A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of Silver Nanowires (AgNWs)
2.3. Preparation of Sandwich-Structured Filter Paper–AgNWs/MXene–PVB Composite
2.4. Characterizations
2.5. EMI Shielding Parameters
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, F.Z.; Fan, X.K.; Long, L.; Li, Y.; Chen, H.; Zhou, W. Constructing 3D hierarchical CNTs/VO2 composite micro-spheres with superior electromagnetic absorption performance. Ceram. Int. 2023, 49 Pt A, 16924–16931. [Google Scholar] [CrossRef]
- Zhu, H.H.; Qin, G.; Zhou, W.; Li, Y.; Zhou, X.B. Constructing flake-like ternary rare earth Pr3Si2C2 ceramic on SiC whiskers to enhance electromagnetic wave absorption properties. Ceram. Int. 2024, 50 Pt A, 134–142. [Google Scholar] [CrossRef]
- Mao, F.Z.; Long, L.; Pi, W.Q.; Li, Y.; Zhou, W. X-band electromagnetic absorption and mechanical properties of mul-lite/Ti3AlC2 composites. Mater. Chem. Phys. 2022, 292, 126819. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.D.; Wu, N.; Han, M.R.; Liu, W.; Liu, J.R.; Zeng, Z.H. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. Nano-Micro Lett. 2023, 15, 240. [Google Scholar] [CrossRef]
- Li, X.L.; Li, M.H.; Li, X.; Fan, X.M.; Zhi, C.Y. Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research 2022, 2022, 9892628. [Google Scholar] [CrossRef]
- Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A review on MXene and its? composites for electromagnetic interference (EMI) shielding applications. Carbon 2023, 208, 170–190. [Google Scholar] [CrossRef]
- Mao, F.Z.; Long, L.; Zeng, G.L.; Chen, H.; Li, Y.; Zhou, W. Achieving excellent electromagnetic wave absorption property by constructing VO2 coated biomass carbon heterostructures. Diam. Relat. Mater. 2022, 130, 109422. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, Q.T.; Chi, M.C.; Guo, C.Y.; Wang, S.F.; Min, D.Y. Preparation and performance of different carbon-ized wood electrodes. J. For. Eng. 2022, 7, 127–135. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Xiao, H.N.; Xiong, R.H.; Huang, C.B. Xylan-based ratiometric fluorescence carbon dots composite with delignified wood for highly efficient water purification and photothermal conversion. Sep. Purif. Technol. 2023, 324, 124513. [Google Scholar] [CrossRef]
- Gan, W.T.; Wang, Y.X.; Xiao, K.; Zhai, M.K.; Wang, H.G.; Xie, Y.J. Research review of energy storage and conversion materials based on wood cell wall functional modification. J. For. Eng. 2022, 7, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, Z.X.; Fu, Z.Y.; Zhang, S.F. Research advances and prospect of wood cell wall nanotechnology. J. For. Eng. 2022, 7, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.M.; Pang, L.; Li, Y.; Luo, H.; Duan, G.G.; Mei, C.T.; Xu, W.H.; Zhou, W.; Liu, K.M.; Jiang, S.H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105960. [Google Scholar] [CrossRef]
- Ma, X.F.; Guo, H.T.; Zhang, C.M.; Chen, D.H.; Tian, Z.W.; Wang, Y.F.; Chen, Y.M.; Wang, S.W.; Han, J.Q.; Lou, Z.C.; et al. ZIF-67/wood derived self-supported carbon composites for electromagnetic interference shielding and sound and heat insulation. Inorg. Chem. Front. 2022, 9, 6305–6316. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Q.T.; Xu, P.H.; Feng, Y.Z.; Ma, J.M.; Liu, C.T.; Shen, C.Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Jiang, Y.; Ma, Z.W.; Shi, Y.Q.; Zhu, Y.J.; Huang, R.Z.; Feng, Y.Z.; Wang, Z.B.; Hong, M.; Gao, J.F.; et al. Hyperelastic, Robust, Fire-Safe Multifunctional MXene Aerogels with Unprecedented Electromagnetic Interference Shielding Efficiency. Adv. Funct. Mater. 2023, 33, 2306884. [Google Scholar] [CrossRef]
- Chen, Y.M.; Luo, H.; Guo, H.T.; Liu, K.M.; Mei, C.T.; Li, Y.; Duan, G.G.; He, S.J.; Han, J.Q.; Zheng, J.J.; et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Ma, M.G.; Chen, F. Silicone-Coated MXene/Cellulose Nanofiber Aerogel Films with Photothermal and Joule Heating Performances for Electromagnetic Interference Shielding. Acs Appl. Nano Mater. 2021, 4, 7234–7243. [Google Scholar] [CrossRef]
- Weng, C.X.; Xing, T.L.; Jin, H.; Wang, G.R.; Dai, Z.H.; Pei, Y.M.; Liu, L.Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105927. [Google Scholar] [CrossRef]
- Liu, L.; Chen, W.; Zhang, H.; Wang, Q.; Guan, F.; Yu, Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Ji, H.; Wang, N.; Feng, S.; Xiao, H. Electromagnetic interference shielding with absorption-dominant performance of Ti3C2TX MXene/non-woven laminated fabrics. Text. Res. J. 2021, 91, 2448–2458. [Google Scholar] [CrossRef]
- Harandi, D.; Moradienayat, M. Multifunctional PVB nanocomposite wood coating by cellulose nanocrystal/ZnO nanofiller: Hydrophobic, water uptake, and UV-resistance properties. Prog. Org. Coat. 2023, 179, 107546. [Google Scholar] [CrossRef]
- Han, X.S.; Ye, Y.H.; Lam, F.; Pu, J.W.; Jiang, F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 2019, 7, 27023–27031. [Google Scholar] [CrossRef]
- Ma, X.F.; Liu, S.Y.; Luo, H.; Guo, H.T.; Jiang, S.H.; Duan, G.G.; Zhang, G.Y.; Han, J.Q.; He, S.J.; Lu, W.; et al. MOF@wood Derived Ultrathin Carbon Composite Film for Electromagnetic Interference Shielding with Effective Absorption and Electrothermal Management. Adv. Funct. Mater. 2023, 34, 202310126. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Li, Y.C.; Zhao, J.Y.; Liu, J.; Lei, J.D.; Wang, L.Y.; Huang, C.B. A novel green lignosulfonic acid/Nafion composite membrane with reduced cost and enhanced thermal stability. Chem. Commun. 2021, 57, 9288–9291. [Google Scholar] [CrossRef]
- Deng, W.N.; Xu, Y.X.; Zhang, X.C.; Li, C.Y.; Liu, Y.X.; Xiang, K.X.; Chen, H. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries. J. Alloys Compd. 2022, 903, 163824. [Google Scholar] [CrossRef]
- Qu, Q.L.; Zhang, X.L.; Yang, A.Q.; Wang, J.; Cheng, W.X.; Zhou, A.Y.; Deng, Y.K.; Xiong, R.H.; Huang, C.B. Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J. Colloid Interface Sci. 2022, 626, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.N.; Li, Y.H.; Xu, D.F.; Zhou, W.; Xiang, K.X.; Chen, H. Three-dimensional hierarchically porous nitro-gen-doped carbon from water hyacinth as selenium host for high-performance lithium–selenium batteries. Rare Met. 2022, 41, 3432–3445. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, Z.B.; Chen, X.; Xiao, P.; Li, Y. Synergistic effect of water vapour on the thermal corrosion of CFAS melt to Yb2Si2O7 environmental barrier coating material. Corros. Sci. 2023, 225, 111625. [Google Scholar] [CrossRef]
- Wen, X.Y.; Luo, J.H.; Xiang, K.X.; Zhou, W.; Zhang, C.F.; Chen, H. High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Deng, W.N.; Liu, W.M.; Zhu, H.; Chen, L.; Liao, H.Y.; Chen, H. Click-chemistry and ionic cross-linking induced double cross-linking ionogel electrolyte for flexible lithium-ion batteries. J. Energy Storage 2023, 72, 108509. [Google Scholar] [CrossRef]
- Wu, D.D.; Wang, D.M.; Ye, X.M.; Yuan, K.R.; Xie, Y.L.; Li, B.H.; Huang, C.B.; Kuang, T.R.; Yu, Z.Q.; Chen, Z. Fluo-rescence detection of Escherichia coli on mannose modified ZnTe quantum dots. Chin. Chem. Lett. 2020, 31, 1504–1507. [Google Scholar] [CrossRef]
- Cui, J.X.; Lu, T.; Li, F.H.; Wang, Y.L.; Lei, J.D.; Ma, W.J.; Zou, Y.; Huang, C.B. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture. J. Colloid Interface Sci. 2021, 582, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.L.; Wang, Y.Q.; Lou, X.M.; Chen, H.; Jiang, S.H.; Zhou, W. Vanadium oxide/carbonized chestnut needle com-posites as cathode materials for advanced aqueous zinc-ion batteries. J. Energy Storage 2024, 77, 109859. [Google Scholar] [CrossRef]
- Ma, W.J.; Ding, Y.C.; Li, Y.S.; Gao, S.T.; Jiang, Z.C.; Cui, J.X.; Huang, C.B.; Fu, G.D. Durable, self-healing superhy-drophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification. J. Membr. Sci. 2021, 634, 119402. [Google Scholar] [CrossRef]
- Deng, Y.K.; Lu, T.; Zhang, X.L.; Zeng, Z.Y.; Tao, R.P.; Qu, Q.L.; Zhang, Y.Y.; Zhu, M.M.; Xiong, R.H.; Huang, C.B. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for effi-cient, breathable and sustainable air filtration. J. Membr. Sci. 2022, 660, 120857. [Google Scholar] [CrossRef]
- Lu, T.; Liang, H.B.; Cao, W.X.; Deng, Y.K.; Qu, Q.L.; Ma, W.J.; Xiong, R.H.; Huang, C.B. Blow-spun nanofibrous composite Self-cleaning membrane for enhanced purification of oily wastewater. J. Colloid Interface Sci. 2022, 608, 2860–2869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Feng, H.; Tian, W.; Zhang, K.; Zhang, L.; Wang, J.; Jiang, S. A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding. Polymers 2024, 16, 760. https://doi.org/10.3390/polym16060760
Han X, Feng H, Tian W, Zhang K, Zhang L, Wang J, Jiang S. A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding. Polymers. 2024; 16(6):760. https://doi.org/10.3390/polym16060760
Chicago/Turabian StyleHan, Xiaoshuai, Hongyu Feng, Wei Tian, Kai Zhang, Lei Zhang, Jiangbo Wang, and Shaohua Jiang. 2024. "A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding" Polymers 16, no. 6: 760. https://doi.org/10.3390/polym16060760
APA StyleHan, X., Feng, H., Tian, W., Zhang, K., Zhang, L., Wang, J., & Jiang, S. (2024). A Sandwich Structural Filter Paper–AgNWs/MXene Composite for Superior Electromagnetic Interference Shielding. Polymers, 16(6), 760. https://doi.org/10.3390/polym16060760