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Abstract: Titanium dioxide (TiO2) is a widely studied material with many attractive properties such as
its photocatalytic features. However, its commercial use is limited due to issues such as deactivation
in the visible spectrum caused by its wide bandgap and the short lifetime of photo-excited charge
carriers. To overcome these challenges, various modifications could be considered. In this study, we
investigated copper doping and electron beam treatment. As-spun TiO2 nanofibers were fabricated
by electrospinning a TiO2 sol, which obtained viscosity through a polyvinylpyrrolidone (PVP) matrix.
Cu-doped TiO2 nanofibers with varying dopant concentrations were synthesized by adding copper
salts. Then, the as-spun nanofibers were calcined for crystallization. To evaluate photocatalytic
performance, a photodegradation test of methylene blue aqueous solution was performed for 6 h.
Methylene blue concentration was measured over time using UV-Vis spectroscopy. The results
showed that Cu doping at an appropriate concentration and electron-beam irradiation showed
improved photocatalytic efficiency compared to bare TiO2 nanofibers. When the molar ratio of Cu/Ti
was 0.05%, photodegradation rate was highest, which was 10.39% higher than that of bare TiO2. As a
result of additional electron-beam treatment of this sample, photocatalytic efficiency improved up to
8.93% compared to samples without electron-beam treatment.

Keywords: TiO2 nanofibers; Cu doping; electron beam irradiation; photocatalysis

1. Introduction

In modern society, the emission of environmental pollutants such as waste, wastewater,
and smoke are increasing due to population growth and industrial development [1–3].
As solutions to these issues are demanded, interest in eco-friendly and effective water
treatment systems is increasing [4,5]. There are various water treatment methods utilizing
mechanisms such as filtration, coagulation, centrifugation, and flocculation [6–9]. Among
these, photocatalytic degradation, which harnesses renewable energy, has attracted atten-
tion for its efficient cost-effectiveness and environmentally friendly advantages [10–12].
Due to their cost efficiency and durability, transition metal-based semiconductors like
TiO2, CdS, ZrO2, ZnO, and WO3 are commonly discussed as representative photocata-
lyst materials [13–16]. When semiconductor photocatalysts are exposed to light with a
wavelength equal to or smaller than their energy bandgap, electrons in the valence band
become excited to the conduction band, forming electron–hole pairs. As these charge
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carriers diffuse to the surface of the photocatalyst, they react with water and then generate
free radicals such as superoxide (•O2

−) or hydroxyl radicals (•OH). These radicals contact
pollutants in water, resulting in the decomposition of molecular structures [16,17]. Since
the demonstration of water splitting using ultraviolet light by Honda and Fujishima in
1972, TiO2 has become the most widely researched photocatalytic material [18–20]. Due to
its low cost, high chemical stability, and non-toxic properties, TiO2 is a suitable material
for photocatalytic applications [21–23]. However, the wide bandgap of 3.2 eV restricts
its reaction in the visible light spectrum, and the rapid recombination of photoexcited
electron–hole pairs poses a challenge for applying TiO2 as a photocatalyst [24,25]. To
overcome the challenges associated with TiO2 photocatalysts, many studies have applied
methods such as impurity doping, heterojunction constructions, surface/microstructure
modification, and sensitization [26–32]. However, it is difficult to find studies that irradi-
ate electron beams on Cu-doped TiO2 nanofibers. In this study, TiO2 nanofibers (TNFs)
were fabricated using an electrospinning process, and the effects of copper doping and
electron-beam (e-beam) treatment on photocatalytic performance were evaluated. The
electrospinning process can fabricate nanoscale samples simply and inexpensively and is
widely used due to its high yield [33,34]. TiO2 in nanofiber form has a high aspect ratio
and good mechanical properties, which can improve photocatalytic performance [35,36].
Copper (Cu) is abundant in nature and inexpensive. In addition to its metallic form, both
Cu(I) and Cu(II) species (including Cu2O and CuO) act as electron mediators, enhanc-
ing charge transfer and broadening the absorption spectrum into the long-wavelength
region [37,38]. Therefore, copper doping can be an economical method to improve the
efficiency of TiO2 photocatalysts. Furthermore, high-energy e-beam treatment can induce
changes in crystal field energy, bonding states, and electronic structures, leading to greater
enhancement in photocatalytic performance [39,40]. In this study, photocatalytic perfor-
mance was evaluated through photodegradation tests using methylene blue (MB) solution.
An MB photodegradation test was performed using samples with different molar ratios
of copper to confirm the dopant concentration that optimizes photocatalytic performance.
Subsequently, e-beams at different radiation doses were irradiated to samples with the
optimal dopant concentration, and the MB photodegradation test was repeated. It was
proven that photolysis efficiency increases as the electron beam irradiation dose increases.
These results show that photocatalytic performance is improved by transition metal doping
and high-energy e-beam treatment.

2. Results and Discussion
2.1. FE-SEM

FE-SEM images were obtained to observe the microstructure of TNFs fabricated via
electrospinning. Figure 1 shows the as-spun bare and Cu-doped TNFs, while Figure 2 shows
the TNFs after calcination. As can be seen in Figures 1 and 2, even after the removal of the
PVP matrix through calcination, the nanofibers retained a homogeneous and continuous
surface and morphology. The average diameter of the TNFs was determined by measuring
at least 200 diameters from each sample, using the open-source software Image-J (ver. 1.8.0).
The average diameters of the calcined TNFs were measured to be 377.52 nm, 317.71 nm,
316.77 nm, and 243.19 nm, respectively, as shown in Figure 3. As the Cu content increased,
the average diameter of the TNFs decreased. Numerous studies have indicated that a
reduction in fiber diameter may lead to an increased specific surface area, potentially
enhancing photocatalytic efficiency [41–43].
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Figure 2. FE-SEM images of calcined bare TiO2 and Cu-doped TiO2: (a) TNF0; (b) TNF1; (c) TNF2; 
(d) TNF3. 
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degradation of methylene blue (MB) in an aqueous solution. Figure 5 shows the 
absorption spectrum of the MB aqueous solution, sampled every hour during the 
photocatalytic reaction. A weakening absorption peak over time indicates the 
photodegradation of MB molecules by the TNFs. The maximum absorbance of MB was 
designated as the C value to calculate normalized values (C/C0) and ln(C0/C). The C value 
considers the fact that the maximum absorption wavelength is shifted to a shorter 
wavelength due to N-demethylation of methylene blue during the reaction process [44,45]. 

Figure 3. Average diameter graph of TNFs after calcination.

Figure 4 presents the results of the Energy-dispersive X-ray spectroscopy (EDS) map-
ping of TNF2. After calcination, the presence of Ti, O, and Cu in the fibers was con-
firmed, and it was observed that the Cu signal was evenly distributed throughout the
TiO2 nanofibers.
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Figure 4. FE-SEM images of calcined TNF2 (a) and observed elemental distribution mapping of O (b),
Ti (c), and Cu (d) in Cu-doped TiO2 nanocomposite sample TNF2.

2.2. Photocatalytic Efficiency Depending on Cu Content

The photocatalytic activity according to the Cu content was evaluated by the degra-
dation of methylene blue (MB) in an aqueous solution. Figure 5 shows the absorption
spectrum of the MB aqueous solution, sampled every hour during the photocatalytic
reaction. A weakening absorption peak over time indicates the photodegradation of
MB molecules by the TNFs. The maximum absorbance of MB was designated as the C
value to calculate normalized values (C/C0) and ln(C0/C). The C value considers the
fact that the maximum absorption wavelength is shifted to a shorter wavelength due to
N-demethylation of methylene blue during the reaction process [44,45]. The changes in
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C/C0 and ln(C0/C) values over time are shown in Figure 6. The MB dye degradation rate
was determined using the following Equation (1):

Removal(%) =
C0 − Cx

C0
× 100 (1)

C0 is the initial concentration of the MB aqueous solution and Cx is the concentration at
time t.
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doped TiO2.

As can be seen in Table 1, TNF2 was confirmed to have the highest photocatalytic
activity. The addition of Cu was observed to improve the photodegradation rate. Many
studies suggest that transition metals and metal doping can reduce the band gap of TiO2
and induce oxygen vacancies, thereby improving photocatalytic efficiency [46–50]. CuO
and Cu2O have a lower Fermi level than TiO2, which leads to the transfer of excited
electrons from TiO2 to CuO and Cu2O [51]. Cu2+ ions form Cu+ ions while acting as
traps to capture photoexcited electrons of TiO2 (Equation (2)), and this electron trapping is
effective in reducing the electron–hole recombination rate [51–57]. Cu+ ions can accelerate
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interfacial electron transfer by transferring electrons to oxygen adsorbed on the catalyst
surface [56–58]. Equation (3) is the related reaction equation:

Cu2+ + e− → Cu+ (2)

Cu+ + Oads → Cu2+ + O
−
ads (3)

However, TNF3 showed lower photocatalytic activity than TNF0, which was undoped
with Cu. This observation can be attributed to research findings indicating that photo-
catalytic activity decreases when the concentration of metal or transition metal doping
exceeds a certain threshold [26,51,59,60]. Excessive oxygen vacancies and Cu species can
act as recombination centers for photoexcited electron–hole pairs [51,61]. Another cause is
CuO deposition on the TiO2 surface [51,61]. Therefore, an excessive dopant amount can
reduce photocatalytic activity, and photocatalytic efficiency is greatly dependent on the
concentration of the dopant.

Table 1. MB dye degradation rate (%) after 6 h according to Cu content.

TNF0 TNF1 TNF2 TNF3

76.48 80.75 86.87 61.30

2.3. XRD Analysis

Figure 7 shows the XRD diffraction pattern of Cu-doped TNFs calcined at 400 ◦C for
3 h. All samples exhibited the anatase phase of titanium dioxide and the rutile phase of
titanium dioxide. The diffraction peaks at 2θ = 25.4◦, 38.0◦, 48.1◦, and 75.2◦ correspond
to the (101), (004), (200), (215) peaks, indicating the anatase phase of TiO2. Peaks at 27.5◦,
36.2◦, 41.3◦, 44.1◦, 54.4◦, 56.7◦, 62.8◦, 64.1◦, 69.1◦, and 69.9◦ diffraction peaks are indexed
with the (110), (101), (111), (210), (211), (220), (002), (310), (301), and (112) peaks, indicating
the rutile phase of TiO2 [62]. In TNF2, the (310) and (112) peaks indicating the rutile phase
were not observed, and in TNF3, the (210) peak was also not observed. Additionally, as the
copper content increased, the peak intensity for the rutile phase decreased. Consequently,
it was deduced that with an increase in Cu content, the proportion of the anatase phase
became more dominant. The phase ratio of anatase and rutile for each sample are detailed
in Table 2. At no concentration were crystalline phases corresponding to Cu, CuO, or Cu2O
observed, suggesting that the Cu ions might be uniformly dispersed or that the amount of
CuO or Cu2O was too minimal to detect.
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Table 2. The phase ratio of each sample depending on the Cu content.

Sample Anatase (%) Rutile (%)

TNF0 20 80
TNF1 26 74
TNF2 41 59
TNF3 59 41

2.4. Photocatalytic Efficiency According to E-Beam Irradiation

The photocatalytic efficiency according to e-beam irradiation was evaluated using the
same method and conditions as those used to evaluate photocatalytic efficiency according
to Cu content. Samples were prepared by e-beam irradiation on TNF2, which showed
the highest photodegradation rate in the evaluation of photocatalytic efficiency according
to Cu content. A comparative analysis of the photodegradation rates of MB in aqueous
solutions was conducted among samples not subjected to e-beam irradiation and those
treated with 5.3 kGy and 50 kGy e-beam doses. It was observed that photodegradation
efficiency increased with increased e-beam irradiation doses. Figure 8 shows the absorption
spectrum of the MB aqueous solution sampled every hour during the photocatalytic
reaction, and Figure 9 shows the C/C0 and ln(C/C0) values over time. The irradiation of
e-beam significantly improved the efficiency and rate of photodegradation of MB by TNFs.
As can be seen in Table 3, the sample irradiated with 50.0 kGy of e-beam photodegraded
up to 95.80% after 6 h.
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Table 3. MB dye degradation rate (%) after 6 h according to e-beam treatment.

0 kGy 5.3 kGy 50.0 kGy

86.87 90.87 95.80

2.5. Raman Spectroscopy

Figure 10 shows the Raman spectrum of Cu-doped TNFs (a) and the Raman spectrum
following e-beam treatment (b). All samples showed similar spectra, and the fingerprints
closely matched the XRD patterns. The intense peak observed at 144 cm−1, along with
Raman bands around 396, 514, 519, and 639 cm−1, correspond to the symmetry species
Eg, B1g, A1g, B1g, and Eg, respectively. These Raman active modes are characteristic of
anatase-TiO2 [63,64]. Also, the bands at 112, 143 (superimposed with the 144 cm−1 band by
the anatase phase), 448, and 610 cm−1 correspond to symmetry species B1g, B1g, Eg, and
A1g, respectively, and are attributed to the rutile-TiO2 [63,64]. In Raman active vibrational
modes, the Eg mode mainly corresponds to the symmetric stretching vibration of O-Ti-O,
the B1g mode is caused by the symmetric bending vibration of O-Ti-O, and the A1g mode is
caused by the anti-symmetric bending vibration of O-Ti-O [65,66].
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2.6. XPS Analysis

For surface characterization of e-beam treated and untreated TNFs samples, the X-
ray spectroscopy (XPS) method was used. Figure 11 shows the XPS spectra of samples
without e-beam irradiation and those irradiated with 5.3 kGy and 50.0 kGy, respectively.
Figure 12 shows the Ti 2p peak for the three samples. Among the two peaks, the one
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with lower intensity corresponds to Ti4+ 2p1/2, and the one with relatively higher intensity
corresponds to Ti4+ 2p3/2. As e-beam irradiation was performed, the height of the two
peaks for Ti4+ 2p decreased, and the binding energy of Ti4+ 2p3/2 was the same at 458.5 eV,
but the binding energy of Ti4+ 2p1/2 was 464.3, 464.2, and 464.1 eV, respectively, showing
a tendency to decrease as the e-beam irradiation amount increased. This shift may be
attributed to the growing influence of the Ti3+ 2p peak on the Ti4+ 2p peak. These peak shifts
can be considered as a result of ionization, occurring when high-energy electron beams
irradiate TiO2 nanofibers, causing some Ti4+ ions to capture electrons and convert into Ti3+

states. This change in the bonding state can promote the trapping of photo-excited charge
carriers, thereby delaying recombination and enhancing the redox reactions on the surface,
contributing to an improvement in photocatalytic performance. [67–69]. Additionally,
high-energy e-beam irradiation creates oxygen vacancies in the surface layer and boosts
the production of oxidizing agents such as hydroxyl radicals (•OH) and reactive oxygen
species (•O2), thereby enhancing the adsorption and decomposition of pollutants [70–72].
Equations (2)–(5) represent the previously mentioned chemical reactions:

TiO2 + hν → h+ + e− (4)

Ti4+ + e− → Ti3+ (5)

O2 + e− → •O−
2 (6)

H2O + h+ → •OH + OH+ (7)
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3. Materials and Methods
3.1. Materials

Polyvinylpyrrolidone (PVP) (M.W. 1,300,000) was purchased from Alfa Aesar Korea
Co., Ltd. (Incheon, Republic of Korea). Titanium (IV) isopropoxide (TTIP) (≥98.0%),
Acetylacetone (ACAC) (≥99.0%), and Copper (II) acetate monohydrate (≥98.0%) were
purchased from Junsei Co., Ltd. (Tokyo, Japan). Ethyl alcohol (EtOH) (anhydrous, ≥99.9%)
was purchased from Samchun (Seoul, Republic of Korea). Methylene blue (MB) was
purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA).

3.2. Fabrication of Cu-Doped and Bare TiO2 Nanofibers

The precursor solutions for the electrospinning of TNFs were prepared with varying
contents of Cu acetate, and the composition of each solution is shown in Table 4. The Cu
content was adjusted to achieve molar ratios of 0, 0.02, 0.05, and 0.1% with titanium. In
the first beaker, 40 g of PVP and the designed content of Cu acetate were added to 250 g of
EtOH and stirred for 24 h. Subsequently, 50 g of ethanol, ACAC, and TTIP were added to
another beaker and stirred until the solution became a homogenous, transparent yellow.
The two solutions were then mixed and stirred at room temperature for an additional 24 h.

Table 4. The composition of precursor solutions (unit: g).

Sample PVP EtOH Cu Acetate TTIP ACAC
Molar
Ratio

Cu/Ti (%)

TNF0 40 300 0 50 50 0
TNF1 40 300 0.007 50 50 0.02
TNF2 40 300 0.018 50 50 0.05
TNF3 40 300 0.035 50 50 0.10

The precursor solution was fabricated and collected in nanofiber form using electro-
spinning, and Figure 13 shows a schematic of the electrospinning process. The electro-
spinning parameters were as follows: a needle tip-to-collector distance of 12 cm, a flow
rate of 1 mL/h, and a 23-gauge needle tip diameter. A high voltage of 20 kV was applied
through a power supply. Each fabricated sample was first dried in an oven at 60 ◦C and
then calcined by heating in a box furnace to 400 ◦C for 3 h at a rate of 5 ◦C/min.
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3.3. Characterization

The surface and diameter of the TiO2 nanofiber samples were characterized using
a field-emission scanning electron microscope (FE-SEM). The crystal structure and crys-
tallinity of the TiO2 sample were analyzed using an X-ray diffractometer (XRD) with Cu
Kα line radiation. Raman spectroscopy was used to analyze the chemical structure of the
sample, using a laser with a 532 nm wavelength. UV-visible spectrophotometer (UV-Vis)
measurements were recorded in the range of 350–850 nm. The X-ray Photoelectron Spec-
troscopy (XPS) method was employed to analyze the surface properties of the e-beam
irradiated samples. A monochromatic X-ray source Al-Kα was used, and all binding
energies (BEs) were calibrated by the BE (284.8 eV) of C 1 s.

3.4. Photocatalytic MB Degradation

To evaluate the photocatalytic efficiency of both bare TiO2 and Cu-doped TiO2, the
degradation test of methylene blue (MB) dye was performed. An aqueous MB solution
was prepared at a concentration of 5 mg/L by dissolving MB powder in distilled water. A
mixture of 10 mL of distilled water and 0.1 g of the TiO2 catalyst was added in a quartz
beaker and stirred for 30 min in darkness. Subsequently, 100 mL of the MB aqueous
solution was added, followed by its exposure to UV light with a 365 nm wavelength for
6 h. The UV lamp (VL-6.LM, Vilber Lourmat, Eberhardzell, Germany) was positioned
10 cm from the beaker, with a stirring speed of 220 rpm. Throughout the photodegradation
test, approximately 5 mL of samples were extracted every hour using a syringe. The TiO2
catalyst was filtered from these samples using a syringe filter (PTFE, 0.2 µm, CHMLAB
group, Barcelona, Spain), and the filtrate was then placed into a cuvette. The photocatalytic
efficiency was determined by measuring the absorbance between 350 and 850 nm using a
UV-Vis spectrophotometer.

3.5. E-Beam Treatment Test

To investigate the effect of e-beam irradiation on photocatalyst efficiency, Cu-doped
TiO2, which exhibited the highest photodegradation efficiency, was irradiated with an
e-beam at doses of approximately 5.3 kGy and 50.0 kGy. The TNFs, pulverized into powder
and contained in a PE bag, were exposed to the e-beam using an electron accelerator (ELV-8
type), as per the parameters shown in Table 5. Then, a photocatalytic MB degradation test
using UV-Vis spectroscopy was performed to measure the absorbance of the filtered MB
aqueous solution, comparing the photodegradation efficiency between the samples treated
with and without electron beam irradiation.

Table 5. The E-beam irradiation conditions for each sample.

Acceleration
Voltage (MeV)

Beam Current
(mA)

Processing
Number

Radiation
Exposure (kGy)

0 0 0 0
0.8 4 1 5.3
1.2 5 5 50.0

4. Conclusions

TiO2 nanofibers, fabricated by controlling the amount of Cu added, were irradiated
with e-beams and compared in terms of their photocatalytic properties. An appropriate
amount of Cu doping and high-dose e-beam irradiation significantly improved the de-
composition rate of MB dye on the TiO2 photocatalyst. Cu doping reduced the average
diameter of TiO2 nanofibers and increased the anatase-TiO2 phase fraction, but the pho-
tocatalytic efficiency of samples doped with more than a certain amount of Cu decreased.
This decrease is attributed either to the generation of excessive oxygen vacancies or to the
Cu species acting as recombination centers for photoinduced electrons and holes. Therefore,
it was confirmed that an optimal concentration exists for performance improvement via Cu
doping. As the e-beam irradiation dose increased, the photocatalytic efficiency increased
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too. Irradiation with an e-beam creates oxygen vacancies on the surface and increases the
generation of Ti3+ ions, which can serve as a medium for interfacial charge transfer.
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