Catalyzed Hydrothermal Pretreatment of Oat Husks for Integrated Production of Furfural and Lignocellulosic Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Feedstock
2.3. Characterization of Feedstock
2.4. Catalyzed Pretreatment of Oat Husks
2.5. Experimental Design
3. Results and Discussion
3.1. Analysis of the Raw Material
3.2. Furfural Production
3.3. Chemical Composition of Lignocellulosic Residue
4. Conclusions
- The highest furfural yield (11.84% of o.d.m.) was observed under conditions of 15% catalyst concentration, 170 °C temperature, 8 wt.% catalyst amount, and 30 min treatment time, in these cases, acetic acid yields are 2.64% from o.d.m.
- The optimal glucan yield, while preserving a high furfural yield, is attained in experiment No. 4, where the yields of acetic acid, furfural, and glucan are 2.70%, 10.67% and 38.64%, respectively, at the technological pretreatment process parameters of 25% catalyst concentration, 6 wt.% catalyst amount, 155 °C temperature, and steam flow rate in the reaction zone 100 mL·min−1.
- Not all biomass feedstocks can be treated with the same pretreatment method in the context of biorefining. As a result, individual studies are needed for every raw material.
- For optimal furfural production from oat husks, the most important reaction parameters were maximal reaction temperature and time, which in turn leads to a higher loss of cellulose in LC residue. To determine the optimal balance between furfural yield and cellulose loss in LC residue, economic factors should be taken into account.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Appl. Energy 2012, 94, 129–140. [Google Scholar] [CrossRef]
- Martín, C.; Dixit, P.; Momayez, F.; Jönsson, L.J. Hydrothermal Pretreatment of Lignocellulosic Feedstocks to Facilitate Biochemical Conversion. Front. Bioeng. Biotechnol. 2022, 10, 846592. [Google Scholar] [CrossRef]
- Torres-Mayanga, P.C.; Lachos-Perez, D.; Mudhoo, A.; Kumar, S.; Brown, A.B.; Tyufekchiev, M.; Dragone, G.; Mussatto, S.I.; Rostagno, M.A.; Timko, M.; et al. Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass Bioenergy 2019, 130, 105397. [Google Scholar] [CrossRef]
- Kammoun, M.; Margellou, A.; Toteva, V.B.; Aladjadjiyan, A.; Sousa, A.F.; Luis, S.V.; Garcia-Verdugo, E.; Triantafyllidis, K.S.; Richel, A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv. 2023, 13, 21395–21420. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Duarte, L.C.; Gírio, F.; Moniz, P. Hydrothermal/Liquid Hot Water Pretreatment (Autohydrolysis). In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–347. [Google Scholar]
- Singh, A.; Tsai, M.-L.; Chen, C.-W.; Rani Singhania, R.; Kumar Patel, A.; Tambat, V.; Dong, C.-D. Role of hydrothermal pretreatment towards sustainable biorefinery. Bioresour. Technol. 2023, 367, 128271. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Q.; Fang, M.; Wu, D.; Cui, D.; Pan, S.; Bai, J.; Xu, F.; Wang, Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. Sci. Total Environ. 2023, 897, 165327. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, A.; Bostyn, S.; Belandria, V.; Cagnon, B.; Sarh, B.; Gökalp, I. Hydrothermal carbonization of dried olive pomace: Energy potential and process performances. J. Anal. Appl. Pyrolysis 2017, 128, 281–290. [Google Scholar] [CrossRef]
- Ilanidis, D.; Stagge, S.; Jönsson, L.J.; Martín, C. Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor. Ind. Crops Prod. 2021, 159, 113077. [Google Scholar] [CrossRef]
- Cao, L.; Luo, G.; Tsang, D.C.W.; Chen, H.; Zhang, S.; Chen, J. A novel process for obtaining high quality cellulose acetate from green landscaping waste. J. Clean. Prod. 2018, 176, 338–347. [Google Scholar] [CrossRef]
- Świątek, K.; Gaag, S.; Klier, A.; Kruse, A.; Sauer, J.; Steinbach, D. Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 2020, 10, 437. [Google Scholar] [CrossRef]
- Ye, L.; Han, Y.; Wang, X.; Lu, X.; Qi, X.; Yu, H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021, 515, 111899. [Google Scholar] [CrossRef]
- Hernández-Vázquez, A.; Hernández, S.; Ortíz, I. Hydrothermal pretreatment of agave bagasse for biomethane production: Operating conditions and energy balance. Biomass Bioenergy 2020, 142, 105753. [Google Scholar] [CrossRef]
- Nitsos, C.K.; Choli-Papadopoulou, T.; Matis, K.A.; Triantafyllidis, K.S. Optimization of Hydrothermal Pretreatment of Hardwood and Softwood Lignocellulosic Residues for Selective Hemicellulose Recovery and Improved Cellulose Enzymatic Hydrolysis. ACS Sustain. Chem. Eng. 2016, 4, 4529–4544. [Google Scholar] [CrossRef]
- Díaz, M.J.; Cara, C.; Ruiz, E.; Pérez-Bonilla, M.; Castro, E. Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks. Fuel 2011, 90, 3225–3229. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Pradhan, R.; Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valorization 2021, 12, 2171–2186. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent advances in nanocellulose-based different biomaterials: Types, properties, and emerging applications. J. Mater. Res. Technol. 2021, 14, 2601–2623. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Henry, A.B.; Maung, C.E.H.; Kim, K.Y. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM). J. Environ. Manag. 2020, 276, 111252. [Google Scholar] [CrossRef]
- Röhe, I.; Zentek, J. Lignocellulose as an insoluble fiber source in poultry nutrition: A review. J. Anim. Sci. Biotechnol. 2021, 12, 82. [Google Scholar] [CrossRef]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as sustainable resources for production of bioplastics—A review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Nanda, S.; Azargohar, R.; Dalai, A.K.; Kozinski, J.A. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 2015, 50, 925–941. [Google Scholar] [CrossRef]
- To, T.; Cpmp, T.H.E.; Of, A.; Revision, T.H.E.; The, B.Y.; For, D.; Into, C. (CPMP) Guideline on Stability Testing: Stability Testing of EXISTING active Substances and Related Finished Products; European Medicines Agency: Amsterdam, The Netherlands, 2004; pp. 1–18.
- Nogueira, J.S.M.; Santana, V.T.; Henrique, P.V.; Aguiar, L.G.; Silva, J.P.A.; Mussatto, S.I.; Carneiro, L.M. Production of 5-Hydroxymethylfurfural from Direct Conversion of Cellulose Using Heteropolyacid/Nb2O5 as Catalyst. Catalysts 2020, 10, 1417. [Google Scholar] [CrossRef]
- Menegazzo, F.; Ghedini, E.; Signoretto, M. 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules 2018, 23, 2201. [Google Scholar] [CrossRef]
- Eurostat Agricultural Production—Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Agrometeorological_review (accessed on 2 January 2024.).
- TAPPI. TAPPI T211 Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C; TAPPI Standand Test Methods, Five-year review of T211 om-02; TAPPI: Peachtree Corners, GA, USA, 2007; p. 7. [Google Scholar]
- NREL/TP-510-42618; Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical. National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- NREL/TP-510-42622; Determination of Ash in Biomass Laboratory Analytical. National Renewable Energy Laboratory: Golden, CO, USA, 2005.
- NREL/TP-510-42621; Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Puke, M.; Godina, D.; Kirpluks, M.; Rizikovs, J.; Brazdausks, P. Residual Birch Wood Lignocellulose after 2-Furaldehyde Production as a Potential Feedstock for Obtaining Fiber. Polymers 2021, 13, 1816. [Google Scholar] [CrossRef] [PubMed]
- Brazdausks, P.; Godina, D.; Puke, M. Direct Furfural Production from Deciduous Wood Pentosans Using Different Phosphorus-Containing Catalysts in the Context of Biorefining. Molecules 2022, 27, 7353. [Google Scholar] [CrossRef]
- Brazdausks, P.; Puke, M.; Vedernikovs, N.; Kruma, I. Influence of Biomass Pretreatment Process Time on Furfural Extraction from Birch Wood. Environ. Clim. Technol. 2013, 11, 5–11. [Google Scholar] [CrossRef]
- Puke, M.; Godina, D.; Kirpluks, M.; Brazdausks, P.; Rizikovs, J. Characterization of Birch Wood Residue after 2-Furaldehyde Obtaining, for Further Integration in Biorefinery Processing. Polymers 2021, 13, 4366. [Google Scholar] [CrossRef]
- Schmitz, E.; Nordberg Karlsson, E.; Adlercreutz, P. Warming weather changes the chemical composition of oat hulls. Plant Biol. 2020, 22, 1086–1091. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Available online: https://www.epa.gov/so2-pollution (accessed on 5 January 2024.).
- Brazdausks, P.; Godina, D.; Puke, M. Phosphorus-Containing Catalyst Impact on Furfural and Glucose Production during Consecutive Hydrothermal Pretreatment and Enzymatic Hydrolysis. Fermentation 2023, 9, 803. [Google Scholar] [CrossRef]
- Loginova, I.V.; Kharina, M.V.; Kanarskaya, Z.A.; Meshcheryakova, M.N.; Dubkova, N.Z. Complex processing of plant raw materials for furfural and glucose production. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052014. [Google Scholar] [CrossRef]
- Puke, M.; Godina, D.; Brazdausks, P.; Rizikovs, J.; Fridrihsone, V. Thermomechanical and Alkaline Peroxide Mechanical Pulping of Lignocellulose Residue Obtained from the 2-Furaldehyde Production Process. Materials 2022, 15, 5872. [Google Scholar] [CrossRef] [PubMed]
- Brazdausks, P.; Puke, M.; Vedernikovs, N.; Kruma, I.R. The effect of catalyst amount on the production of furfural and acetic acid from birch wood in a biomass pretreatment process. Balt. For. 2014, 20, 106–114. [Google Scholar]
- Sun, Y.; Wang, Z.; Liu, Y.; Meng, X.; Qu, J.; Liu, C.; Qu, B. A Review on the Transformation of Furfural Residue for Value-Added Products. Energies 2019, 13, 21. [Google Scholar] [CrossRef]
Compound | Amount (% of o.d.m.) |
---|---|
Extractives (acetone) | 3.27 ± 0.06 |
Glucan | 37.44 ± 0.14 |
Xylan | 23.58 ± 0.11 |
Galactan | 0.55 ± 0.05 |
Arabinan | 3.51 ± 0.02 |
Mannan | 0.49 ± 0.01 |
Acid-insoluble residue (Klason lignin) | 12.99 ± 0.06 |
Acid-soluble lignin | 2.99 ± 0.04 |
Ash | 4.90 ± 0.02 |
Acetyl groups | 2.18 ± 0.03 |
Run | Catalyst Conc., (c) | Temperature, (T) | Catalyst Amount, (m) | Treatment Time, (τ) | Furfural | Acetic Acid |
---|---|---|---|---|---|---|
% | °C | wt.% | min | % of o.d.m. | % of o.d.m. | |
1 | 25 | 155 | 10 | 30 | 8.70 ± 0.06 | 2.51 ± 0.01 |
2 | 35 | 140 | 4 | 40 | 3.14 ± 0.02 | 1.49 ± 0.01 |
3 | 25 | 155 | 6 | 30 | 8.15 ± 0.05 | 2.61 ± 0.02 |
4 | 25 | 155 | 6 | 50 | 10.67 ± 0.08 | 2.70 ± 0.03 |
5 | 25 | 185 | 6 | 30 | 10.14 ± 0.08 | 2.69 ± 0.04 |
6 | 45 | 155 | 6 | 30 | 7.33 ± 0.05 | 2.29 ± 0.03 |
7 | 25 | 125 | 6 | 30 | 0.55 ± 0.01 | 1.17 ± 0.01 |
8 | 15 | 170 | 4 | 20 | 7.20 ± 0.06 | 1.92 ± 0.02 |
9 | 15 | 170 | 4 | 40 | 11.67 ± 0.08 | 2.66 ± 0.04 |
10 | 25 | 155 | 6 | 10 | 2.30 ± 0.02 | 0.98 ± 0.02 |
11 | 15 | 140 | 4 | 20 | 0.92 ± 0.01 | 0.78 ± 0.03 |
12 | 5 | 155 | 6 | 30 | 3.63 ± 0.03 | 1.33 ± 0.01 |
13 | 15 | 170 | 8 | 30 | 11.84 ± 0.07 | 2.64 ± 0.01 |
14 | 25 | 155 | 2 | 30 | 3.33 ± 0.02 | 1.24 ± 0.03 |
15 | 15 | 140 | 8 | 20 | 1.54 ± 0.01 | 1.25 ± 0.01 |
16 | 35 | 170 | 8 | 20 | 8.12 ± 0.06 | 2.20 ± 0.02 |
17 | 35 | 140 | 4 | 20 | 1.30 ± 0.01 | 0.90 ± 0.02 |
18 | 35 | 140 | 8 | 20 | 2.64 ± 0.01 | 1.67 ± 0.01 |
19 | 35 | 140 | 8 | 40 | 5.50 ± 0.03 | 2.34 ± 0.03 |
20 | 15 | 170 | 8 | 20 | 8.72 ± 0.05 | 2.10 ± 0.02 |
21 | 15 | 140 | 4 | 40 | 2.50 ± 0.01 | 1.44 ± 0.01 |
22 | 35 | 170 | 4 | 40 | 10.78 ± 0.06 | 2.53 ± 0.03 |
23 | 35 | 170 | 8 | 40 | 10.96 ± 0.06 | 2.76 ± 0.02 |
24 | 15 | 140 | 8 | 40 | 4.22 ± 0.03 | 2.28 ± 0.02 |
25 | 25 | 155 | 6 | 30 | 8.06 ± 0.04 | 2.28 ± 0.03 |
26 | 35 | 170 | 4 | 20 | 6.99 ± 0.05 | 1.88 ± 0.02 |
Run | Oat Husks LC | Acid-Insoluble Residue | Glucan | Xylan | Arabinan | Galactan | Mannan | Acetyl Groups |
---|---|---|---|---|---|---|---|---|
% o.d.m. | % LC | |||||||
1 | 77.64 | 31.56 ± 0.12 | 44.38 ± 0.12 | 14.14 ± 0.35 | 1.35 ± 0.09 | 1.42 ± 0.03 | 0.24 ± 0.05 | 0.37 ± 0.07 |
2 | 93.05 | 20.92 ± 0.15 | 38.64 ± 0.15 | 27.83 ± 0.15 | 1.74 ± 0.05 | 1.21 ± 0.02 | 0.12 ± 0.08 | 1.09 ± 0.01 |
3 | 82.85 | 28.02 ± 0.20 | 42.62 ± 0.22 | 18.18 ± 0.11 | 1.40 ± 0.17 | 1.13 ± 0.04 | 0.19 ± 0.00 | 0.50 ± 0.02 |
4 | 75.82 | 32.28 ± 0.21 | 43.61 ± 0.32 | 13.01 ± 0.45 | 0.81 ± 0.01 | 1.58 ± 0.16 | 0.07 ± 0.00 | 0.36 ± 0.01 |
5 | 68.04 | 49.30 ± 0.35 | 36.09 ± 0.40 | 1.50 ± 0.45 | 0.37 ± 0.03 | 1.68 ± 0.14 | 0.11 ± 0.03 | 0.25 ± 0.01 |
6 | 82.13 | 28.58 ± 0.34 | 42.97 ± 0.45 | 17.02 ± 0.47 | 1.21 ± 0.03 | 1.26 ± 0.13 | 0.10 ± 0.05 | 0.52 ± 0.03 |
7 | 97.37 | 17.39 ± 0.21 | 38.87 ± 0.40 | 31.60 ± 0.18 | 2.43 ± 0.05 | 1.43 ± 0.09 | 0.06 ± 0.01 | 1.31 ± 0.01 |
8 | 79.43 | 29.40 ± 0.15 | 43.43 ± 0.32 | 14.87 ± 0.16 | 1.06 ± 0.02 | 1.26 ± 0.08 | 0.13 ± 0.02 | 0.54 ± 0.03 |
9 | 70.69 | 37.21 ± 0.20 | 43.78 ± 0.50 | 7.71 ± 0.07 | 0.62 ± 0.01 | 1.24 ± 0.08 | 0.20 ± 0.03 | 0.32 ± 0.01 |
10 | 93.42 | 21.01 ± 0.15 | 38.53 ± 0.42 | 27.63 ± 0.36 | 1.83 ± 0.02 | 1.37 ± 0.17 | 0.03 ± 0.00 | 1.11 ± 0.03 |
11 | 96.66 | 17.66 ± 0.10 | 38.88 ± 0.30 | 29.69 ± 0.19 | 1.95 ± 0.05 | 1.39 ± 0.10 | 0.00 ± 0.00 | 1.38 ± 0.02 |
12 | 77.73 | 23.81 ± 0.20 | 44.34 ± 0.40 | 23.21 ± 0.23 | 1.58 ± 0.02 | 1.38 ± 0.04 | 0.11 ± 0.01 | 0.65 ± 0.02 |
13 | 68.37 | 41.84 ± 0.50 | 41.93 ± 0.50 | 5.80 ± 0.10 | 0.60 ± 0.07 | 1.12 ± 0.10 | 0.24 ± 0.04 | 0.27 ± 0.02 |
14 | 92.65 | 22.01 ± 0.35 | 39.72 ± 0.30 | 26.00 ± 0.14 | 1.48 ± 0.03 | 1.22 ± 0.04 | 0.08 ± 0.02 | 1.31 ± 0.01 |
15 | 91.82 | 18.78 ± 0.16 | 41.00 ± 0.40 | 29.11 ± 0.20 | 2.17 ± 0.02 | 1.48 ± 0.10 | 0.09 ± 0.01 | 0.81 ± 0.03 |
16 | 74.24 | 38.28 ± 0.25 | 42.68 ± 0.30 | 7.94 ± 0.15 | 0.76 ± 0.07 | 1.31 ± 0.03 | 0.16 ± 0.01 | 0.35 ± 0.02 |
17 | 96.94 | 19.02 ± 0.18 | 38.98 ± 0.35 | 29.35 ± 0.07 | 2.03 ± 0.03 | 1.15 ± 0.03 | 0.06 ± 0.01 | 1.50 ± 0.03 |
18 | 91.06 | 20.78 ± 0.20 | 41.02 ± 0.40 | 27.68 ± 0.01 | 1.98 ± 0.02 | 1.57 ± 0.09 | 0.12 ± 0.01 | 0.87 ± 0.02 |
19 | 85.52 | 24.07 ± 0.30 | 41.77 ± 0.46 | 22.75 ± 0.27 | 1.70 ± 0.05 | 1.29 ± 0.04 | 0.10 ± 0.03 | 0.50 ± 0.03 |
20 | 75.20 | 34.27 ± 0.36 | 44.27 ± 0.36 | 10.27 ± 0.08 | 1.01 ± 0.01 | 1.34 ± 0.03 | 0.19 ± 0.03 | 0.34 ± 0.01 |
21 | 92.34 | 20.04 ± 0.20 | 40.19 ± 0.45 | 27.73 ± 0.37 | 1.88 ± 0.02 | 1.37 ± 0.02 | 0.17 ± 0.02 | 1.07 ± 0.04 |
22 | 72.44 | 41.01 ± 0.40 | 40.73 ± 0.50 | 7.80 ± 0.33 | 0.54 ± 0.02 | 1.28 ± 0.00 | 0.28 ± 0.02 | 0.33 ± 0.02 |
23 | 68.13 | 48.24 ± 0.50 | 36.27 ± 0.30 | 5.00 ± 0.21 | 0.33 ± 0.01 | 1.33 ± 0.07 | 0.06 ± 0.02 | 0.24 ± 0.01 |
24 | 88.86 | 21.87 ± 0.22 | 41.82 ± 0.25 | 24.78 ± 0.20 | 1.82 ± 0.01 | 1.48 ± 0.13 | 0.12 ± 0.02 | 0.48 ± 0.04 |
25 | 82.74 | 27.74 ± 0.20 | 42.36 ± 0.48 | 18.27 ± 0.19 | 1.39 ± 0.02 | 1.28 ± 0.09 | 0.15 ± 0.02 | 0.48 ± 0.02 |
26 | 79.12 | 32.40 ± 0.30 | 43.02 ± 0.45 | 12.38 ± 0.22 | 0.82 ± 0.12 | 1.15 ± 0.06 | 0.23 ± 0.02 | 0.58 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puke, M.; Godina, D.; Brazdausks, P. Catalyzed Hydrothermal Pretreatment of Oat Husks for Integrated Production of Furfural and Lignocellulosic Residue. Polymers 2024, 16, 707. https://doi.org/10.3390/polym16050707
Puke M, Godina D, Brazdausks P. Catalyzed Hydrothermal Pretreatment of Oat Husks for Integrated Production of Furfural and Lignocellulosic Residue. Polymers. 2024; 16(5):707. https://doi.org/10.3390/polym16050707
Chicago/Turabian StylePuke, Maris, Daniela Godina, and Prans Brazdausks. 2024. "Catalyzed Hydrothermal Pretreatment of Oat Husks for Integrated Production of Furfural and Lignocellulosic Residue" Polymers 16, no. 5: 707. https://doi.org/10.3390/polym16050707
APA StylePuke, M., Godina, D., & Brazdausks, P. (2024). Catalyzed Hydrothermal Pretreatment of Oat Husks for Integrated Production of Furfural and Lignocellulosic Residue. Polymers, 16(5), 707. https://doi.org/10.3390/polym16050707