Mechanical Behaviors of Polymer-Based Composite Reinforcements within High-Field Pulsed Magnets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Mechanical Tests
2.3. Properties with High Vf
3. Constitutive Modeling of ZFRPs
3.1. Plasiticity Evolution
3.2. Damage Evolution
3.3. Numerical Implementation
4. Simulation Technique for Magnets
4.1. Simulation Strategy
4.2. Modeling Method
4.3. Electromagnetic Model Verification
5. Structural Analysis of ZFRPs within Magnets
5.1. Inner Magnet Analysis
5.2. Outer Magnet Analysis
5.3. Other Examples
6. Discussions
6.1. Influence of the Transverse Strength of the Reinforcement
6.2. Influence of the Axial Lorentz Forces
6.3. Suitable Reinforcing Material
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.W.; Zheng, G.X.; Zhang, D.C.; Chan, A.; Zhu, Y.; Jenkins, K.; Yu, F.; Shi, M.; Ying, J.; Xiang, Z.; et al. Magnetic breakdown and spin-zero effect in quantum oscillations in kagome metal CsV3Sb5. Commun. Mater. 2023, 4, 96. [Google Scholar] [CrossRef]
- Ye, Y.H.; Yamada, A.; Kinoshita, Y.; Wang, J.H.; Nie, P.; Xu, L.C.; Zuo, H.; Tokunaga, M.; Harrison, N.; McDonald, R.D.; et al. High-field immiscibility of electrons belonging to adjacent twinned bismuth crystals. Npj Quantum Mater. 2024, 9, 12. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Lee, S.Y.; Woods, A.J.; Peria, W.K.; Thomas, S.M.; Movshovich, R. Electronic and magnetic phase diagrams of the Kitaev quantum spin liquid candidate Na2Co2TeO6. Phys. Rev. B 2023, 108, 064421. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Michel, J.; Mielke, C.H. Status and development of pulsed magnets at the NHMFL Pulsed Field Facility. IEEE Trans. Appl. Supercond. 2016, 26, 4300905. [Google Scholar] [CrossRef]
- Zherlitsyn, S.; Wustmann, B.; Herrmannsdörfer, T.; Wosnitza, J. Status of the pulsed-magnet-development program at the Dresden High Magnetic Field Laboratory. IEEE Trans. Appl. Supercond. 2012, 22, 4300603. [Google Scholar] [CrossRef]
- Peng, T.; Liu, S.B.; Pan, Y.; Lv, Y.L.; Ding, H.F.; Han, X.T.; Xiao, H.X.; Wang, S.; Jiang, S.; Li, L. A novel design of multi-coil pulsed magnet system for 100T. IEEE Trans. Appl. Supercond. 2022, 32, 4300104. [Google Scholar] [CrossRef]
- Béard, J.; Billette, J.; Ferreira, N.; Frings, P.; Lagarrigue, J.; Lecouturier, F.; Nicolin, J.-P. Design and tests of the 100-T triple coil at LNCMI. IEEE Trans. Appl. Supercond. 2018, 28, 4300305. [Google Scholar] [CrossRef]
- Jaime, M.; Daou, R.; Crooker, S.A.; Weickert, F.; Uchida, A.; Feiguin, A.E.; Batista, C.; Da, H.; Gaulin, B. Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2. Proc. Natl. Acad. Sci. USA 2017, 109, 12404–12407. [Google Scholar] [CrossRef]
- Zherlitsyn, S.; Wustmann, B.; Herrmannsdörfer, T.; Wosnitza, J. Magnet-technology development at the Dresden High Magnetic Field Laboratory. J. Low Temp. Phys. 2013, 170, 447–451. [Google Scholar] [CrossRef]
- Swenson, C.A.; Rickel, D.G.; Sims, J.R. 80 T magnet operational performance and design implications. IEEE Trans. Appl. Supercond. 2008, 18, 604–607. [Google Scholar] [CrossRef]
- Michel, J.; Nguyen, D.N.; Lucero, J.D. Design, construction, and operation of new duplex magnet at pulsed field facility-NHMFL. IEEE Trans. Appl. Supercond. 2020, 30, 0500105. [Google Scholar] [CrossRef]
- Michel, J.; Betts, S.B.; Lucero, J.D.; Bhardwaj, A.; Nguyen, L.N.; Nguyen, D.N. Design and construction of the new 85 T duplex magnet at NHMFL-Los Alamos. IEEE Trans. Appl. Supercond. 2024, 34, 4900305. [Google Scholar] [CrossRef]
- Tardieu, S.; Béard, J.; Mesguich, D.; Lonjon, A.; Ferreira, N.; Chevallier, G.; Estournès, C.; Laurent, C.; Lecouturier-Dupouy, F. Scale-up of silver-copper composite wires by spark plasma sintering and room temperature wire-drawing for use in 100 T triple coil at LNCMI. IEEE Trans. Appl. Supercond. 2014. early access. [Google Scholar] [CrossRef]
- Talreja, R.; Waas, A.M. Concepts and definitions related to mechanical behavior of fiber reinforced composite materials. Compos. Sci. Technol. 2022, 217, 109081. [Google Scholar] [CrossRef]
- Almeida, J.H.S.; St-Pierre, L.; Wang, Z.H.; Ribeiro, M.L.; Tita, V.; Amico, S.C.; Castro, S.G.P. Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Compos. Part B Eng. 2021, 225, 109224. [Google Scholar] [CrossRef]
- Eleiwi, M.; Pinto, F.S.; Botez, R.M.; Dao, T.M. Multidisciplinary optimization for weight saving in a variable tapered span-morphing wing using composite materials-application to the UAS-S4. Actuators 2022, 11, 121. [Google Scholar] [CrossRef]
- Fallahi, H.; Taheri-Behrooz, F.; Asadi, A. Nonlinear mechanical response of polymer matrix composites: A review. Polym. Rev. 2020, 60, 42–85. [Google Scholar] [CrossRef]
- Bru, T.; Olsson, R.; Gutkin, R.; Vyas, G.M. Use of the Iosipescu test for the identification of shear damage evolution laws of an orthotropic composite. Compos. Struct. 2017, 174, 319–328. [Google Scholar] [CrossRef]
- Fallahi, H.; Taheri-Behrooz, F. Phenomenological constitutive modeling of the non-linear loading-unloading response of UD fiber-reinforced polymers. Compos. Struct. 2022, 292, 115671. [Google Scholar] [CrossRef]
- Walsh, R.P.; Swenson, C.A. Mechanical properties of Zylon/epoxy composite laminates at 295K and 77K. IEEE Trans. Appl. Supercond. 2006, 16, 1761–1764. [Google Scholar] [CrossRef]
- Huang, Y.K.; Frings, P.H.; Hennes, E. Exploding pressure vessel test on zylon/epoxy composite. Compos. Part B Eng. 2002, 33, 117–123. [Google Scholar] [CrossRef]
- Jiang, F.; Sun, Q.Q.; Lai, Z.P.; Luo, B.; Pan, Y.; Li, L.; Peng, T. Electromagnetically driven expanding ring test for the strength study of the Zylon/epoxy composite. IEEE Trans. Appl. Supercond. 2016, 26, 9000106. [Google Scholar] [CrossRef]
- Huang, Y.K.; Frings, P.H.; Hennes, E. Mechanical properties of Zylon/epoxy composite. Compos. Part B Eng. 2002, 33, 109–115. [Google Scholar] [CrossRef]
- Chen, S.Y.; Peng, T.; Han, X.T.; Cao, Q.L.; Xiao, H.X.; Li, W.Z.; Li, L. Transverse tensile, compression and in-plane shear behaviors of Zylon fiber-reinforced polymer. IEEE Trans. Appl. Supercond. 2024, 34, 7400105. [Google Scholar] [CrossRef]
- ASTM D3039; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D6641; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D3518; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate. ASTM International: West Conshohocken, PA, USA, 2018.
- Huang, Z.M. A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads. Compos. Sci. Technol. 2004, 64, 395–448. [Google Scholar] [CrossRef]
- Chen, S.Y.; Li, L. An anisotropic damage-plasticity constitutive model of continuous fiber-reinforced polymers. Polymers 2024, 16, 334. [Google Scholar] [CrossRef]
- Chen, J.F.; Morozov, E.V.; Shankar, K. A combined elastoplastic damage model for progressive failure analysis of composite materials and structures. Compos. Struct. 2012, 94, 3478–3489. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002, 62, 1633–1662. [Google Scholar] [CrossRef]
- Ladeveze, P.; LeDantec, E. Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 1992, 43, 257–267. [Google Scholar] [CrossRef]
- Rajaneesh, A.; Ponthot, J.P.; Bruyneel, M. High velocity impact response of composite laminates using modified meso-scale damage models. Int. J. Impact Eng. 2021, 147, 103701. [Google Scholar] [CrossRef]
- Zhu, T.Q.; Ren, Z.Y.; Xu, J.; Shen, L.L.; Xiao, C.L.; Zhang, C.; Zhou, X.; Jian, X. Damage evolution model and failure mechanism of continuous carbon fiber-reinforced thermoplastic resin matrix composite materials. Compos. Sci. Technol. 2023, 244, 110300. [Google Scholar] [CrossRef]
- Puck, A.; Mannigel, M. Physically based non-linear stress–strain relations for the inter-fibre fracture analysis of FRP laminates. Compos. Sci. Technol. 2007, 67, 1955–1964. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lv, Y.L.; Peng, T.; Li, X.X.; Li, L. Finite-element analysis of pulsed high-field magnets with precise thermal and structural calculations. IEEE. Trans. Magn. 2020, 56, 7511904. [Google Scholar] [CrossRef]
- Nguyen, Q.V.M.; Torres, L.; Nguyen, D.N. Electromagnetic interaction between the component coils of multiplex magnets. IEEE Trans. Appl. Supercond. 2018, 28, 4300504. [Google Scholar] [CrossRef]
- Hua, Y.; Yang, Y.C.; Yamanaka, A.; Ni, Q.Q. Low friction coefficient property of super fiber-reinforced composites. Adv. Compos. Mater. 2011, 20, 133–147. [Google Scholar] [CrossRef]
- Chen, S.Y.; Peng, T.; Li, Y.H.; Lv, Y.L.; Wang, S.; Li, L. Structural analysis of pulsed magnets considering interface characteristics. Rev. Sci. Instrum. 2020, 91, 085113. [Google Scholar] [CrossRef] [PubMed]
- Marshal, W.S.; Swenson, C.A.; Gavrilin, A.; Schneider-Muntau, H.J. Development of “fast cool” pulsed magnet coil technology at NHMFL. Phys. B 2004, 346, 594–598. [Google Scholar] [CrossRef]
- Swenson, C.A.; Marshall, W.S.; Gavrilin, A.; Han, K.; Schillig, J.; Sim, J.R.; Schneider-Muntau, H.J. Progress of the insert coil for the US-NHMFL 100 T multi-shot pulse magnet. Phys. B 2004, 346, 561–565. [Google Scholar] [CrossRef]
Temperature | (GPa) | υ12 | (MPa) | (GPa) | (MPa) | (GPa) | (MPa) | (MPa) | (GPa) | (MPa) | (MPa) | (GPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
296 K | 142 | 0.36 | 170 | 106 | 81.8 | 3.66 | 11.8 | 18.0 | 3.12 | 30.0 | 49.6 | 1.49 |
243 K | / | / | 173 | 110 | 85.9 | 3.65 | 13.8 | 19.2 | 3.51 | 31.2 | 46.5 | 1.64 |
213 K | / | / | / | / | 100 | 4.27 | 18.5 | 18.5 | 3.60 | 30.6 | 46.7 | 1.75 |
77 K | 173.3 [20] | 0.36 [20] | 170 ** | 110 ** | 124.5 * | 4.99 * | 18.5 ** | 18.5 ** | 4.45 * | 30.6 ** | 46.7 ** | 2.16 * |
E11 (GPa) | E22 (GPa) | G (GPa) | ν12 | ν23 | (GPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|
263 | 3.36 | 2.06 | 0.0047 | 0.6 | 4.64 | 170 | 12 | 18.3 | 124 | 27.3 | 45.2 |
Parameters | 95-T Prototype | 90.6-T Magnet | 94.88-T Magnet |
---|---|---|---|
Number of inner-coil reinforcement layers | 8 | 8 | 8 |
Diameter of inner-coil reinforcements (mm) | 18.4; 30.2; 42.6; 57.4; 74.2; 93.0; 112.8; 132.6 | 18.4; 28.8; 40.6; 54.0; 68.8; 84.6; 101.0; 118.4 | |
Thickness of inner-coil reinforcements (mm) | 2.7; 3.0; 4.2; 5.2; 6.2; 6.7; 6.7; 9.0 | 2.0; 2.7; 3.5; 4.2; 4.7; 5.0; 5.5; 6.0 | 3.0; 3.0; 5.0; 5.5; 6.5; 6.7; 6.7; 8.0 |
Number of outer-coil reinforcement layers | 14 | 12 | 14 |
Diameter of outer-coil reinforcements (mm) | 171.8; 196.6; 221.4; 246.2; 270.0; 289.8; 309.6; 326.4; 343.2; 360.0; 376.8; 393.6; 410.4; 427.2 | 140.3; 159.1; 177.9; 195.7; 212.5; 227.3; 239.1; 250.9; 262.7; 274.5; 286.3; 298.1 | 182.8; 206.6; 230.4; 254.2; 277.0; 295.8; 314.6; 330.4; 346.2; 362.0; 377.8; 393.6; 409.4; 425.2 |
Thickness of outer-coil reinforcements (mm) | 6.5; 6.5; 6.5; 6.0; 4.0; 4.0; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 20.0 | 5.0; 5.0; 4.5; 4.0; 3.0; 1.5; 1.5; 1.5; 1.5; 1.5; 1.5; 20.0 | 6.5; 6.5; 6.5; 6.0; 4.0; 4.0; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 20.0 |
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | |
---|---|---|---|---|---|---|---|---|
Buckling magnetic field (T) | - | 93.05 | 93.87 | 94.86 | 94.83 | 92.51 | 82.76 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Peng, T.; Han, X.; Cao, Q.; Xiao, H.; Li, L. Mechanical Behaviors of Polymer-Based Composite Reinforcements within High-Field Pulsed Magnets. Polymers 2024, 16, 722. https://doi.org/10.3390/polym16050722
Chen S, Peng T, Han X, Cao Q, Xiao H, Li L. Mechanical Behaviors of Polymer-Based Composite Reinforcements within High-Field Pulsed Magnets. Polymers. 2024; 16(5):722. https://doi.org/10.3390/polym16050722
Chicago/Turabian StyleChen, Siyuan, Tao Peng, Xiaotao Han, Quanliang Cao, Houxiu Xiao, and Liang Li. 2024. "Mechanical Behaviors of Polymer-Based Composite Reinforcements within High-Field Pulsed Magnets" Polymers 16, no. 5: 722. https://doi.org/10.3390/polym16050722
APA StyleChen, S., Peng, T., Han, X., Cao, Q., Xiao, H., & Li, L. (2024). Mechanical Behaviors of Polymer-Based Composite Reinforcements within High-Field Pulsed Magnets. Polymers, 16(5), 722. https://doi.org/10.3390/polym16050722