An Updated Overview of Magnetic Composites for Water Decontamination
Abstract
:1. Introduction
2. Magnetic Nanoparticles
3. Magnetic Composites for Water Decontamination
3.1. Carbon-Based Composites
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Carbon dot- and magnetite-modified magnetic CNTs | 184 | 5.6 | Carbamazepine | 65 | [79] |
Magnetic CNTs | - | - |
Metolachlor Bisphenol A Tonalide Triclosan Ketoprofen Estriol | 20.53 28.55 27.32 19.68 26.67 18.24 | [82] |
CNT-incorporated MIL-88B-Fe | 118.10 | - | Phenol | - | [105] |
Nickel nanoparticles encapsulated in porous carbon/CNT hybrids | 999 | 3.66 |
Malachite green Congo red Rhodamine B Methylene blue Methyl orange |
898 818 395 312 271 | [36] |
Nickel nanoparticle-decorated graphene oxide CNTs | 71.7 | - | Rhodamine B | 41.5 | [68] |
Magnetic CNT-reduced graphene oxide–silver nanocomposite | - | 6.8 |
Methylene blue 4-Nitrophenol | - | [57] |
CNTs/Fe@C hybrids | 186.3 | 3.64 |
Methylene blue Methyl orange Neutral red |
132.58 16.53 98.81 | [37] |
Magnetic multiwalled CNT | 108.1 | - | Patent blue V | - | [75] |
Magnetic nanocomposite cobalt multiwalled CNT | 87.1457 | - | Methylene blue | 324.34 | [58] |
N-doped bamboo-like CNT encapsulated with Fe nanoparticles supported by biochar |
194.8 at 700 °C, 225.4 at 800 °C 205.6 at 900 °C | - | Rhodamine B | - | [69] |
Core–shell ZIF-67/ZIF-8-derived sea urchin-like cobalt/nitrogen Co-doped CNT hollow frameworks | 269.79 | 41.88 |
Methyl blue Acid fuchsin Malachite green |
8862.5 8032.5 6043.2 | [59] |
Graphene-templated zeolite-imidazolate framework (ZIF-67) derived, Co nanoparticle embedded, nitrogen-doped CNT | 389 | - | Reactive black 5 | - | [35] |
Magnetic fluorinated CNT | - | 47.7 |
Perfluoroalkyl carboxylic acids Perfluoroalkyl sulfonic acids | - | [101] |
Magnetic titanium nanotube–CNT nanocomposite | 574.1 | 25.55 | Bisphenol A | - | [99] |
Aminated MIL-53(Al)-functionalized CNT | 811 | - |
Bisphenol AF Metribuzin |
274 213 | [95] |
Magnetic and N-doped CNT with cobalt encapsulation | 125.5 | 1.61 | Oxalic acid | 5 | [138] |
Multiwalled CNT-functionalized MIL-53(Fe) | 60.17 | - |
Tetracycline hydrochloride Oxytetracycline hydrochloride Chlortetracycline hydrochloride |
364.37 325.59 180.68 | [83] |
Multiwalled CNT–amino-functionalized MIL-53(Fe) composites | - | - |
Tetracycline hydrochloride Chlortetracycline hydrochloride |
368.49 254.04 | [84] |
MIL-100(Fe)-CNT | 1228 | - | Oxytetracycline | 429 | [85] |
Magnetic nanomaterial of surface oxidized nano-cobalt wrapped by nitrogen-doped CNTs | 243.63–277.62 | 4.64 |
Tetracycline Rhodamine B |
679.56 385.60 | [70] |
Nitrogen-doped CNTs with encapsulated Fe3C nanoparticles | - | 12.6 | Sulfamethoxazole | - | [88] |
Metal–organic framework ZIF-8/magnetic multiwalled CNTs | 127.95 | 53.56 | Profenofos Triazophos Diazinon Phosalone Methidathion Ethoprop Sulfotep Isazofos |
3.89 3.12 2.59 3.80 2.34 2.18 2.84 3.00 | [97] |
Iron-loaded CNT microfibrous composite | - | - | M-cresol | - | [103] |
Magnetic nitrogen-doped CNT cages | - | - | Okadaic acid | 897.8 µg g−1 | [139] |
Amino-functionalized multiwalled CNTs embedded with magnetic nanoparticles | 202.4 | - | Methylene blue | 178.5 | [60] |
Magnetic CNT–TiO2 composite | - | - | Carbamazepine and Sulfamethoxazole | 1.4 | [80] |
Magnetic CNT composites | - | 35.8 | Methylene blue | - | [61] |
Maghemite nanocrystals decorated multiwalled CNTs | - | - | Methylene blue | 59.4 | [62] |
Magnetic multiwalled CNTs | - | - | Crystal violet Methylene blue Rhodamine B |
287 302 231 | [63] |
Magnetite/multiwalled CNTs | - | 51.144 | Reactive violet 2 | 52.356 | [76] |
Polyethyleneimine (PEI)-functionalized magnetic CNTs | 127.93 | 27.3 | Alizarin Red S | 196.08 | [77] |
Magnetic multiwalled CNTs modified with chitosan biopolymers | - | - | Bisphenol A | 46.2 | [100] |
Polydopamine-coated Fe3O4 nanoparticles with multiwalled CNTs | - | 37.96 |
Phenytoin Oxcarbazepine Carbamazepine | - | [81] |
Magnetic multitemplate molecularly imprinted polymer@MWCNTs | - | 25.6 |
Diethyl phthalate Dimethyl phthalate Dibutyl phthalate |
1.38 0.95 7.09 | [112] |
Magnetic single-wall CNTs | - | - | Diclofenac | [91] | |
Oxidized multiwalled CNT-Fe3O4 | 169.0 | - | Diquatdibromide herbicide | 20.9 | [96] |
Oxidized multiwalled CNT–κ-carrageenan–Fe3O4 | 142.2 | - | Diquatdibromide herbicide | 10.7 | [96] |
Magnetic multiwalled CNTs modified with polyaluminum chloride | 215.90 | 7.98 | Humic acid | - | [98] |
Multiwalled carbon nanotube-modified magnetic polyamidoamine dendrimers | - | 47.71 | Heterocyclic aromatic hydrocarbons | - | [140] |
Single-wall CNTs and magnetic nanoparticles | 284.21 | - | Toluene | 49.8 | [102] |
Magnetic multiwalled CNTs/cerium dioxide nanocomposite | - | 8.22 | Methylene blue | [64] | |
Multiwalled CNT-based Fe3O4 | - | - | Maxilon Blue 5G | - | [78] |
Multiwalled CNT–NiFe2O4 composite | - | 33.1 | Sulfamethoxazole | - | [89] |
Cobalt ferrite–CNT nanocomposites | - | 56 | Methylene blue | 8.5178 | [65] |
NiFe2O4/MWCNTs/ZnO hybrid nanocomposite | - | 17.021 | Methylene blue | - | [66] |
Nitrogen-doped CNTs encapsulated with Ni–Co alloy nanoparticles |
445.6 at 700 °C 537.5 at 800 °C 801.4 at 900 °C | - |
Methylene blue Methylene orange Phenol | - | [67] |
Co0·5Ni0·5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal–organic frameworks grafted onto GO and oxidized SWCNT | - | - | 4-Nitrophenol | - | [106] |
Ag-Fe3O4-CNT composite | 375 | - |
O-nitro phenol P-nitro phenol 2-Methyl-p-nitrophenol Methylene blue | - | [107] |
Iron manganese oxide-modified multiwalled CNT | 211.3 | - |
Basic violet Acid orange |
165.29 403.23 | [72] |
Zn@Cu–Fe2O4–NC–CNT | - | 36.14 | Azure-II | 50.25 | [73] |
CNT/MgO/CuFe2O4 magnetic composite powder | 127.58 | 12.137 |
Methyl violet Nile blue |
36.46 35.60 | [74] |
Co0.5Ni0.5Fe2O4 NPs grafted onto CNTs | 142.93 | - |
Methylene blue Methyl orange Congo red Rhodamine B |
88.05 48.60 291.3 120.78 | [32] |
Pd–Fe dual-metal nanoparticles anchored in an interface of double-layered carbon nanotubes/nitrogen-doped carbon | 163 | - | 4-Nitrophenol | - | [108] |
Graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2 | 79.7, | - |
Paracetamol Caffeine | - | [92] |
Magnetite/multiwalled carbon nanotubes/metal–organic framework composite | - | 21 |
Esters Dimethyl phthalate Diethyl phthalate Diallyl phthalate Methylparaben Butylparaben | - | [104] |
CNT–FeNi3/DFNS/Cu(II) magnetic nanocomposite | 341 | 19.7 | Tetracycline | - | [86] |
Fe–Cu-doped multiwalled carbon nanotubes | 237.8–323.5 | - | Paracetamol | - | [93] |
Nitrogen-doped carbon nanotubes encapsulating Fe/Zn nanoparticles | - | - | Sulfamethoxazole | - | [90] |
CNT-COOH/MnO2/Fe3O4 nanocomposite | 114.2 | 0.46 |
Paracetamol Ibuprofen |
80.645 103.093 | [94] |
Co0.5Mn0.5Fe2O4-CNT | 108.20 | 0.61 | Pentachlorophenol | 43.2 | [33] |
Co0.5Ni0.5Fe2O4-CNT | 95.52 | 0.61 | Pentachlorophenol | 40.8 | [33] |
Co0.5Cu0.5Fe2O4-CNT | 112.04 | 0.42 | Pentachlorophenol | 35.1 | [33] |
Co0.5Zn0.5Fe2O4-CNT | 96.05 | 0.40 | Pentachlorophenol | 33.9 | [33] |
Nitrogen-doped carbon nanotubes modified with magnetic Co0.5Cu0.5Fe2O4 nanoparticles | 85.04–95.64 | 0.415 | Chlorophenol | - | [109] |
Bi2O2CO3/CNT/ZnFe2O4 | - | 25 | 2,4-Dimethyl phenol | - | [110] |
Fe-doped graphitic carbon nitride coupled Ag3VO4 compounded with CNTs | - | - | 2,4-Dimethyl phenol | - | [111] |
FeOx/MnOy-modified oxidized CNTs | 133–140 | - | Rhodamine B | - | [71] |
CNTs/β-cyclodextrin/MnFe2O4 | 166 | 25.706 | Tetracycline | 40.36 | [87] |
3.2. Polymer-Based Composites
3.3. Hydrogel-Based Composites
3.4. Metal–Organic Framework (MOF)- and Covalent Organic Framework (COF)-Based Composites
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Polyoxometalate/CoFe2O4/metal–organic framework magnetic core–shell nanocomposites | 799.56 | 13.7 | Rhodamine B Methylene blue | 153.84 200 | [174] |
Composite based on metal–organic frameworks and Fe3O4 nanoparticles | - | 30.1 | Anthracene | 12.7 | [218] |
Composite material graphene oxide/MIL-101(Fe) | 888.29 | - | Methyl orange | 186.20 | [179] |
Ag NPs supported on the magnetic Al-MOF/PDA | 54.31 | 26.62 | Ciprofloxacin Norfloxacin Methyl orange | - | [180] |
Ce-MOF@Fe3O4@activated carbon composite | - | 21.39 | Methylene blue Indigo carmine | 84.9 85.5 | [175] |
Magnetic nanocomposite based on Zn/Fe-MIL-88B | 186–216 | - | Chlortetracycline | 11.7–359.2 | [185] |
Magnetic Fe3O4-PSS@ZIF-67 composites with core–shell structure | 1041.90 | - | Methyl orange | 738 | [181] |
Yolk-shell Fe3O4@MOF-5 nanocomposites | 203 | 46.57 | Methylene blue | - | [178] |
La-MOF-NH2@Fe3O4 | 36.1 | 15.54 | Congo Red | 716.2 | [182] |
Superparamagnetic MOF@GO Co-based hybrid nanocomposite | 71.47 | 56.4 | Methylene blue | 67 | [176] |
Superparamagnetic MOF@GO Ni-based hybrid nanocomposite | - | 47.0 | Methylene blue | 54 | [176] |
Fe3O4 NPs incorporated into the zeolitic imidazolate framework lattice (Fe3O4@ZIF-8) | 1206 | 37.87 | Methylene blue | - | [177] |
PPI–Dendrimer-Functionalized Magnetic MOF (Fe3O4@UiO-66@PPI) | 120 | 10.5 | AB92 DR31 | 122.5 173.7 | [183] |
Magnetically functionalized Zr-MOF (Fe3O4@MOF-525) | 427 | 7.48 | Tetracycline Diclofenac sodium | 277 745 | [186] |
β-cyclodextrin-modified Fe3O4@MIL-100(Fe) composite | 2.60 | 9.40 | Fungicides | 64.52–102.10 | [219] |
Composites with a magnetic Fe3O4 core and a MIL-101 (Cr) MOF shell | 803 | 19.6 | Polyaromatic hydrocarbons | - | [220] |
Fe3O4/HKUST-1 magnetic copper-based MOFs | 327.9 | 44 | Ciprofloxacin Norfloxacin | 538 513 | [184] |
Magnetic Fe3O4@ZIF-67 composites | - | 60.9 | Tetrabromobisphenol A | - | [221] |
Hydrophobic carboxyl-functionalized ionic liquid encapsulated into Fe3O4@Zr-MOFs | 685 | 48.8 | Ofloxacin | 438.5 | [189] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Zr-based magnetic metal–organic framework composite (Fe3O4@SiO2@UiO-66-Glu) | 633.5 | 17.40 | Co(II) | 178.6–270.3 | [190] |
Magnetic ZIF-67 MOF@aminated chitosan composite beads | 220.76 | 10.90 | Cr(VI) | 119.05 | [191] |
Magnetic Fe3O4@UiO-66 composite | 33.12 | 26.5 | As(V) | 73.2 | [196] |
Magnetic materials with functionalized titanium-based MOF composite (SNN-MIL-125(Ti)@Fe3O4) | 195.82 | 13.06 | Hg(II) | 511.4 | [197] |
Magnetic Zr-MOF named Ni0.6Fe2.4O4-UiO-66-PEI | 22 | 4.11 | Pb(II) Cr(VI) | 273.2 428.6 | [192] |
Magnetic MOFs/graphene oxide (Fe3O4@HKUST-1/GO) | 72.23 | - | U(VI) | 202.84–268.82 | [201] |
Surfactant-functionalized magnetic MOF@MOF adsorbent (Fe3O4@UiO-66@UiO-67/CTAB) | 115.94 | 36.05 | Cr(VI) | 932.1 | [193] |
Fe3O4@metal–organic framework@covalent organic framework (Fe3O4@MOF@COF) | - | 16 | Cu(II) | 37.29 | [202] |
Citrate capped Fe3O4@UiO-66-NH2 MOF | 572.13 | 3.07 | Cr(VI) | 743 | [194] |
Fe3O4@ZIF-8 core–shell magnetic composite | 724.7 | 37.26 | Pb(II) Cu(II) | 714.7 299.7 | [199] |
Magnet-responsive Fe3O4@ZIF-8 | 896 | 27 | Cu(II) | 345 | [203] |
Magnetic Zr-MOF@polypyrrole (Fe3O4@UiO-66@Ppy) | 52.49 | 19.75 | Cr(VI) | 259.1 | [195] |
Multifunctional composite Fe3O4/MOF/L-cysteine | 413.67 | - | Cd(II) | 248.24 | [204] |
Fe3O4@DTIM-MOF@SH composite | 827 | 13 | Hg(II) | 756.9 | [198] |
Fe3O4@ZIF-8 composite | 1722 | 13.4 | Pb(II) | 276.06 | [187] |
Polyacrylic acid capped Fe3O4–Cu-MOF | 332.07 | - | Pb(II) | 610 | [200] |
Non-core–shell Fe3O4@ZIF-67 composites | - | - | Phosphate | 116.59 | [222] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Core–shell structured magnetic covalent organic framework nanocomposites | 55.71 | 48.4 | Triclosan Triclocarban | - | [206] |
Bouquet-shaped magnetic porous nanocomposite made of TpPa-1 grafted on surface-modified Fe3O4 nanoparticles | 247.8 | 40.1 | Polycyclic aromatic hydrocarbons | - | [207] |
Porous nanospheres with a magnetic core and a tunable TpBD shell | 272.6 | 22 | Bisphenol A Bisphenol AF | 160.6 236.7 | [208] |
Magnetic porous covalent triazine-based framework composites | 930–1149 | 1.1–5.9 | Methyl orange | 291 | [210] |
Magnetic covalent organic framework (TpPa-1) with β-ketoenamine linkage | 485.2 | 19.5 | Bisphenol A | 1220.97 | [209] |
Fe3O4 particles grown in the pore channels of COFs | 2245 | 5.2 | Diclofenac Sulfamethazine | 40.4 55.24 | [211] |
Fe0 nanoparticles immobilized on porous TpPa-1 covalent organic framework | 102.97 | - | Cr(VI) | 516 | [212] |
Bimetal oxide MnFe2O4 incorporated onto β-ketoenamine linked TpPa-1 | 152.5–450.5 | 11.52 | UO22+ | 1235.01 | [217] |
Magnetic covalent organic framework (TpPa-1) with β-ketoenamine linkage | 485.2 | 19.5 | Cr (VI) | 245.45 | [209] |
Magnetic organic framework adsorbent (Ni0.6Fe2.4O4-HT-COF) | - | 39.83 | Pb(II) | 411.80 | [213] |
Thiol-functionalized magnetic covalent organic frameworks | 181.5 | 19.6 | Hg(II) | 383 | [214] |
Fe3O4 decorated porous melamine-based covalent organic framework | 344–600 | 0.75–3.59 | Hg(II) | 97.65 | [215] |
Magnetic β-ketoenamine COF (MTpPa-1) | 538.60 | 6.59 | Au(III) | 1737 | [216] |
3.5. Silica-Based Composites
3.6. Aerogel-Based Composites
3.7. Biochar-Based Composites
3.8. Clay-Based Composites
3.9. Summative Discussion and Remaining Challenges
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Gleick, P.H.; Cooley, H. Freshwater Scarcity. Annu. Rev. Environ. Resour. 2021, 46, 319–348. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Baig, M.B.; Najim, M.M.M.; Shah, A.A.; Alamri, Y.A. Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia. Sustainability 2023, 15, 10648. [Google Scholar] [CrossRef]
- Ghernaout, D. Water treatment challenges towards viruses removal. Open Access Libr. J. 2020, 7, 1–22. [Google Scholar] [CrossRef]
- Topare, N.S.; Attar, S.J.; Manfe, M.M. Sewage/wastewater treatment technologies: A review. Sci. Revs. Chem. Commun. 2011, 1, 18–24. [Google Scholar]
- Biswas, P.; Bose, P.; Tare, V. Optimal choice of wastewater treatment train by multi-objective optimization. Eng. Optim. 2007, 39, 125–145. [Google Scholar] [CrossRef]
- Boer, J.; Blaga, P. Optimizing Production Costs by Redesigning the Treatment Process of the Industrial Waste Water. Procedia Technol. 2016, 22, 419–424. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Tao, Q.; Huang, X.; Wang, J.; Wang, T.; Hao, H. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. Chemosphere 2021, 284, 131270. [Google Scholar] [CrossRef] [PubMed]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Effic. Technol. 2016, 2, 175–184. [Google Scholar]
- Ma, Q.; Li, Y.; Tan, Y.; Xu, B.; Cai, J.; Zhang, Y.; Wang, Q.; Wu, Q.; Yang, B.; Huang, J. Recent Advances in Metal-Organic Framework (MOF)-Based Photocatalysts: Design Strategies and Applications in Heavy Metal Control. Molecules 2023, 28, 6681. [Google Scholar] [CrossRef]
- Predescu, A.M.; Matei, E.; Berbecaru, A.C.; Râpă, M.; Sohaciu, M.G.; Predescu, C.; Vidu, R. An Innovative Method of Converting Ferrous Mill Scale Wastes into Superparamagnetic Nanoadsorbents for Water Decontamination. Materials 2021, 14, 2539. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Iqbal, J.; Mansoor, Q. Graphene/Fe3O4 nanocomposite: Solar light driven Fenton like reaction for decontamination of water and inhibition of bacterial growth. Appl. Surf. Sci. 2019, 474, 57–65. [Google Scholar] [CrossRef]
- Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Gonçalves, R.V. Magnetic nanocatalysts: Supported metal nanoparticles for catalytic applications. Nanotechnol. Rev. 2013, 2, 597–614. [Google Scholar] [CrossRef]
- Peralta, M.E.; Ocampo, S.; Funes, I.G.; Onaga Medina, F.; Parolo, M.E.; Carlos, L. Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. Inorganics 2020, 8, 24. [Google Scholar] [CrossRef]
- Mehta, D.; Mazumdar, S.; Singh, S.K. Magnetic adsorbents for the treatment of water/wastewater—A review. J. Water Process Eng. 2015, 7, 244–265. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Soltys, L.; Macyk, W. Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. J. Mol. Liq. 2023, 384, 122174. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, G.; Zhu, J.; Wu, Z. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: A review. Environ. Sci. Water Res. Technol. 2022, 8, 907–925. [Google Scholar] [CrossRef]
- Fang, K.; Deng, L.; Yin, J.; Yang, T.; Li, J.; He, W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int. J. Biol. Macromol. 2022, 218, 909–929. [Google Scholar] [CrossRef]
- Sharma, V.K.; McDonald, T.J.; Kim, H.; Garg, V.K. Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv. Colloid Interface Sci. 2015, 225, 229–240. [Google Scholar] [CrossRef]
- Agasti, N.; Gautam, V.; Priyanka; Manju; Pandey, N.; Genwa, M.; Meena, P.L.; Tandon, S.; Samantaray, R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. Appl. Surf. Sci. Adv. 2022, 10, 100270. [Google Scholar] [CrossRef]
- Mehmood, A.; Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Karri, R.R.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. Magnetic nanocomposites for sustainable water purification—A comprehensive review. Environ. Sci. Pollut. Res. 2021, 28, 19563–19588. [Google Scholar] [CrossRef]
- Nisticò, R. Magnetic materials and water treatments for a sustainable future. Res. Chem. Intermed. 2017, 43, 6911–6949. [Google Scholar] [CrossRef]
- Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, L.; Hu, L.; Li, Y.; Luo, D.; Mei, S. Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. TrAC Trends Anal. Chem. 2019, 119, 115611. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Shameli, K.; Abdullah, E.C.; Abdullah, L.C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos. Part B Eng. 2019, 162, 538–568. [Google Scholar] [CrossRef]
- Sharma, A.; Mangla, D.; Shehnaz; Chaudhry, S.A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manag. 2022, 306, 114483. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, T.; Liu, S.; Du, L.; Chen, Q.; Li, X.; Dong, J.; Zhang, Z.; Lu, S.; Gong, Y.; et al. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environ. Int. 2022, 158, 106980. [Google Scholar] [CrossRef]
- Iqbal, A.; Jalees, M.I.; Farooq, M.U.; Cevik, E.; Bozkurt, A. Superfast adsorption and high-performance tailored membrane filtration by engineered Fe-Ni-Co nanocomposite for simultaneous removal of surface water pollutants. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129751. [Google Scholar] [CrossRef]
- Dong, H.; Jiang, Z.; Deng, J.; Zhang, C.; Cheng, Y.; Hou, K.; Zhang, L.; Tang, L.; Zeng, G. Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Res. 2018, 129, 51–57. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, B.; Sharma, S.; Dutta, S.; Sharma, A.; Yadav, S.; Solanki, K. In Situ hydroxyl radical generation using the synergism of the Co–Ni bimetallic centres of a developed nanocatalyst with potent efficiency for degrading toxic water pollutants. Mater. Chem. Front. 2020, 4, 605–620. [Google Scholar] [CrossRef]
- Deshpande, N.G.; Ahn, C.H.; Kim, D.S.; Jung, S.H.; Kim, Y.B.; Cho, H.K. Bifunctional reusable Co0.5Ni0.5Fe2O4 nanoparticle-grafted carbon nanotubes for aqueous dye removal from contaminated water. Catal. Sci. Technol. 2020, 10, 6188–6197. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, C.; Wang, Y.; Chang, J.; Ma, D.; Wang, J. An efficient method for removal of pentachlorophenol using adsorption and microwave regeneration with different magnetic carbon nanotubes. Water Sci. Technol. 2020, 81, 585–595. [Google Scholar] [CrossRef]
- Xiao, R.; Abdu, H.I.; Wei, L.; Wang, T.; Huo, S.; Chen, J.; Lu, X. Fabrication of magnetic trimetallic metal–organic frameworks for the rapid removal of tetracycline from water. Analyst 2020, 145, 2398–2404. [Google Scholar] [CrossRef]
- Kotal, M.; Sharma, A.; Jakhar, S.; Mishra, V.; Roy, S.; Sahoo, S.C.; Sharma, H.K.; Mehta, S.K. Graphene-Templated Cobalt Nanoparticle Embedded Nitrogen-Doped Carbon Nanotubes for Efficient Visible-Light Photocatalysis. Cryst. Growth Des. 2020, 20, 4627–4639. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, X.; Qian, X.; Dong, M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J. Colloid Interface Sci. 2018, 509, 245–253. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Yu, F. A Novel One-Pot Route for Large-Scale Synthesis of Novel Magnetic CNTs/Fe@C Hybrids and Their Applications for Binary Dye Removal. ACS Sustain. Chem. Eng. 2018, 6, 8178–8191. [Google Scholar] [CrossRef]
- Abou Hammad, A.B.; El Nahwary, A.M.; Hemdan, B.A.; Abia, A.L.K. Nanoceramics and novel functionalized silicate-based magnetic nanocomposites as substitutional disinfectants for water and wastewater purification. Environ. Sci. Pollut. Res. 2020, 27, 26668–26680. [Google Scholar] [CrossRef] [PubMed]
- Mostafapour, F.K.; Miri, A.; Khatibi, A.; Balarak, D.; Kyzas, G.Z. Survey of Fe3O4 Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate for Removal P-Cresol and Pyrocatechol from Aqueous Solutions. Biointerface Res. Appl. Chem. 2023, 13, 554. [Google Scholar] [CrossRef]
- Mohamed, G.; Ashraf, A.; Mohamed, A. Low-Temperature Adsorption Study of Carbon Dioxide on Porous Magnetite Nanospheres Iron Oxide. Biointerface Res. Appl. Chem. 2022, 12, 6252–6268. [Google Scholar]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.; Bibi, I.; Majid, F.; Kamal, S.; Nouren, S.; Ghafoor, A.; Raza, Q.; Al-Mijalli, S.H.; Alnafisi, N.M.; Iqbal, M. Mn-doped BaFe12O19 nanoparticles synthesis via micro-emulsion route: Solar light-driven photo-catalytic degradation of CV, MG and RhB dyes and antibacterial activity. Mater. Res. Bull. 2023, 168, 112491. [Google Scholar] [CrossRef]
- Misbah; Bibi, I.; Majid, F.; Kamal, S.; Jilani, K.; Taj, B.; Nazeer, Z.; Iqbal, M. Enhanced visible light-driven photocatalytic degradation of crystal violet dye using Cr doped BaFe12O19 prepared via facile micro-emulsion route. J. Saudi Chem. Soc. 2022, 26, 101533. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, Y.; Yan, X.; Gan, Y.; Xia, C.; Xu, Y.; Xie, M. Nitrogen-defect-modified g-C3N4/BaFe12O19 S-scheme heterojunction photocatalyst with enhanced advanced oxidation technology synergistic photothermal degradation ability of antibiotic: Insights into performance, electron transfer pathways and toxicity. Appl. Catal. B Environ. 2024, 343, 123485. [Google Scholar] [CrossRef]
- Wang, H.; Xu, L.; Liu, C.; Jiang, Z.; Feng, Q.; Wu, T.; Wang, R. A novel magnetic photocatalyst Bi3O4Cl/SrFe12O19: Fabrication, characterization and its photocatalytic activity. Ceram. Int. 2020, 46, 460–467. [Google Scholar] [CrossRef]
- Lahijani, B.; Hedayati, K.; Goodarzi, M. Magnetic PbFe12O19-TiO2 nanocomposites and their photocatalytic performance in the removal of toxic pollutants. Main Group Met. Chem. 2018, 41, 53–62. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Gao, H.; Yang, H.; Fang, L.; Chen, X.; Tang, S.; Yu, C.; Li, D. A novel lead hexagonal ferrite (PbFe12O19) magnetic separation catalyst with excellent ultrasonic catalytic activity. J. Sol-Gel Sci. Technol. 2022, 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Xu, H.; Fan, Q.; Zhu, C.; Liu, J.; Zhu, M.; Wang, X.; Niu, A. Preparation and Application of Magnetic Composites Using Controllable Assembly for Use in Water Treatment: A Review. Molecules 2023, 28, 5799. [Google Scholar] [CrossRef]
- Jangra, A.; Singh, J.; Kumar, J.; Rani, K.; Kumar, P.; Kumar, S.; Singh, D.; Kumar, R. Dye Elimination by Surface-Functionalized Magnetite Nanoparticles: Kinetic and Isotherm Studies. Biointerface Res. Appl. Chem. 2023, 13, 325. [Google Scholar]
- Jain, N.; Jee Kanu, N. The potential application of carbon nanotubes in water Treatment: A state-of-the-art-review. Mater. Today Proc. 2021, 43, 2998–3005. [Google Scholar] [CrossRef]
- Kumar, R.; Rauwel, P.; Rauwel, E. Nanoadsorbants for the Removal of Heavy Metals from Contaminated Water: Current Scenario and Future Directions. Processes 2021, 9, 1379. [Google Scholar] [CrossRef]
- Arora, B.; Attri, P. Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. J. Compos. Sci. 2020, 4, 135. [Google Scholar] [CrossRef]
- Rao, G.P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 2007, 58, 224–231. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 2014, 43, 311–338. [Google Scholar] [CrossRef]
- Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar] [CrossRef]
- Islam, M.R.; Ferdous, M.; Sujan, M.I.; Mao, X.; Zeng, H.; Azam, M.S. Recyclable Ag-decorated highly carbonaceous magnetic nanocomposites for the removal of organic pollutants. J. Colloid Interface Sci. 2020, 562, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Çalımlı, M.H. Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. Int. J. Environ. Sci. Technol. 2021, 18, 723–740. [Google Scholar] [CrossRef]
- Ye, J.; Li, C.; Yan, Y. Core-shell ZIF-67/ZIF-8-derived sea urchin-like cobalt/nitrogen Co-doped carbon nanotube hollow frameworks for ultrahigh adsorption and catalytic activities. J. Taiwan Inst. Chem. Eng. 2020, 112, 202–211. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Eldesoky, G.E.; Al-Saeedi, S.I.; Nafady, A.; Al-Kadhi, N.S.; Al-Muhtaseb, A.a.H.; Khan, A.A.; Khan, A. Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J. Mol. Liq. 2019, 282, 154–161. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Huang, H.; Dou, J.; Huang, Q.; Gan, D.; Chen, J.; Li, Y.; Zhang, X.; Wei, Y. Facile preparation of magnetic composites based on carbon nanotubes: Utilization for removal of environmental pollutants. J. Colloid Interface Sci. 2019, 545, 8–15. [Google Scholar] [CrossRef]
- Bhakta, A.K.; Kumari, S.; Hussain, S.; Martis, P.; Mascarenhas, R.J.; Delhalle, J.; Mekhalif, Z. Synthesis and characterization of maghemite nanocrystals decorated multi-wall carbon nanotubes for methylene blue dye removal. J. Mater. Sci. 2019, 54, 200–216. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Hosseinzadeh, H.; Pashaei, S.; Khodaparast, Z. Synthesis of magnetic functionalized MWCNT nanocomposite through surface RAFT co-polymerization of acrylic acid and N-isopropyl acrylamide for removal of cationic dyes from aqueous solutions. Ecotoxicol. Environ. Saf. 2018, 161, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Song, B.; Li, X.; Liao, F.; Gong, J. Enhanced photocatalytic performance of magnetic multi-walled carbon nanotubes/cerium dioxide nanocomposite. Ecotoxicol. Environ. Saf. 2019, 171, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Jelokhani, F.; Sheibani, S.; Ataie, A. Adsorption and photocatalytic characteristics of cobalt ferrite-reduced graphene oxide and cobalt ferrite-carbon nanotube nanocomposites. J. Photochem. Photobiol. A Chem. 2020, 403, 112867. [Google Scholar] [CrossRef]
- Hezam, F.A.; Nur, O.; Mustafa, M.A. Synthesis, structural, optical and magnetic properties of NiFe2O4/MWCNTs/ZnO hybrid nanocomposite for solar radiation driven photocatalytic degradation and magnetic separation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 592, 124586. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, H.; Duan, X.; Sun, H.; Tan, X.; Liu, S.; Wang, S. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chem. Eng. J. 2019, 362, 251–261. [Google Scholar] [CrossRef]
- Hu, C.; Le, A.T.; Pung, S.Y.; Stevens, L.; Neate, N.; Hou, X.; Grant, D.; Xu, F. Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Mater. Chem. Phys. 2021, 260, 124117. [Google Scholar] [CrossRef]
- Zhu, K.; Bin, Q.; Shen, Y.; Huang, J.; He, D.; Chen, W. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants. Chem. Eng. J. 2020, 402, 126090. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Yang, S.; Liao, J.; Cai, X.; Gao, Q.; Fang, Y.; Peng, F.; Zhang, S. Surface oxidized nano-cobalt wrapped by nitrogen-doped carbon nanotubes for efficient purification of organic wastewater. Sep. Purif. Technol. 2021, 259, 118098. [Google Scholar] [CrossRef]
- Tian, X.; Xiao, L. FeOx/MnOy modified oxidized carbon nanotubes as peroxymonosulfate activator for organic pollutants degradation. J. Colloid Interface Sci. 2020, 580, 803–813. [Google Scholar] [CrossRef]
- Ma, T.; Wu, Y.; Liu, N.; Wu, Y. Iron manganese Oxide Modified Multi-walled Carbon Nanotube as Efficient Adsorbent for Removal of Organic Dyes: Performance, Kinetics and Mechanism Studies. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4027–4042. [Google Scholar] [CrossRef]
- Dastkhoon, M.; Ghaedi, M.; Asfaram, A.; Jannesar, R.; Sadeghfar, F. Magnetic based nanocomposite sorbent combination with ultrasound assisted for solid-phase microextraction of Azure II in water samples prior to its determination spectrophotometric. J. Colloid Interface Sci. 2018, 513, 240–250. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Esvandi, Z.; Khatooni, H.; Ramavandi, B. Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: A comparative study. J. Environ. Chem. Eng. 2021, 9, 104752. [Google Scholar] [CrossRef]
- Duman, S.; Erbas, Z.; Soylak, M. Ultrasound-assisted magnetic solid phase microextraction of patent blue V on magnetic multiwalled carbon nanotubes prior to its spectrophotometric determination. Microchem. J. 2020, 159, 105468. [Google Scholar] [CrossRef]
- Tavakoli, M.; Safa, F.; Abedinzadeh, N. Binary nanocomposite of Fe3O4/MWCNTs for adsorption of Reactive Violet 2: Taguchi design, kinetics and equilibrium isotherms. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 305–316. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Wu, W.; Pang, W.; Yan, G. Efficient removal of Alizarin Red S from aqueous solution by polyethyleneimine functionalized magnetic carbon nanotubes. Bioresour. Technol. 2019, 293, 122100. [Google Scholar] [CrossRef] [PubMed]
- Nas, M.S.; Kuyuldar, E.; Demirkan, B.; Calimli, M.H.; Demirbaş, O.; Sen, F. Magnetic nanocomposites decorated on multiwalled carbon nanotubefor removal of Maxilon Blue 5G using the sono-Fenton method. Sci. Rep. 2019, 9, 10850. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ok, Y.S.; Mohan, D.; Pittman, C.U.; Dou, X. Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environ. Res. 2019, 169, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Awfa, D.; Ateia, M.; Fujii, M.; Yoshimura, C. Novel Magnetic Carbon Nanotube-TiO2 Composites for Solar Light Photocatalytic Degradation of Pharmaceuticals in the Presence of Natural Organic Matter. J. Water Process Eng. 2019, 31, 100836. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, S.; Yang, Y.; Deng, Y.; Li, D.; Su, P.; Yang, Y. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices. Anal. Bioanal. Chem. 2018, 410, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Fard, M.; Barkdoll, B. Using recyclable magnetic carbon nanotube to remove micropollutants from aqueous solutions. J. Mol. Liq. 2018, 249, 193–202. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C.; et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci. Total Environ. 2018, 627, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Hu, L.; et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere 2018, 210, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zang, Z.; Zhang, S.; Ouyang, G.; Han, R. Preparation of MIL-100(Fe) and multi-walled carbon nanotubes nanocomposite with high adsorption capacity towards Oxytetracycline from solution. J. Environ. Chem. Eng. 2021, 9, 104780. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, J.J.; Motavalizadehkakhky, A.; Kakooei, S.; Sadeghzadeh, S.M. Synthesis and characterization of a novel CNT-FeNi3/DFNS/Cu(ii) magnetic nanocomposite for the photocatalytic degradation of tetracycline in wastewater. RSC Adv. 2019, 9, 35022–35032. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, R.; Peighambardoust, S.J.; Latifi, P.; Ahmadi, A.; Alizadeh, M.; Ramavandi, B. Carbon nanotubes/β-cyclodextrin/MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments. J. Environ. Chem. Eng. 2021, 9, 106344. [Google Scholar] [CrossRef]
- Shang, Y.; Chen, C.; Zhang, P.; Yue, Q.; Li, Y.; Gao, B.; Xu, X. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chem. Eng. J. 2019, 375, 122004. [Google Scholar] [CrossRef]
- Nawaz, M.; Shahzad, A.; Tahir, K.; Kim, J.; Moztahida, M.; Jang, J.; Alam, M.B.; Lee, S.-H.; Jung, H.-Y.; Lee, D.S. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite. Chem. Eng. J. 2020, 382, 123053. [Google Scholar] [CrossRef]
- Yanan, S.; Xing, X.; Yue, Q.; Gao, B.; Li, Y. Nitrogen-doped carbon nanotubes encapsulating Fe/Zn nanoparticles as a persulfate activator for sulfamethoxazole degradation: Role of encapsulated bimetallic nanoparticles and nonradical reaction. Environ. Sci. Nano 2020, 7, 1444–1453. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mehdinejad, M.H.; Mengelizadeh, N.; Mahdavi, Y.; Pourzamani, H.; Hajizadeh, Y.; Zare, M.R. Degradation of diclofenac by heterogeneous electro-Fenton process using magnetic single-walled carbon nanotubes as a catalyst. J. Water Process Eng. 2019, 31, 100852. [Google Scholar] [CrossRef]
- Ulusoy, H.İ.; Yılmaz, E.; Soylak, M. Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2. Microchem. J. 2019, 145, 843–851. [Google Scholar] [CrossRef]
- Barrios-Bermúdez, N.; González-Avendaño, M.; Lado-Touriño, I.; Cerpa-Naranjo, A.; Rojas-Cervantes, M.L. Fe-Cu Doped Multiwalled Carbon Nanotubes for Fenton-like Degradation of Paracetamol Under Mild Conditions. Nanomaterials 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Lung, I.; Soran, M.-L.; Stegarescu, A.; Opris, O.; Gutoiu, S.; Leostean, C.; Lazar, M.D.; Kacso, I.; Silipas, T.-D.; Porav, A.S. Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J. Hazard. Mater. 2021, 403, 123528. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Sun, Z.; Xu, J.; Liu, S.; Han, Y.; Xu, Y.; Meng, H.; Wu, J.; Zhang, X. Construction of an Aminated MIL-53(Al)-Functionalized Carbon Nanotube for the Efficient Removal of Bisphenol AF and Metribuzin. Inorg. Chem. 2020, 59, 2667–2679. [Google Scholar] [CrossRef]
- Duman, O.; Özcan, C.; Gürkan Polat, T.; Tunç, S. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ. Pollut. 2019, 244, 723–732. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci. 2018, 53, 10772–10783. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Ke, B.; He, Z.; Cui, Y.; Pan, Z.; Li, D.; Huang, S.; Lai, C.; Su, J. Magnetic multi-walled carbon nanotubes modified with polyaluminium chloride for removal of humic acid from aqueous solution. J. Mol. Liq. 2019, 279, 241–250. [Google Scholar] [CrossRef]
- Mirzaee, S.A.; Jaafarzadeh, N.; Gomes, H.T.; Jorfi, S.; Ahmadi, M. Magnetic titanium/carbon nanotube nanocomposite catalyst for oxidative degradation of Bisphenol A from high saline polycarbonate plant effluent using catalytic wet peroxide oxidation. Chem. Eng. J. 2019, 370, 372–386. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Dehghani, M.H.; Mesdaghinia, A.; Yaghmaian, K.; Es’haghi, Z. Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies. Int. J. Biol. Macromol. 2020, 155, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, W.; Bai, M.; Huang, X. One-pot fabrication of magnetic fluorinated carbon nanotubes adsorbent for efficient extraction of perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids in environmental water samples. Chem. Eng. J. 2020, 380, 122392. [Google Scholar] [CrossRef]
- Pourzamani, H.; Hashemi, M.; Bina, B.; Rashidi, A.; Amin Mohammad, M.; Parastar, S. Toluene Removal from Aqueous Solutions Using Single-Wall Carbon Nanotube and Magnetic Nanoparticle–Hybrid Adsorbent. J. Environ. Eng. 2018, 144, 04017104. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Huang, H.; Yan, Y.; Zhang, X. Degradation of m-cresol over iron loaded carbon nanotube microfibrous composite: Kinetic optimization and deactivation study. Sep. Purif. Technol. 2021, 262, 118340. [Google Scholar] [CrossRef]
- Jalilian, N.; Ebrahimzadeh, H.; Asgharinezhad, A.A. Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. J. Chromatogr. A 2019, 1608, 460426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, S.; Zhang, H.; Fan, X.; Gao, C.; Yu, H.; Quan, X. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Front. Environ. Sci. Eng. 2019, 13, 18. [Google Scholar] [CrossRef]
- Ashtiani, S.; Khoshnamvand, M.; Shaliutina-Kolešová, A.; Bouša, D.; Sofer, Z.; Friess, K. Co0.5Ni0.5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. Chemosphere 2020, 255, 126966. [Google Scholar] [CrossRef]
- Bhaduri, B.; Engel, M.; Polubesova, T.; Wu, W.; Xing, B.; Chefetz, B. Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity. J. Environ. Chem. Eng. 2018, 6, 4103–4113. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Xi, J.; Jiang, J.; Bai, Z. Pd-Fe dual-metal nanoparticles confined in the interface of carbon nanotubes/N-doped carbon for excellent catalytic performance. Appl. Surf. Sci. 2019, 489, 477–484. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, C.; Zheng, Q.; Wang, Y.; Chang, J.; Wang, S. Development of highly efficient and reusable magnetic nitrogen-doped carbon nanotubes for chlorophenol removal. Environ. Sci. Pollut. Res. 2021, 28, 37424–37434. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.P.; Singh, P.; Raizada, P.; Asiri, A.M. Synthesis of magnetically separable Bi2O2CO3/carbon nanotube/ZnFe2O4 as Z-scheme heterojunction with enhanced photocatalytic activity for water purification. J. Sol-Gel Sci. Technol. 2020, 95, 408–422. [Google Scholar] [CrossRef]
- Raizada, P.; Aslam Parwaz Khan, A.; Singh, P. Construction of carbon nanotube mediated Fe doped graphitic carbon nitride and Ag3VO4 based Z-scheme heterojunction for H2O2 assisted 2,4 dimethyl phenol photodegradation. Sep. Purif. Technol. 2020, 247, 116957. [Google Scholar] [CrossRef]
- Deng, D.; He, Y.; Li, M.; Huang, L.; Zhang, J. Preparation of multi-walled carbon nanotubes based magnetic multi-template molecularly imprinted polymer for the adsorption of phthalate esters in water samples. Environ. Sci. Pollut. Res. 2021, 28, 5966–5977. [Google Scholar] [CrossRef]
- Han, Z.; Huang, L.; Qu, H.; Wang, Y.; Zhang, Z.; Rong, Q.; Sang, Z.; Wang, Y.; Kipper, M.J.; Tang, J. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 2021, 56, 9545–9574. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Karri, R.R. A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 2019, 231, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Cui, J.; Yang, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Appl. Catal. B Environ. 2020, 264, 118548. [Google Scholar] [CrossRef]
- Abbasi, S.; Ahmadpoor, F.; Imani, M.; Ekrami-Kakhki, M.-S. Synthesis of magnetic Fe3O4@ZnO@graphene oxide nanocomposite for photodegradation of organic dye pollutant. Int. J. Environ. Anal. Chem. 2020, 100, 225–240. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; MousaKhanloo, F.; Sahebi, S.; Ramavandi, B.; Kumar, P.S.; Vardhan, K.H. Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 2020, 31, 3993–4004. [Google Scholar] [CrossRef]
- Bayantong, A.R.B.; Shih, Y.-J.; Ong, D.C.; Abarca, R.R.M.; Dong, C.-D.; de Luna, M.D.G. Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere 2021, 274, 129518. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Zhao, L. Application of magnetic chitosan nanocomposites modified by graphene oxide and polyethyleneimine for removal of toxic heavy metals and dyes from water. Int. J. Biol. Macromol. 2021, 192, 118–125. [Google Scholar] [CrossRef]
- Qiao, D.; Li, Z.; Duan, J.; He, X. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem. Eng. J. 2020, 400, 125952. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq. 2020, 298, 112040. [Google Scholar] [CrossRef]
- Prarat, P.; Hongsawat, P.; Punyapalakul, P. Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: Adsorption performance, effects of coexisting ions, and natural organic matter. Environ. Sci. Pollut. Res. 2020, 27, 6560–6576. [Google Scholar] [CrossRef]
- Ninwiwek, N.; Hongsawat, P.; Punyapalakul, P.; Prarat, P. Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: Adsorption characteristics, coadsorption and uptake mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123716. [Google Scholar] [CrossRef]
- Fakhri, H.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe): Photocatalysis under shell to remove diazinon and atrazine pesticides. Sol. Energy 2020, 208, 990–1000. [Google Scholar] [CrossRef]
- Katubi, K.M.; Alsaiari, N.S.; Alzahrani, F.M.; Siddeeg, S.M.; Tahoon, M.A. Synthesis of Manganese Ferrite/Graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes 2021, 9, 589. [Google Scholar] [CrossRef]
- Bi, J.; Huang, X.; Wang, J.; Wang, T.; Wu, H.; Yang, J.; Lu, H.; Hao, H. Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B. Chem. Eng. J. 2019, 366, 50–61. [Google Scholar] [CrossRef]
- Ain, Q.-U.; Farooq, M.U.; Jalees, M.I. Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection. J. Water Process Eng. 2020, 33, 101044. [Google Scholar] [CrossRef]
- Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution. J. Hazard. Mater. 2020, 381, 120914. [Google Scholar] [CrossRef] [PubMed]
- Suo, L.; Dong, X.; Gao, X.; Xu, J.; Huang, Z.; Ye, J.; Lu, X.; Zhao, L. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchem. J. 2019, 149, 104039. [Google Scholar] [CrossRef]
- Hassan, A.M.; Wan Ibrahim, W.A.; Bakar, M.B.; Sanagi, M.M.; Sutirman, Z.A.; Nodeh, H.R.; Mokhter, M.A. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. J. Environ. Manag. 2020, 253, 109658. [Google Scholar] [CrossRef]
- Marques Neto, J.d.O.; Bellato, C.R.; Silva, D.d.C. Iron oxide/carbon nanotubes/chitosan magnetic composite film for chromium species removal. Chemosphere 2019, 218, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Naicker, C.; Nombona, N.; Van Zyl, W.E. Fabrication of novel magnetic chitosan/graphene-oxide/metal oxide nanocomposite beads for Cr(VI) adsorption. Chem. Pap. 2020, 74, 529–541. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Lawa, Y.; Naat, J.N.; Riwu, A.A.P.; Iqbal, M.; Darmokoesoemo, H.; Kusuma, H.S. The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J. Mater. Res. Technol. 2020, 9, 6544–6556. [Google Scholar] [CrossRef]
- Anush, S.M.; Chandan, H.R.; Gayathri, B.H.; Asma; Manju, N.; Vishalakshi, B.; Kalluraya, B. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water. Int. J. Biol. Macromol. 2020, 164, 4391–4402. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M. Removal of mercury(II) from wastewater using a new and effective composite: Sulfur-coated magnetic carbon nanotubes. Environ. Sci. Pollut. Res. 2020, 27, 12270–12279. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Lee, S.; Choi, J.-S.; Lebaka, V.R.; Durbaka, V.R.P.; Koduru, J.R. Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. J. Hazard. Mater. 2021, 402, 123882. [Google Scholar] [CrossRef] [PubMed]
- Koduru, J.R.; Karri, R.R.; Mubarak, N.M. Smart Materials, Magnetic Graphene Oxide-Based Nanocomposites for Sustainable Water Purification. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, T.S., Kumar, M.R., Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 759–781. [Google Scholar]
- Wang, Y.; Ren, N.; Xi, J.; Liu, Y.; Kong, T.; Chen, C.; Xie, Y.; Duan, X.; Wang, S. Mechanistic Investigations of the Pyridinic N–Co Structures in Co Embedded N-Doped Carbon Nanotubes for Catalytic Ozonation. ACS EST Eng. 2021, 1, 32–45. [Google Scholar] [CrossRef]
- Chen, H.; Huang, C.; Zhang, W.; Ding, Q.; Gao, J.; Zhang, L. Ultrastable nitrogen-doped carbon nanotube encapsulated cobalt nanoparticles for magnetic solid-phase extraction of okadaic acid from aquatic samples. J. Chromatogr. A 2019, 1608, 460404. [Google Scholar] [CrossRef]
- Zhou, Q.; Yuan, Y.; Sun, Y.; Sheng, X.; Tong, Y. Magnetic solid phase extraction of heterocyclic aromatic hydrocarbons from environmental water samples with multiwalled carbon nanotube modified magnetic polyamido-amine dendrimers prior to gas chromatography-triple quadrupole mass spectrometer. J. Chromatogr. A 2021, 1639, 461921. [Google Scholar] [CrossRef]
- Alipoori, S.; Rouhi, H.; Linn, E.; Stumpfl, H.; Mokarizadeh, H.; Esfahani, M.R.; Koh, A.; Weinman, S.T.; Wujcik, E.K. Polymer-Based Devices and Remediation Strategies for Emerging Contaminants in Water. ACS Appl. Polym. Mater. 2021, 3, 549–577. [Google Scholar] [CrossRef]
- Kumar, M.; Dosanjh, H.S.; Singh, J.; Monir, K.; Singh, H. Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: Synthesis, modifications and applications. Environ. Sci. Water Res. Technol. 2020, 6, 491–514. [Google Scholar] [CrossRef]
- Karthik, V.; Dhivya Dharshini, G.; Senthil Kumar, P.; Kiruthika, S.; Rangasamy, G.; Periyasamy, S.; Senthil Rathi, B. Ferrite-Supported Nanocomposite Polymers for Emerging Organic and Inorganic Pollutants Removal from Wastewater: A Review. Ind. Eng. Chem. Res. 2023, 62, 13711–13733. [Google Scholar] [CrossRef]
- dos Santos, J.M.N.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L. Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption. Int. J. Biol. Macromol. 2019, 131, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Dosanjh, H.S.; Singh, H. Magnetic Zinc Ferrite–Chitosan Bio-Composite: Synthesis, Characterization and Adsorption Behavior Studies for Cationic Dyes in Single and Binary Systems. J. Inorg. Organomet. Polym. Mater. 2018, 28, 880–898. [Google Scholar] [CrossRef]
- Simonescu, C.M.; Tătăruş, A.; Culiţă, D.C.; Stănică, N.; Ionescu, I.A.; Butoi, B.; Banici, A.-M. Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. Nanomaterials 2021, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.X.; Omer, A.M.; Hu, Z.; Wang, Y.; Yu, D.; Ouyang, X. Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 2019, 217, 270–278. [Google Scholar] [CrossRef]
- Kumar, M.; Dosanjh, H.S.; Singh, H. Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100237. [Google Scholar] [CrossRef]
- Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Amari, A.; Ben Rebah, F.; Tahoon, M.A. Synthesis of Polymer-Based Magnetic Nanocomposite for Multi-Pollutants Removal from Water. Polymers 2021, 13, 1742. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Xiao, J.; Fan, H.; Chen, C. Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2019, 371, 323–331. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Zhang, W.; Yang, X.; Zhou, H.; Pan, Z.; Wang, D. Preparation of magnetic polyimide@ Mg-Fe layered double hydroxides core-shell composite for effective removal of various organic contaminants from aqueous solution. Chemosphere 2019, 219, 66–75. [Google Scholar] [CrossRef]
- Ali, I.; Peng, C.; Naz, I.; Lin, D.; Saroj, D.P.; Ali, M. Development and application of novel bio-magnetic membrane capsules for the removal of the cationic dye malachite green in wastewater treatment. RSC Adv. 2019, 9, 3625–3646. [Google Scholar] [CrossRef]
- Rossatto, D.L.; Netto, M.S.; Jahn, S.L.; Mallmann, E.S.; Dotto, G.L.; Foletto, E.L. Highly efficient adsorption performance of a novel magnetic geopolymer/Fe3O4 composite towards removal of aqueous acid green 16 dye. J. Environ. Chem. Eng. 2020, 8, 103804. [Google Scholar] [CrossRef]
- Jodeh, S.; Hamed, O.; Melhem, A.; Salghi, R.; Jodeh, D.; Azzaoui, K.; Benmassaoud, Y.; Murtada, K. Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 22060–22074. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Z.; Li, M.; Sun, P.; Yu, T.; Zhou, L. Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution. Environ. Pollut. 2019, 250, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, T.; Naushad, M.; Ruksana; Alshehri, S.M. Ultra-fast spill oil recovery using a mesoporous lignin based nanocomposite prepared from date palm pits (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2019, 130, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Makhado, E.; Kim, S.; Kang, M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—A review. Environ. Res. 2023, 217, 114909. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, B.; Aziz, S.; Gao, S.; Hossain, M.S.A.; Billah, M.; Zhu, Z.; Amiralian, N. Magnetic Hydrogel Composite for Wastewater Treatment. Polymers 2022, 14, 5074. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.G.B.; Rodrigues, F.H.A.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Miao, Q.; Jiang, L.; Yang, J.; Hu, T.; Shan, S.; Su, H.; Wu, F. MOF/hydrogel composite-based adsorbents for water treatment: A review. J. Water Process Eng. 2022, 50, 103348. [Google Scholar] [CrossRef]
- Alsamman, M.T.; Sánchez, J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. Arab. J. Chem. 2021, 14, 103455. [Google Scholar] [CrossRef]
- Doondani, P.; Jugade, R.; Gomase, V.; Shekhawat, A.; Bambal, A.; Pandey, S. Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye. Water 2022, 14, 3411. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, Y.; Wu, Y.; Lu, G.; Cao, Z.; Cheng, J.; Wang, K.; Yang, H.; Xia, Y.; Wen, X.; et al. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr. Polym. 2020, 234, 115882. [Google Scholar] [CrossRef]
- Singh, N.; Riyajuddin, S.; Ghosh, K.; Mehta, S.K.; Dan, A. Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Appl. Nano Mater. 2019, 2, 7379–7392. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Z.; Shen, X. Dual-functional calcium alginate hydrogel beads for disinfection control and removal of dyes in water. Int. J. Biol. Macromol. 2021, 188, 253–262. [Google Scholar] [CrossRef]
- Sarkar, N.; Sahoo, G.; Swain, S.K. Graphene quantum dot decorated magnetic graphene oxide filled polyvinyl alcohol hybrid hydrogel for removal of dye pollutants. J. Mol. Liq. 2020, 302, 112591. [Google Scholar] [CrossRef]
- Hingrajiya, R.D.; Patel, M.P. Fe3O4 modified chitosan based co-polymeric magnetic composite hydrogel: Synthesis, characterization and evaluation for the removal of methylene blue from aqueous solutions. Int. J. Biol. Macromol. 2023, 244, 125251. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, C.; Liu, X.; Lu, J.; Cheng, Y.; Xiao, L.-P.; Wang, H. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci. Total Environ. 2019, 685, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.M.; Shuttleworth, P.S.; Waiman, C.; Zanini, G.; Alvarez, V.A.; Ollier, R.P. Physically-crosslinked polyvinyl alcohol composite hydrogels containing clays, carbonaceous materials and magnetic nanoparticles as fillers. J. Environ. Chem. Eng. 2020, 8, 103795. [Google Scholar] [CrossRef]
- Facchi, D.P.; Cazetta, A.L.; Canesin, E.A.; Almeida, V.C.; Bonafé, E.G.; Kipper, M.J.; Martins, A.F. New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem. Eng. J. 2018, 337, 595–608. [Google Scholar] [CrossRef]
- Wu, S.; Guo, J.; Wang, Y.; Huang, C.; Hu, Y. Facile preparation of magnetic sodium alginate/carboxymethyl cellulose composite hydrogel for removal of heavy metal ions from aqueous solution. J. Mater. Sci. 2021, 56, 13096–13107. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Wang, Z.-H.; Ma, H.; Li, C.-Y.; Zhao, N.; Wang, S. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J. Environ. Sci. 2019, 80, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Yang, T.; Sridhar, D.; Algadi, H.; Bin Xu, B.; El-Bahy, Z.M.; Li, H.; Ma, Y.; Li, T.; et al. An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep. Purif. Technol. 2023, 320, 124144. [Google Scholar] [CrossRef]
- Jarrah, A.; Farhadi, S. Preparation and characterization of novel polyoxometalate/CoFe2O4/metal–organic framework magnetic core–shell nanocomposites for the rapid removal of organic dyes from water. RSC Adv. 2020, 10, 39881–39893. [Google Scholar] [CrossRef] [PubMed]
- Paz, R.; Viltres, H.; Gupta, N.K.; Leyva, C. Fabrication of magnetic cerium-organic framework-activated carbon composite for charged dye removal from aqueous solutions. J. Mol. Liq. 2021, 337, 116578. [Google Scholar] [CrossRef]
- Ventura, K.; Arrieta, R.A.; Marcos-Hernández, M.; Jabbari, V.; Powell, C.D.; Turley, R.; Lounsbury, A.W.; Zimmerman, J.B.; Gardea-Torresdey, J.; Wong, M.S.; et al. Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Sci. Total Environ. 2020, 738, 139213. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.; Khataee, A.; Darvishi Cheshmeh Soltani, R.; Bagheri, N.; Karimi, A.; Ebadi Fard Azar, A. Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution. J. Ind. Eng. Chem. 2018, 68, 406–415. [Google Scholar] [CrossRef]
- Yang, R.; Peng, Q.; Yu, B.; Shen, Y.; Cong, H. Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal. Sep. Purif. Technol. 2021, 267, 118620. [Google Scholar] [CrossRef]
- Liu, Z.; He, W.; Zhang, Q.; Shapour, H.; Bakhtari, M.F. Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution. ACS Omega 2021, 6, 4597–4608. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Li, Y.; Jing, L.; Wang, J.; Li, X. Ag NPs supported on the magnetic Al-MOF/PDA as nanocatalyst for the removal of organic pollutants in water. J. Alloys Compd. 2020, 828, 154340. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J. 2018, 333, 49–57. [Google Scholar] [CrossRef]
- Valadi, F.M.; Ekramipooya, A.; Gholami, M.R. Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study. J. Mol. Liq. 2020, 318, 114051. [Google Scholar] [CrossRef]
- Far, H.S.; Hasanzadeh, M.; Nashtaei, M.S.; Rabbani, M.; Haji, A.; Hadavi Moghadam, B. PPI-Dendrimer-Functionalized Magnetic Metal–Organic Framework (Fe3O4@MOF@PPI) with High Adsorption Capacity for Sustainable Wastewater Treatment. ACS Appl. Mater. Interfaces 2020, 12, 25294–25303. [Google Scholar] [CrossRef]
- Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Li, J.; Wang, X.; Chen, L. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 2018, 528, 360–371. [Google Scholar] [CrossRef]
- Fan, S.; Qu, Y.; Yao, L.; Ren, J.; Luque, R.; He, Z.; Bai, C. MOF-derived cluster-shaped magnetic nanocomposite with hierarchical pores as an efficient and regenerative adsorbent for chlortetracycline removal. J. Colloid Interface Sci. 2021, 586, 433–444. [Google Scholar] [CrossRef]
- Zhao, F.; Fang, S.; Gao, Y.; Bi, J. Removal of aqueous pharmaceuticals by magnetically functionalized Zr-MOFs: Adsorption Kinetics, Isotherms, and regeneration. J. Colloid Interface Sci. 2022, 615, 876–886. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Z.; Lin, S.; Su, M.; Liang, B.; Liang, S. New insight into the co-adsorption of oxytetracycline and Pb(II) using magnetic metal–organic frameworks composites in aqueous environment: Co-adsorption mechanisms and application potentials. Environ. Sci. Pollut. Res. 2022, 29, 50177–50191. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Xue, X.; Liu, W.; Kong, Y.; Cheng, R.; Yuan, D. Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 31705–31717. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Qin, M.; Liu, C.; Deng, J.; Shi, G.; Zhou, T. Ionic Liquid-Functionalized Magnetic Metal–Organic Framework Nanocomposites for Efficient Extraction and Sensitive Detection of Fluoroquinolone Antibiotics in Environmental Water. ACS Appl. Mater. Interfaces 2021, 13, 5357–5367. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Zhao, C.; Tu, H.; Li, M.; Liu, J.; Liao, J.; Yang, Y.; Yang, J.; Liu, N. Removal of Co(II) from aqueous solution with Zr-based magnetic metal-organic framework composite. Inorganica Chim. Acta 2018, 483, 488–495. [Google Scholar] [CrossRef]
- Omer, A.M.; Abd El-Monaem, E.M.; Abd El-Latif, M.M.; El-Subruiti, G.M.; Eltaweil, A.S. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr. Polym. 2021, 265, 118084. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiong, C.; He, Y.; Yang, C.; Li, X.; Zheng, J.; Wang, S. Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms. Chem. Eng. J. 2021, 415, 128923. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Zhong, D.; Zhong, N. CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124255. [Google Scholar] [CrossRef]
- Prakash Tripathy, S.; Subudhi, S.; Das, S.; Kumar Ghosh, M.; Das, M.; Acharya, R.; Acharya, R.; Parida, K. Hydrolytically stable citrate capped Fe3O4@UiO-66-NH2 MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H2 evolution. J. Colloid Interface Sci. 2022, 606, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Liang, Q.; Zhou, X.; Luo, H.; Chen, W. Enhanced removal of toxic hexavalent chromium from aqueous solution by magnetic Zr-MOF@polypyrrole: Performance and mechanism. Environ. Sci. Pollut. Res. 2021, 28, 13084–13096. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.-B.; Xu, L.; Chen, X.; Zhang, Y.; Yang, J.-C.E.; Yuan, B.; Fu, M.-L. Direct epitaxial synthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water. Microporous Mesoporous Mater. 2019, 276, 68–75. [Google Scholar] [CrossRef]
- Li, J.; Lin, G.; Tan, F.; Fu, L.; Zeng, B.; Wang, S.; Hu, T.; Zhang, L. Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J. Colloid Interface Sci. 2023, 651, 659–668. [Google Scholar] [CrossRef]
- Li, Y.; Tan, M.; Liu, G.; Si, D.; Chen, N.; Zhou, D. Thiol-functionalized metal–organic frameworks embedded with chelator-modified magnetite for high-efficiency and recyclable mercury removal in aqueous solutions. J. Mater. Chem. A 2022, 10, 6724–6730. [Google Scholar] [CrossRef]
- Jiang, X.; Su, S.; Rao, J.; Li, S.; Lei, T.; Bai, H.; Wang, S.; Yang, X. Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb(II) and Cu(II) from water. J. Environ. Chem. Eng. 2021, 9, 105959. [Google Scholar] [CrossRef]
- Goyal, P.; Tiwary, C.S.; Misra, S.K. Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid. J. Environ. Manag. 2021, 277, 111469. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, D.; Wu, C.; Chen, S.; Wang, Y.; Chen, C. Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl. Radiat. Isot. 2020, 162, 109160. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-T.; Shi, W.; Hu, Z.-J.; Yang, T.; Chen, M.-L.; Zhao, B.; Wang, J.-H. Fabrication of magnetic Fe3O4@metal organic framework@covalent organic framework composite and its selective separation of trace copper. Appl. Surf. Sci. 2020, 530, 147254. [Google Scholar] [CrossRef]
- Bui, T.T.; Nguyen, D.C.; Hua, S.H.; Chun, H.; Kim, Y.S. Sonochemical Preparation of a Magnet-Responsive Fe3O4@ZIF-8 Adsorbent for Efficient Cu2+ Removal. Nanomaterials 2022, 12, 753. [Google Scholar] [CrossRef]
- Fan, L.; Deng, M.; Lin, C.; Xu, C.; Liu, Y.; Shi, Z.; Wang, Y.; Xu, Z.; Li, L.; He, M. A multifunctional composite Fe3O4/MOF/l-cysteine for removal, magnetic solid phase extraction and fluorescence sensing of Cd(ii). RSC Adv. 2018, 8, 10561–10572. [Google Scholar] [CrossRef]
- Yang, J.; Huang, L.; You, J.; Yamauchi, Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. Small 2023, 19, 2301044. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Chen, Y.; Huang, L.; Lin, Z.; Cai, Z. Core–Shell Structured Magnetic Covalent Organic Framework Nanocomposites for Triclosan and Triclocarban Adsorption. ACS Appl. Mater. Interfaces 2019, 11, 22492–22500. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zeng, T.; Wang, S.; Niu, H.; Cai, Y. Facile Synthesis of Magnetic Covalent Organic Framework with Three-Dimensional Bouquet-Like Structure for Enhanced Extraction of Organic Targets. ACS Appl. Mater. Interfaces 2017, 9, 2959–2965. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.-X.; Yan, X.-P. Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem. Commun. 2017, 53, 2511–2514. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Lu, Z.; Liang, W.; Hu, B. The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 2020, 393, 122353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, F.; Li, C.; Qiu, L.-G.; Yuan, Y.-P.; Peng, F.-M.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Microwave-enhanced synthesis of magnetic porous covalent triazine-based framework composites for fast separation of organic dye from aqueous solution. J. Hazard. Mater. 2011, 186, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Chen, R.; Liu, Y.; Wang, J. Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: Adsorption kinetics, isotherms study and DFT calculation. J. Hazard. Mater. 2020, 385, 121596. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Chen, L.; Zhou, C.; Du, J.; Lu, C.; Yang, H.; Tan, L.; Zeng, X.; Dong, L. Immobilizing Fe0 nanoparticles on covalent organic framework towards enhancement of Cr(VI) removal by adsorption and reduction synergistic effect. Sep. Purif. Technol. 2022, 290, 120883. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Wang, S.; Fu, L.; Zhang, L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep. Purif. Technol. 2023, 307, 122783. [Google Scholar] [CrossRef]
- Huang, L.; Shen, R.; Liu, R.; Shuai, Q. Thiol-functionalized magnetic covalent organic frameworks by a cutting strategy for efficient removal of Hg2+ from water. J. Hazard. Mater. 2020, 392, 122320. [Google Scholar] [CrossRef]
- Ge, J.; Xiao, J.; Liu, L.; Qiu, L.; Jiang, X. Facile microwave-assisted production of Fe3O4 decorated porous melamine-based covalent organic framework for highly selective removal of Hg2+. J. Porous Mater. 2016, 23, 791–800. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, J.; Shuai, Q.; Huang, L. Highly efficiency and selective recovery of gold using magnetic covalent organic framework through synergistic adsorption and reduction. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130593. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Z.; Liang, W.; Hu, B. Incorporating bimetal oxide MnFe2O4 onto covalent organic frameworks for the removal of UO22+ ion from aqueous solution. Appl. Surf. Sci. 2021, 556, 149581. [Google Scholar] [CrossRef]
- Tirado-Guizar, A.; González-Gómez, W.; Pina-Luis, G.; Galindo, J.T.E.; Paraguay-Delgado, F. Anthracene removal from water samples using a composite based on metal-organic-frameworks (MIL-101) and magnetic nanoparticles (Fe3O4). Nanotechnology 2020, 31, 195707. [Google Scholar] [CrossRef]
- Senosy, I.A.; Lu, Z.-H.; Abdelrahman, T.M.; Yang, M.-N.O.; Guo, H.-M.; Yang, Z.-H.; Li, J.-H. The post-modification of magnetic metal–organic frameworks with β-cyclodextrin for the efficient removal of fungicides from environmental water. Environ. Sci. Nano 2020, 7, 2087–2101. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, X.; Dong, L.; Lai, Y.; Li, S.; Liu, R.; Liu, J. Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons. Environ. Pollut. 2019, 252, 1574–1581. [Google Scholar] [CrossRef]
- Chen, M.; Wang, N.; Wang, X.; Zhou, Y.; Zhu, L. Enhanced degradation of tetrabromobisphenol A by magnetic Fe3O4@ZIF-67 composites as a heterogeneous Fenton-like catalyst. Chem. Eng. J. 2021, 413, 127539. [Google Scholar] [CrossRef]
- Xue, Y.; Xiang, P.; Jiang, Y.; Lian, H.; Mo, J.; Li, M. Influence of Ca2+ on phosphate removal from water using a non-core-shell Fe3O4@ZIF-67 composites. J. Environ. Chem. Eng. 2020, 8, 104458. [Google Scholar] [CrossRef]
- Jadhav, S.A.; Garud, H.B.; Patil, A.H.; Patil, G.D.; Patil, C.R.; Dongale, T.D.; Patil, P.S. Recent advancements in silica nanoparticles based technologies for removal of dyes from water. Colloid Interface Sci. Commun. 2019, 30, 100181. [Google Scholar] [CrossRef]
- Cendrowski, K.; Sikora, P.; Zielinska, B.; Horszczaruk, E.; Mijowska, E. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Appl. Surf. Sci. 2017, 407, 391–397. [Google Scholar] [CrossRef]
- Diagboya, P.N.E.; Dikio, E.D. Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous Mesoporous Mater. 2018, 266, 252–267. [Google Scholar] [CrossRef]
- Salman, M.; Jahan, S.; Kanwal, S.; Mansoor, F. Recent advances in the application of silica nanostructures for highly improved water treatment: A review. Environ. Sci. Pollut. Res. 2019, 26, 21065–21084. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, C.; Cao, Y. PVP modified Fe3O4@SiO2 nanoparticles as a new adsorbent for hydrophobic substances. J. Phys. Chem. Solids 2019, 133, 28–34. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H. Removal of anionic dyes from an aqueous solution by a magnetic cationic adsorbent modified with DMDAAC. New J. Chem. 2018, 42, 7262–7271. [Google Scholar] [CrossRef]
- Jiaqi, Z.; Yimin, D.; Danyang, L.; Shengyun, W.; Liling, Z.; Yi, Z. Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 58–66. [Google Scholar] [CrossRef]
- Wo, R.; Li, Q.-L.; Zhu, C.; Zhang, Y.; Qiao, G.; Lei, K.; Du, P.; Jiang, W. Preparation and Characterization of Functionalized Metal–Organic Frameworks with Core/Shell Magnetic Particles (Fe3O4@SiO2@MOFs) for Removal of Congo Red and Methylene Blue from Water Solution. J. Chem. Eng. Data 2019, 64, 2455–2463. [Google Scholar] [CrossRef]
- Oppmann, M.; Wozar, M.; Reichstein, J.; Mandel, K. Reusable Superparamagnetic Raspberry-Like Supraparticle Adsorbers as Instant Cleaning Agents for Ultrafast Dye Removal from Water. ChemNanoMat 2019, 5, 230–240. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Fan, L.; Quan, Q.; Wang, J.; Xiao, C. Yolk-porous shell nanospheres from siliver-decorated titanium dioxide and silicon dioxide as an enhanced visible-light photocatalyst with guaranteed shielding for organic carrier. J. Colloid Interface Sci. 2019, 534, 480–489. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Chen, X.; Yang, W.; Pei, H.; Hu, N.; Li, Z.; Suo, Y.; Li, T.; Wang, J. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. A 2018, 6, 2184–2192. [Google Scholar] [CrossRef]
- Ghorbani, F.; Kamari, S. Core–shell magnetic nanocomposite of Fe3O4@SiO2@NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environ. Technol. Innov. 2019, 14, 100333. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, F.; Huang, D.; Hou, S.; Wang, H.; Wang, M.; Chi, Y.; Zhao, Z. A facile route to magnetic mesoporous core–shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water. RSC Adv. 2018, 8, 31348–31357. [Google Scholar] [CrossRef]
- Ghanei, M.; Rashidi, A.; Tayebi, H.-A.; Yazdanshenas, M.E. Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies. J. Chem. Eng. Data 2018, 63, 3592–3605. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Geng, X.; Li, Y.; Zha, Z.; Cui, S.; Yang, J. Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples. J. Chromatogr. A 2019, 1598, 20–29. [Google Scholar] [CrossRef]
- He, J.; Zeng, X.; Lan, S.; Lo, I.M.C. Reusable magnetic Ag/Fe, N-TiO2/Fe3O4@SiO2 composite for simultaneous photocatalytic disinfection of E. coli and degradation of bisphenol A in sewage under visible light. Chemosphere 2019, 217, 869–878. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, Y.; Huan, W.; Li, J.; Zhang, J.; Xing, M. Hollow-structured Fe2O3/Au/SiO2 nanorods with enhanced and recyclable photo-Fenton oxidation for the remediation of organic pollutants. Mater. Today Chem. 2019, 11, 86–93. [Google Scholar] [CrossRef]
- Wang, J.; Tong, X.; Chen, Y.; Sun, T.; Liang, L.; Wang, C. Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. Microporous Mesoporous Mater. 2020, 303, 110262. [Google Scholar] [CrossRef]
- Nicola, R.; Costişor, O.; Ciopec, M.; Negrea, A.; Lazău, R.; Ianăşi, C.; Picioruş, E.-M.; Len, A.; Almásy, L.; Szerb, E.I.; et al. Silica-Coated Magnetic Nanocomposites for Pb2+ Removal from Aqueous Solution. Appl. Sci. 2020, 10, 2726. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for water treatment: A review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Peng, H.; Xiong, W.; Yang, Z.; Xu, Z.; Cao, J.; Jia, M.; Xiang, Y. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. J. Hazard. Mater. 2022, 432, 128684. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Rehan, T.; Li, X.; Tetik, H.; Yang, G.; Zhao, K.; Lin, D. Magnetic aerogel: An advanced material of high importance. RSC Adv. 2021, 11, 7187–7204. [Google Scholar] [CrossRef] [PubMed]
- Krishna Kumar, A.S.; Warchol, J.; Matusik, J.; Tseng, W.-L.; Rajesh, N.; Bajda, T. Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. npj Clean Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Lei, C.; Wen, F.; Chen, J.; Chen, W.; Huang, Y.; Wang, B. Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polymer 2021, 213, 123316. [Google Scholar] [CrossRef]
- Wang, C.; Ma, R.; Huang, Z.; Liu, X.; Wang, T.; Chen, K. Preparation and characterization of carboxymethylcellulose based citric acid cross-linked magnetic aerogel as an efficient dye adsorbent. Int. J. Biol. Macromol. 2021, 181, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Neskoromnaya, E.A.; Melezhik, A.V.; Babkin, A.V.; Kulnitskiy, B.A.; Burakov, A.E.; Burakova, I.V.; Tkachev, A.G.; Almalki, A.S.A.; Alsubaie, A. Magnetically active nanocomposite aerogels: Preparation, characterization and application for water treatment. J. Porous Mater. 2022, 29, 545–557. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, D.; Lin, H.; Chen, Y. Amphiprotic cellulose mediated graphene oxide magnetic aerogels for water remediation. Chem. Eng. J. 2020, 400, 125890. [Google Scholar] [CrossRef]
- Zhai, S.; Chen, R.; Liu, J.; Xu, J.; Jiang, H. N-doped magnetic carbon aerogel for the efficient adsorption of Congo red. J. Taiwan Inst. Chem. Eng. 2021, 120, 161–168. [Google Scholar] [CrossRef]
- Tang, R.; Hong, W.; Srinivasakannan, C.; Liu, X.; Wang, X.; Duan, X. A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep. Purif. Technol. 2022, 281, 119950. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard. Mater. 2020, 384, 121394. [Google Scholar] [CrossRef] [PubMed]
- Bober, P.; Minisy, I.M.; Acharya, U.; Pfleger, J.; Babayan, V.; Kazantseva, N.; Hodan, J.; Stejskal, J. Conducting polymer composite aerogel with magnetic properties for organic dye removal. Synth. Met. 2020, 260, 116266. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, Y.; Wang, Z.; Lu, X.; Xia, H. Ultralight NiCo@rGO aerogel microspheres with magnetic response for oil/water separation. Chem. Eng. J. 2022, 430, 132894. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Waterhouse, G.I.N.; Sun, J.; Shi, W.; Ai, S. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. Environ. Sci. Pollut. Res. 2021, 28, 5149–5157. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Cui, Y.; Qin, L.; Yang, Y.; Zhao, Z.; Wang, X.; Liu, X. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 2020, 392, 122499. [Google Scholar] [CrossRef] [PubMed]
- Deem, L.M.; Crow, S.E. Biochar. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Yadav, N.K.; Singh, S.K.; Patel, A.B.; Meitei, M.M.; Meena, D.K.; Yadav, M.K.; Lal, J.; Choudhary, B.K. Chapter 16—Biochar production methods vis-a-vis aquaculture applications: A strategy for sustainable paradigm. In Organic Farming, 2nd ed.; Sarathchandran, M.R.U., Thomas, S., Meena, D.K., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 537–559. [Google Scholar]
- Bushra, B.; Remya, N. Biochar from pyrolysis of rice husk biomass—Characteristics, modification and environmental application. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-based engineered composites for sorptive decontamination of water: A review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Agasti, N. Decontamination of heavy metal ions from water by composites prepared from waste. Curr. Res. Green Sustain. Chem. 2021, 4, 100088. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, W.; Zhai, L.; Wang, F.; Zhang, J.; Li, D. Preparation and Characterization of Sludge-Based Magnetic Biochar by Pyrolysis for Methylene Blue Removal. Nanomaterials 2021, 11, 2473. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Cai, L.; Wang, Y.; Song, W.; Zhang, H. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour. Technol. 2020, 302, 122842. [Google Scholar] [CrossRef] [PubMed]
- Luyen, N.T.; Linh, H.X.; Huy, T.Q. Preparation of Rice Husk Biochar-Based Magnetic Nanocomposite for Effective Removal of Crystal Violet. J. Electron. Mater. 2020, 49, 1142–1149. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Z.; Yang, X.; Qin, T.; Xie, X.; Zhao, J.; Li, S. Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Sci. Total Environ. 2019, 695, 133800. [Google Scholar] [CrossRef]
- Silva, C.P.; Pereira, D.; Calisto, V.; Martins, M.A.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. J. Environ. Manag. 2021, 294, 112937. [Google Scholar] [CrossRef]
- Sun, H.; Yang, J.; Wang, Y.; Liu, Y.; Cai, C.; Davarpanah, A. Study on the Removal Efficiency and Mechanism of Tetracycline in Water Using Biochar and Magnetic Biochar. Coatings 2021, 11, 1354. [Google Scholar] [CrossRef]
- You, Y.; Shi, Z.; Li, Y.; Zhao, Z.; He, B.; Cheng, X. Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride. Sep. Purif. Technol. 2021, 272, 118889. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, R.; Yang, R.; Yang, F.; Chen, J.; Li, Y.; Zhou, R.; Xu, J. Synthesis of amino-functionalized biochar/spinel ferrite magnetic composites for low-cost and efficient elimination of Ni(II) from wastewater. Sci. Total Environ. 2020, 722, 137822. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G.; Wu, W.; Ali, A.; Wang, H.; Wang, Q.; Xu, Z.; Qi, W.; Li, R.; Zhang, Z. Magnetic biochar composite decorated with amino-containing biopolymer for phosphorus recovery from swine wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127980. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, D.; Zheng, X.; Zheng, L.; Yang, Y.; Zhang, H.; Ai, B.; Sheng, Z. Halloysite and coconut shell biochar magnetic composites for the sorption of Pb(II) in wastewater: Synthesis, characterization and mechanism investigation. J. Environ. Chem. Eng. 2021, 9, 106865. [Google Scholar] [CrossRef]
- Zheng, Z.; Duan, X.; Tie, J. One-pot synthesis of a magnetic Zn/iron-based sludge/biochar composite for aqueous Cr(VI) adsorption. Environ. Technol. Innov. 2022, 28, 102661. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Liu, J.; Liu, J.; Xia, F.; Wang, C.; Dahlgren, R.A.; Liu, W. Mechanism of Cr(VI) removal by magnetic greigite/biochar composites. Sci. Total Environ. 2020, 700, 134414. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Chen, T.; Dong, C.; Sun, Y. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci. Total Environ. 2019, 651, 1020–1028. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. [Google Scholar] [CrossRef]
- Qin, L.; He, L.; Yang, W.; Lin, A. Preparation of a novel iron-based biochar composite for removal of hexavalent chromium in water. Environ. Sci. Pollut. Res. 2020, 27, 9214–9226. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, A.A. A critical review on clay-based nanocomposite particles for application of wastewater treatment. Water Sci. Technol. 2022, 85, 3002–3022. [Google Scholar] [CrossRef]
- Fadillah, G.; Yudha, S.P.; Sagadevan, S.; Fatimah, I.; Muraza, O. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chem. 2020, 18, 1148–1166. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef] [PubMed]
- Magdy, A.; Fouad, Y.O.; Abdel-Aziz, M.H.; Konsowa, A.H. Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. J. Ind. Eng. Chem. 2017, 56, 299–311. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Farahat, M.M.; Abdel Khalek, M.A. One-step processing of low-cost and superb natural magnetic adsorbent: Kinetics and thermodynamics investigation for dye removal from textile wastewater. Adv. Powder Technol. 2021, 32, 1573–1583. [Google Scholar] [CrossRef]
- Chen, X.; Cui, J.; Xu, X.; Sun, B.; Zhang, L.; Dong, W.; Chen, C.; Sun, D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020, 229, 115512. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Dikio, E.D. Scavenging of aqueous toxic organic and inorganic cations using novel facile magneto-carbon black-clay composite adsorbent. J. Clean. Prod. 2018, 180, 71–80. [Google Scholar] [CrossRef]
- Tran, N.B.T.; Duong, N.B.; Le, N.L. Synthesis and characterization of magnetic Fe3O4/zeolite NaA nanocomposite for the adsorption removal of methylene blue potential in wastewater treatment. J. Chem. 2021, 2021, 6678588. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Zhang, Z.; Xie, M. Hydrothermal synthesis of a graphene/magnetite/montmorillonite nanocomposite and its ultrasonically assisted methylene blue adsorption. J. Mater. Sci. 2019, 54, 11037–11055. [Google Scholar] [CrossRef]
- Esvandi, Z.; Foroutan, R.; Peighambardoust, S.J.; Akbari, A.; Ramavandi, B. Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surf. Interfaces 2020, 21, 100754. [Google Scholar] [CrossRef]
- Karelius, K.; Sadiana, I.M.; Fatah, A.H.; Agnestisia, R. Co-Precipitation Synthesis of Clay-Magnetite Nanocomposite for Adsorptive Removal of Synthetic Dye in Wastewater of Benang Bintik Batik. Molekul 2022, 17, 261–269. [Google Scholar] [CrossRef]
- Peng, G.; Li, T.; Ai, B.; Yang, S.; Fu, J.; He, Q.; Yu, G.; Deng, S. Highly efficient removal of enrofloxacin by magnetic montmorillonite via adsorption and persulfate oxidation. Chem. Eng. J. 2019, 360, 1119–1127. [Google Scholar] [CrossRef]
- Liu, K.; Tong, Z.; Muhammad, Y.; Huang, G.; Zhang, H.; Wang, Z.; Zhu, Y.; Tang, R. Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with Three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin. Chem. Eng. J. 2020, 388, 124374. [Google Scholar] [CrossRef]
- Balbino, T.A.C.; Bellato, C.R.; da Silva, A.D.; Marques Neto, J.d.O.; Ferreira, S.O. Preparation and evaluation of iron oxide/hydrotalcite intercalated with dodecylsulfate/β-cyclodextrin magnetic organocomposite for phenolic compounds removal. Appl. Clay Sci. 2020, 193, 105659. [Google Scholar] [CrossRef]
- Zong, S.; Xu, X.; Ran, G.; Liu, J. Comparative study of atrazine degradation by magnetic clay activated persulfate and H2O2. RSC Adv. 2020, 10, 11410–11417. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Magnetic clay as catalyst applied to organics degradation in a combined adsorption and Fenton-like process. Chem. Eng. J. 2019, 373, 140–149. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, W.; Zou, B.; Zhou, L.; Ye, Z.; Zhao, Q. Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II). Int. J. Biol. Macromol. 2021, 182, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Omer, A.M.; Hu, Z.; Yang, L.-Y.; Ji, C.; Ouyang, X. Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Annan, E.; Nyankson, E.; Agyei-Tuffour, B.; Armah, S.K.; Nkrumah-Buandoh, G.; Hodasi, J.A.M.; Oteng-Peprah, M. Synthesis and characterization of modified kaolin-bentonite composites for enhanced fluoride removal from drinking water. Adv. Mater. Sci. Eng. 2021, 2021, 6679422. [Google Scholar] [CrossRef]
- Choi, J.-W.; Lee, H.-K.; Choi, S.-J. Magnetite double-network composite using hydroxyapatite-manganese dioxide for Sr2+ removal from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 105360. [Google Scholar] [CrossRef]
- Shao, B.; Xu, Y.; Liu, Z.; Wu, T.; Pan, Y.; Zhang, X.; He, M.; Ge, L.; Lu, Y.; Liu, Y.; et al. Application of carbon aerogel-based materials in persulfate activation for water treatment: A review. J. Clean. Prod. 2023, 384, 135518. [Google Scholar] [CrossRef]
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Magnetic graphene oxide/ZnO nanocomposites | 83.2839 | 11.18 | Tetracycline | 1590.28 | [120] |
Magnetite/reduced graphene oxide nanocomposite | 213 | 18.269 | Phenazopyridine | 14.064 | [121] |
Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites | - | 39.37 | Oxytetracycline | - | [122] |
Graphene oxide/MIL-88A(Fe) membrane | - | - |
Methylene blue Rhodamine B Methyl orange | - | [115] |
Magnetic graphene oxide@MIL-101(Fe) | 134.1 | 30.3 | Diazinon and atrazine pesticides | - | [124] |
Fe3O4@ZnO@graphene oxide nanocomposite | - | 7.02 | Methyl orange | - | [116] |
Fe3O4@graphene oxide nanocomposite | - | 45.788 | Methyl orange | - | [116] |
Montmorillonite/graphene oxide/CoFe2O4 | 194.94 | 46.34 | Methyl violet | 97.26 | [117] |
CuFe2O4@GO | 32.3 | - | Methylene blue | 25.81 | [118] |
CoFe2O4@GO | 52.1 | - | Methylene blue | 50.15 | [118] |
NiFe2O4@GO | 76.7 | - | Methylene blue | 76.34 | [118] |
Cobalt ferrite-reduced graphene oxide | - | 62 | Methylene blue | 4.3497 | [65] |
Magnetic chitosan nanocomposites modified with graphene oxide and polyethyleneimine | - | 29.31 |
Congo red Amaranth | 162.07 93.81 | [119] |
Mesoporous silica–magnetic graphene oxide nanocomposite | 31.68 | 26.98 | Sulfamethoxazole | 15.46 | [123] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Multiwalled CNTs doped with magnetic iron oxide and deposited in crosslinked chitosan | 70.90 | - | Cr(III) Cr(VI) | 66.25 449.30 | [131] |
Sulfur-coated magnetic multiwalled CNT | - | 8.2 | Hg(II) | 62.11 | [135] |
Magnetic Fe3O4@C@TiO2–nanotube composites | 37.02–50.33 | 2.1–3.9 | Pb(II) | - | [126] |
Magnetic CNT composites | - | 35.8 | Cu(II) | - | [61] |
Magnetic graphene oxide | - | 38 | Pb(II) Cr(III) Cu(II) Zn(II) Ni(II) | 200.00 24.330 62.893 63.694 51.020 | [127] |
Magnetic hollow-sphere nanocomposite, graphene oxide–gadolinium oxide | 50.91 | 55 | As | 216.70 | [136] |
Magnetic chitosan/graphene oxide/MnO2 | - | - | Cr(VI) | 78.2 | [132] |
Magnetic chitosan/graphene oxide/Al2O3 | - | - | Cr(VI) | 77.8 | [132] |
Magnetic chitosan/graphene oxide/SiO2 | - | - | Cr(VI) | 75.9 | [132] |
Fe3O4/SiO2–graphene oxide composite | - | 18.2 | Cd(II) Pb(II) | 128.2 385.1 | [128] |
Silica-coated magnetic graphene oxide | - | 22.58 | Cr(III) Co(II) Ni(II) Cu(II) Cd(II) Pb(II) Ag(I) | 79.91 62.18 64.79 70.77 62.09 82.58 54.90 | [129] |
Magnetic graphene oxide | - | - | Cr(VI) | 3.197 | [133] |
Graphene oxide functionalized chitosan–magnetite nanocomposite | - | - | Cu(II) Cr(VI) | 111.11 142.85 | [134] |
MnFe2O4/GO nanocomposite | - | 28.8 | Pb(II) | 90 | [125] |
Magnetic chitosan nanocomposites modified by graphene oxide and PEI | - | 29.31 | As Hg(II) | 220.26 124.84 | [119] |
3-aminopropyltrimethoxysilane-functionalized magnetic sporopollenin-based silica-coated graphene oxide | - | 30 | Pb(II) | 323.5 | [130] |
MnFe2O4/GO nanocomposite | - | 28.8 | Pb(II) | 625 | [125] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
ZnFe2O4/chitosan magnetic particles | 57.4 | 9.75 | Diclofenac | 188 | [144] |
Magnetic geopolymer/Fe3O4 composite | 53.40 | 2.50 | Acid green 16 | 400 | [153] |
Magnetic zinc ferrite–chitosan biocomposite | 5.187 | - | Crystal violet Brilliant green | 14.3 20.0 | [145] |
CoFe2O4–chitosan composite | 2 | 8.4 | Congo red Methyl orange | 15.60 66.18 | [146] |
Polypyrrole-modified Fe3O4/SiO2 magnetic composite | - | 8 | Congo red | 361.43 | [149] |
Bio-magnetic membrane capsules from PVA–alginate matrix | - | 11.02 | Malachite green | 500 | [152] |
Magnetic nanocellulose from olive industry solid waste | - | 21.4 | Methylene blue | 166.67 | [154] |
Magnetic amine-functionalized chitosan | - | 17.5 | Diclofenac sodium | 469.48 | [147] |
Magnetic β-cyclodextrin porous polymer nanospheres | 70.63 | 44.8 | Methylene blue | 305.8 | [155] |
Polyaniline-coated Fe3O4 nanoparticles | - | 40.4 | Polycyclic aromatic hydrocarbons | - | [150] |
Magnetic polyimide@ Mg-Fe-layered double hydroxides core–shell composite | - | 26.38 | Tetracycline 2,4-Dichlorophenol Glyphosate | 185.53 176.06 190.84 | [151] |
Magnetic mesoporous lignin from date palm pits | 640 | 37.81 | Spill oils | 23.01 g g−1 | [156] |
Zinc ferrite–chitosan magnetic composite | 3.833 | - | F− | 6.9 | [148] |
Nickel ferrite–chitosan magnetic composite | 4.187 | - | F− | 8.3 | [148] |
Cobalt ferrite–chitosan magnetic composite | 3.197 | - | F− | 6.7 | [148] |
Polypyrrole-modified Fe3O4/SiO2 magnetic composite | - | 8 | Cr(VI) | 298.22 | [149] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Chitosan/graphite/polyvinyl alcohol magnetic hydrogel microspheres | - | 7.2 | Reactive orange 16 | 196.3 | [162] |
Polyacrylamide/chitosan/Fe3O4 composite hydrogels | - | - | Methylene blue | 1603 | [163] |
Chitosan–graphene oxide hydrogels with embedded magnetic iron oxide nanoparticles | 22.37–25.83 | 32.56 | Methylene blue | 36.2 | [164] |
Hydrogel beads based on the incorporation of nanosilver/diatomite into calcium alginate | 0.31 | - | Methylene blue | 128.21 | [165] |
Graphene quantum-dot-decorated magnetic graphene oxide-filled polyvinyl alcohol hybrid hydrogel | - | 20.55 | Methylene blue Rhodamine B | 46.79 44.89 | [166] |
Fe3O4-modified chitosan-based co-polymeric magnetic composite hydrogel | - | 0.178 | Methylene blue | - | [167] |
Magnetic hydrogel microspheres of lignin derivate | - | - | Methylene blue Methyl orange Malachite green | 43 39 155 | [168] |
Polyvinyl alcohol composite hydrogels containing magnetic nanoparticles | - | - | Cd(II) | 42.6 | [169] |
Magnetic hydrogel microspheres of lignin derivate | - | - | Pb(II) Hg(II) Ni(II) | 33 55 23 | [168] |
Magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites | - | 0.30–4.1 | Pb(II) | >220 | [170] |
Magnetic sodium alginate/carboxymethyl cellulose composite hydrogel | - | 3.2 | Mn(II) Pb(II) Cu(II) | 1.83 89.49 105.93 | [171] |
Alginate hydrogel reinforced with cellulose nanofibers decorated with magnetic nanoparticles | 17.02 | - | Al K Se Na V S | 22 13.2 19 11.1 44.4 13.7 | [158] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
PVP-modified Fe3O4@SiO2 nanoparticles | 60.82 | 30.89 | Phenanthrene | 18.84 | [227] |
Fe3O4@SiO2–VTEOS–DMDAAC | - | - | Methylene blue | 109.89 | [228] |
Carboxylated ethylenediamine functionalized Fe3O4@SiO2 nanoparticles | - | 58.7 | Methylene blue | 43.15 | [229] |
Fe3O4@SiO2@Zn–TDPAT | - | >20 | Methylene blue Congo red | 58.67 17.73 | [230] |
Fe3O4@SiO2@UiO-67 | - | 20.9 | Glyphosate | 256.54 | [233] |
Raspberry-like supraparticles made of very small silica nanoparticles and SPIONs | 193 | >25 | Methylene blue | 93 | [231] |
Fe3O4@SiO2@NH2 | - | >40 | Methylene red | 81.39 | [234] |
Fe3O4@SiO2@mSiO2-CD | 119 | 30.99 | Doxycycline | 78 | [235] |
Magnetic-SBA-15 crosslinked poly(acrylic acid) | 159 | 2.68 | Acid blue 25 | 909.09 | [236] |
Mesoporous composite Fe3O4@SiO2@KIT-6 | 579 | 42.8 | Fenpropathrin Cyhalothrin S-fenvalerate Bifenthrin | 2.47 2.47 2.43 2.45 | [237] |
Ag/Fe,N-TiO2/Fe3O4@SiO2 | - | 5.82 | Bisphenol A | - | [238] |
Hollow-structured Fe2O3/Au/SiO2 nanorods | 58.23 | - | Methyl orange | - | [239] |
Yolk-porous-shell SiO2@void@Ag/TiO2 nanospheres | 702.8 | - | Methylene blue | - | [232] |
EDTA-modified magnetic mesoporous microspheres | 337.02 | 29.49 | Cr(III) | - | [240] |
Iron oxide magnetic nanoparticles with SiO2 shell | 270–275 | 1.28–1.34 | Pb(II) | 14.9 | [241] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Hexagonal boron nitride nanosheets (h-BNNSs) based on magnetic hybrid aerogels | 104.6 | 74.6 | Methylene blue Acid orange | 415 286 | [245] |
N-doped magnetic carbon aerogel | 94 | 85 | Congo red | 431 | [250] |
Multifunctional magnetic carboxymethyl chitosan (Fe3O4@PDA/CMC) aerogel | 106.7 | 13.69 | Methylene blue Crystal violet Methyl orange Congo red | 217.43 262.27 83.47 92.83 | [246] |
Carboxymethylcellulose-based citric acid crosslinked magnetic aerogel | - | - | Methylene blue | 83.6 | [247] |
NiCo-loaded reduced graphene oxide aerogel microspheres | 253.9 | 43.8 | Organic solvents and oils | 107–270 g g−1 | [254] |
Magnetic carbon nanospheres/graphene composite aerogels | 787.92 | 22.47 | Organic solvents and oils | 187–537 g g−1 | [256] |
Aerogels based on reduced GO decorated with nanoparticles of iron oxides Fe3O4 and γ-Fe2O3 | 670 | - | Methylene blue Methyl orange | 1501 1390 | [248] |
Fe-doped silica aerogel composite | 240 | - | Malachite green | 1592 | [251] |
Amphiprotic cellulose-mediated graphene oxide magnetic aerogels | - | 8.61 | Congo red Methylene blue | 282 346 | [249] |
Magnetic bacterial cellulose nanofiber/graphene oxide polymer aerogel | 214.75 | 26.59 | Malachite green | 270.27 | [252] |
Polyaniline/hexaferrite aerogels supported by poly(vinyl alcohol) | - | 7.7–12.5 | Reactive black 5 | - | [253] |
Hexagonal boron nitride nanosheets (h-BNNSs) based on magnetic hybrid aerogels | 104.6 | 74.6 | Cr(VI) As(V) | 833 426 | [245] |
Magnetic carbon aerogel | 145.7 | 15.9 | Cd(II) | 143.88 | [255] |
Amphiprotic cellulose-mediated graphene oxide magnetic aerogels | - | 8.61 | Cu(II) Pb(II) Cd(II) Cr(III) | 222.2 568.2 185.5 122.2 | [249] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Sludge-based magnetic biochar | 20.19 | 25.60 | Methylene blue | 296.52 | [263] |
Magnetic wakame biochar nanocomposites | 744.15 | - | Methylene blue | 450.92 | [264] |
Rice husk biochar-based magnetic nanocomposite | - | 30.8 | Crystal violet | 185.6 | [265] |
Magnetic montmorillonite-biochar composite | 67.77 | 35.10 | Oxytetracycline | 58.85 | [266] |
Magnetized biochar | - | 44.1 | Sulfadiazine Oxolinic acid | - | [267] |
Magnetized biochar functionalized with TiO2 | - | 6.96 | Sulfadiazine Oxolinic acid | - | [267] |
Magnetized biochar functionalized with TiO2 and afterward magnetized by in situ | - | 27.9 | Sulfadiazine Oxolinic acid | - | [267] |
Magnetized biochar functionalized with TiO2 and afterward magnetized by ex situ | - | 33.5 | Sulfadiazine Oxolinic acid | - | [267] |
Magnetic Fe3O4 biochar | 70.17 | - | Tetracycline | 29.4 | [268] |
Magnetic cobalt ferrite–biochar composite | 83.23 | 39.11 | Lomefloxacin hydrochloride | - | [269] |
Magnetic CuZnFe2O4–biochar composite | 61.5 | 37.6 | Bisphenol A Sulfamethoxazole | - | [270] |
Amino-modified rice bran biochar/MgFeAlO4 magnetic composites | 34.13 | 19.78 | Ni(II) | 201.62 | [271] |
Amino hybrid biopolymer-decorated magnetic biochar composite—MTBC-2N | 13.54 | 20.31 | P | 53.32 | [272] |
Amino hybrid biopolymer-decorated magnetic biochar composite—MTBC-4N | 12.69 | 19.48 | P | 69.64 | [272] |
Halloysite and coconut shell–magnetic biochar composites | 234–391 | 56.34–59.15 | Pb(II) | 415–680 | [273] |
Magnetic Zn/iron-based sludge/biochar composite | 145.13 | 32.57 | Cr(VI) | 36.27 | [274] |
Magnetic greigite/biochar composites | 10.2–17.6 | - | Cr(VI) | - | [275] |
Magnetic biochar composites | 109.65 | ~9.45 | U(VI) | 52.63 | [276] |
Magnetic biogas residue-based biochar | 79.64 | 39.96 | Cu(II) Pb(II) | 75.76 181.82 | [277] |
Biochar loaded with chitosan-stabilized ferrous sulfide nanoparticles | 3.63–4.49 | - | Cr(VI) | 49.17–49.21 | [278] |
Adsorbent | Surface Area (m2 g−1) | Magnetic Saturation (emu g−1) | Pollutant | Adsorption Capacity (mg g−1) | References |
---|---|---|---|---|---|
Fe3O4/kaolin magnetic nanocomposites | 31.56 | 12.32 | Direct red 23 | 22.88 | [282] |
Banded iron formation @bentonite | 21.04 | - | Crystal violet Acid red | 117 91 | [283] |
Bacterial cellulose/attapulgite magnetic composites | 197 | 16 | Congo red | 230 | [284] |
Magneto-carbon black-clay composite | - | - | Methylene blue | 9.72 | [285] |
Clay/starch/MnFe2O4 magnetic nanocomposite | 66.95 | 10.33 | Sunset yellow Nile blue | 79.81 86.78 | [288] |
Magnetic Fe3O4/zeolite NaA nanocomposite | ~117 | - | Methylene blue | 40.36 | [286] |
Clay–magnetite nanocomposite | 37.458 | 24.910 | Naphthol blue-black | - | [289] |
Graphene/magnetite/montmorillonite nanocomposite | 97.916 | 49.95 | Methylene blue | 225.0 | [287] |
Magnetic montmorillonite composite | 64.78 | 27.57 | Enrofloxacin | - | [290] |
Sodium dodecyl sulfate-modified BiOBr/magnetic bentonite | 26.34 | 3.6 | Tetracycline Ciprofloxacin | - | [291] |
Iron oxide/hydrotalcite intercalated with dodecylsulfate/β-cyclodextrin magnetic organocomposite | - | - | Phenol P-nitrophenol P-cresol | 216.08 255.63 272.48 | [292] |
Modified sepiolite clay loaded with Fe3O4 | 81.01 | - | Atrazine | - | [293] |
Magnetic sepiolite composite | 81 | 26.22 | Bisphenol A | - | [294] |
Bacterial cellulose/attapulgite magnetic composites | 197 | 16 | Cr(VI) Cu(II) Pb(II) | 91 70.5 67.8 | [284] |
Magneto-carbon black-clay composite | - | - | Cd(II) | 8.83 | [285] |
EDTA-modified magnetic attapulgite chitosan gel beads | 51.81 | 0.9 | Pb(II) Cu(II) Ni(II) | 368.32 267.94 220.31 | [295] |
Kaolin–bentonite–Fe3O4 composite | 10 | 0.045 | F- | - | [297] |
Magnetic hydroxyapatite coated with manganese dioxide | 131.826 | 11.713 | Sr(II) | 32.37 | [298] |
Magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads | - | 7.05 | Cu(II) | 56.79 | [296] |
Magnetic Composite Category | Surface Area Range (m2 g−1) | Magnetic Saturation Range (emu g−1) |
---|---|---|
Carbon nanotube-based | 60–811 | 0.4–56 |
Graphene-based | 32–213 | 7–62 |
Polymer-based | 2–640 | 2.5–45 |
Hydrogel-based | 0.3–26 | 0.18–32 |
MOF-based | 2.6–1722 | 3–61 |
COF-based | 56–2245 | 0.75–48 |
Silica-based | 58–703 | 1.3–59 |
Aerogel-based | 94–788 | 7.7–85 |
Biochar-based | 3.6–744 | 7–59 |
Clay-based | 10–197 | 0.05–50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculescu, A.-G.; Mihaiescu, B.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers 2024, 16, 709. https://doi.org/10.3390/polym16050709
Niculescu A-G, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers. 2024; 16(5):709. https://doi.org/10.3390/polym16050709
Chicago/Turabian StyleNiculescu, Adelina-Gabriela, Bogdan Mihaiescu, Dan Eduard Mihaiescu, Tony Hadibarata, and Alexandru Mihai Grumezescu. 2024. "An Updated Overview of Magnetic Composites for Water Decontamination" Polymers 16, no. 5: 709. https://doi.org/10.3390/polym16050709
APA StyleNiculescu, A. -G., Mihaiescu, B., Mihaiescu, D. E., Hadibarata, T., & Grumezescu, A. M. (2024). An Updated Overview of Magnetic Composites for Water Decontamination. Polymers, 16(5), 709. https://doi.org/10.3390/polym16050709