrero, A.M.; Martínez, F.F.; Requejo, W.G.S. Open-Source Collection of Tissue Engineering Scaffolds; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Lantada, A.D.; Cendrero, A.M.; Martínez, F.F. Open-Source Library of Microtextured Geometries for Studying Cell-Material Interactions; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Lim, Y.F.; Thong, J.L.J.; Peh, Z.K.; Mogali, S.R.; Yeong, W.Y. Machine learning for 3D printed multi-materials tissue-mimicking anatomical models. Mater. Des. 2021, 211, 110125. [Google Scholar] [CrossRef]
- Egan, P.F.; Bauer, I.; Shea, K.; Ferguson, S.J. Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices. J. Mech. Des. 2019, 141, 31703. [Google Scholar] [CrossRef]
- Shannon, A.; O’Connell, A.; O’Sullivan, A.; Byrne, M.; Clifford, S.; O’Sullivan, K.J.; O’Sullivan, L. A Radiopaque Nanoparticle-Based Ink Using PolyJet 3D Printing for Medical Applications. 3D Print. Addit. Manuf. 2020, 7, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Gouzman, I.; Atar, N.; Grossman, E.; Pokrass, M.; Fuchsbauer, A.; Schranzhofer, L.; Paulik, C. Cure kinetics of bismaleimides as basis for polyimide-like inks for PolyJet™-3D-printing. J. Appl. Polym. Sci. 2019, 136, 47244. [Google Scholar] [CrossRef]
- Ataollahi, S. A review on additive manufacturing of lattice structures in tissue engineering. Bioprinting 2023, 35, e00304. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhao, F.; Lu, Z.; Zreiqat, H. Nature-inspired topographies on hydroxyapatite surfaces regulate stem cells behaviour. Bioact. Mater. 2021, 6, 1107–1117. [Google Scholar] [CrossRef]
- Tayebi, L.; Rasoulianboroujeni, M.; Moharamzadeh, K.; Almela, T.K.D.; Cui, Z.; Ye, H. 3D-printed membrane for guided tissue regeneration. Mater. Sci. Eng. C 2018, 84, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Carrier, R.L. Biomimetic Topography: Bioinspired Cell Culture Substrates and Scaffolds. In Advances in Biomimetics; George, A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Tudureanu, R.; Handrea-Dragan, I.M.; Boca, S.; Botiz, I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int. J. Mol. Sci. 2022, 23, 7731. [Google Scholar] [CrossRef]
- Jeon, H.; Simon, C.G., Jr.; Kim, G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1580–1594. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Ahn, S.; Koh, W.-G. Topographical pattern for neuronal tissue engineering. J. Ind. Eng. Chem. 2022, 114, 19–32. [Google Scholar] [CrossRef]
- Mühlberger, M.M.; Kopp, S.; Deyett, A.A.; Pribyl, M.; Haslinger, M.J.; Siegel, A.M.; Taus, P.; Guillén, E.; Torres-Caballero, A.; Baltov, B.; et al. Nanoimprinted Hierarchical Micro-/Nanostructured Substrates for the Growth of Cardiomyocyte Fibers. Nanomanufacturing 2023, 3, 416–433. [Google Scholar] [CrossRef]
- Heidi Au, H.T.; Cui, B.; Chu, Z.E.; Veres, T.; Radisic, M. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 2009, 9, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Morez, C.; Noseda, M.; Paiva, M.A.; Belian, E.; Schneider, M.D.; Stevens, M.M. Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials 2015, 70, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Lipke, E.A.; Kim, P.; Cheong, R.; Thompson, S.; Delannoy, M.; Suh, K.-Y.; Tung, L.; Levchenko, A. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl. Acad. Sci. USA 2010, 107, 565–570. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, P.; Song, I.; Cha, J.M.; Lee, S.H.; Kim, B.; Suh, K.Y. Guided Three-Dimensional Growth of Functional Cardiomyocytes on Polyethylene Glycol Nanostructures. Langmuir 2006, 22, 5419–5426. [Google Scholar] [CrossRef]
- Decuzzi, P.; Ferrari, M. Modulating cellular adhesion through nanotopography. Biomaterials 2010, 31, 173–179. [Google Scholar] [CrossRef]
- Minoura, K.; Yamada, M.; Mizoguchi, T.; Kaneko, T.; Nishiyama, K.; Ozminskyj, M.; Koshizuka, T.; Wada, I.; Suzutani, T. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film. PLoS ONE 2017, 12, e0185366. [Google Scholar] [CrossRef]
- Yamada, M.; Minoura, K.; Mizoguchi, T.; Nakamatsu, K.; Taguchi, T.; Kameda, T.; Sekiguchi, M.; Suzutani, T.; Konno, S. Antibacterial effects of nano-imprinted moth-eye film in practical settings. PLoS ONE 2018, 13, e0198300. [Google Scholar] [CrossRef]
- Kim, S.H.; Ha, H.J.; Ko, Y.K.; Yoon, S.J.; Rhee, J.M.; Kim, M.S.; Lee, H.B.; Khang, G. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J. Biomater. Sci. Polym. Ed. 2007, 18, 609–622. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef]
- Husár, B.; Mautner, A.; Heller, C.; Esfandiari, P.; Varga, F.; Stampfl, J.; Liska, R. Low toxic alternatives to (meth)acrylates: Vinyl esters, vinyl carbonates, and vinyl carbamates. In Proceedings of the RadTech Asia 2013, Shanghai, China, 20–24 May 2013. [Google Scholar]
- Vey, E.; Rodger, C.; Booth, J.; Claybourn, M.; Miller, A.; Saiani, A. Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 2011, 96, 1882–1889. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Vesvoranan, O.; Anup, A.; Hixon, K.R. Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics 2022, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Callanan, A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics 2023, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Off. J. Eur. Union 2017, L117, 1–175. [Google Scholar]
- European Parliament; Council of the European Union. Regulation (EC) No 1394/2007 of the European Parliament and of the Council. Off. J. Eur. Union 2007, L324, 121–137. [Google Scholar]
Formulation | Concentration (wt.%) | Viscosity at 1000 s−1 (mPa·s) | Static Surface Tension at 25 °C (mN/m) | Density at 25 °C (g/mL) | ||
---|---|---|---|---|---|---|
25 °C | 40 °C | 60 °C | ||||
DVA | 44.12 | 21.82 | 12.51 | 6.95 | 34.34 | 1.15 |
PETMP | 54.38 | |||||
Propyl gallate | 0.50 | |||||
BAPO | 1.00 |
Day | Viscosity | Viscosity | ||
---|---|---|---|---|
at 25 °C (mPa·s) | Increase in % | at 60 °C (mPa·s) | Increase in % | |
0 | 21.36 | - | 6.81 | - |
10 | 21.58 | 1.03 | 7.55 | 10.87 |
20 | 21.77 | 1.92 | 7.97 | 17.03 |
30 | 22.03 | 3.14 | 8.66 | 27.17 |
E’ (MPa) | Tg 1 (°C) | Tensile Strength (MPa) | Yield Strain (%) | Youngs Modulus (MPa) | Compression Strength (MPa) | Compression Strain (%) | Compression Modulus (MPa) |
---|---|---|---|---|---|---|---|
37 °C | |||||||
9.76 | −24.4 | 1.19 | 17 | 7.5 | 4.2 | 31 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kainz, M.; Perak, S.; Stubauer, G.; Kopp, S.; Kauscheder, S.; Hemetzberger, J.; Martínez Cendrero, A.; Díaz Lantada, A.; Tupe, D.; Major, Z.; et al. Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin. Polymers 2024, 16, 655. https://doi.org/10.3390/polym16050655
Kainz M, Perak S, Stubauer G, Kopp S, Kauscheder S, Hemetzberger J, Martínez Cendrero A, Díaz Lantada A, Tupe D, Major Z, et al. Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin. Polymers. 2024; 16(5):655. https://doi.org/10.3390/polym16050655
Chicago/Turabian StyleKainz, Michael, Stjepan Perak, Gerald Stubauer, Sonja Kopp, Sebastian Kauscheder, Julia Hemetzberger, Adrián Martínez Cendrero, Andrés Díaz Lantada, Disha Tupe, Zoltan Major, and et al. 2024. "Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin" Polymers 16, no. 5: 655. https://doi.org/10.3390/polym16050655
APA StyleKainz, M., Perak, S., Stubauer, G., Kopp, S., Kauscheder, S., Hemetzberger, J., Martínez Cendrero, A., Díaz Lantada, A., Tupe, D., Major, Z., Hanetseder, D., Hruschka, V., Wolbank, S., Marolt Presen, D., Mühlberger, M., & Guillén, E. (2024). Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin. Polymers, 16(5), 655. https://doi.org/10.3390/polym16050655