Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments
Abstract
:1. Introduction
2. Cellulose Hydrophobization by Gaseous Plasma Treatment
2.1. Deposition of PDMSO-like Coatings
2.2. Deposition of Fluorine-Containing Coatings
2.3. Deposition of Hydrocarbon Coatings
3. Discussion
3.1. Hydrophobization versus Precursor Pressure and Plasma Treatment Time
3.2. The Influence of Gas-Phase Reactions
3.3. Adhesion of a Hydrophobic Coating and Pre-Treatment with Oxygen Plasma
3.4. The Influence of Water Vapor and Other Gaseous Impurities
3.5. Nanostructuring and Hydrophobization
3.6. Scientific Considerations and Roadmap
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Karmanov, A.P.; Kanarsky, A.V.; Kocheva, L.S.; Belyy, V.A.; Semenov, E.I.; Rachkova, N.G.; Bogdanovich, N.I.; Pokryshkin, S.A. Chemical structure and polymer properties of wheat and cabbage lignins—Valuable biopolymers for biomedical applications. Polymer 2021, 220, 123571. [Google Scholar] [CrossRef]
- Kocheva, L.S.; Karmanov, A.P.; Mironov, M.V.; Belyy, V.A.; Polina, I.N.; Pokryshkin, S.A. Characteristics of chemical structure of lignin biopolymer from Araucaria relict plant. Questions and answers of evolution. Int. J. Biol. Macromol. 2020, 159, 896–903. [Google Scholar] [CrossRef]
- Oberlintner, A.; Likozar, B.; Novak, U. Hydrophobic functionalization reactions of structured cellulose nanomaterials: Mechanisms, kinetics and in silico multi-scale models. Carbohydr. Polym. 2021, 259, 117742. [Google Scholar] [CrossRef]
- Sundriyal, P.; Pandey, M.; Bhattacharya, S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int. J. Adhes. Adhes. 2020, 101, 102626. [Google Scholar] [CrossRef]
- Luque-Agudo, V.; Hierro-Oliva, M.; Gallardo-Moreno, A.M.; González-Martín, M.L. Effect of plasma treatment on the surface properties of polylactic acid films. Polym. Test. 2021, 96, 107097. [Google Scholar] [CrossRef]
- Ma, C.; Wang, L.; Nikiforov, A.; Onyshchenko, Y.; Cools, P.; Ostrikov, K.; De Geyter, N.; Morent, R. Atmospheric-pressure plasma assisted engineering of polymer surfaces: From high hydrophobicity to superhydrophilicity. Appl. Surf. Sci. 2021, 535, 147032. [Google Scholar] [CrossRef]
- Hori, M. Radical-controlled plasma processes. Rev. Mod. Plasma Phys. 2022, 6, 36. [Google Scholar] [CrossRef]
- Liu, F.; Nie, L.; Lu, X.; Stephens, J.; Ostrikov, K. Atmospheric plasma VUV photon emission. Plasma Sources Sci. Technol. 2020, 29, 065001. [Google Scholar] [CrossRef]
- Lojen, D.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Vesel, A. Effect of VUV radiation and reactive hydrogen atoms on depletion of fluorine from polytetrafluoroethylene surface. Appl. Surf. Sci. 2020, 533, 147356. [Google Scholar] [CrossRef]
- Gosar, Ž.; Đonlagić, D.; Pevec, S.; Gergič, B.; Mozetič, M.; Primc, G.; Vesel, A.; Zaplotnik, R. Distribution of the Deposition Rates in an Industrial-Size PECVD Reactor Using HMDSO Precursor. Coatings 2021, 11, 1218. [Google Scholar] [CrossRef]
- Gorjanc, M.; Jazbec, K.; Šala, M.; Zaplotnik, R.; Vesel, A.; Mozetič, M. Creating cellulose fibres with excellent UV protective properties using moist CF4 plasma and ZnO nanoparticles. Cellulose 2014, 21, 3007–3021. [Google Scholar] [CrossRef]
- Fukunaga, Y.; Longo, R.C.; Ventzek, P.L.G.; Lane, B.; Ranjan, A.; Hwang, G.S.; Hartmann, G.; Tsutsumi, T.; Ishikawa, K.; Kondo, H.; et al. Interaction of oxygen with polystyrene and polyethylene polymer films: A mechanistic study. J. Appl. Phys. 2020, 127, 023303. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Primc, G. Surface modification of PS polymer by oxygen-atom treatment from remote plasma: Initial kinetics of functional groups formation. Appl. Surf. Sci. 2021, 561, 150058. [Google Scholar] [CrossRef]
- Levchenko, I.; Xu, S.; Baranov, O.; Bazaka, O.; Ivanova, E.P.; Bazaka, K. Plasma and Polymers: Recent Progress and Trends. Molecules 2021, 26, 4091. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Souza, A.; Sousa, P.; Ribeiro, J.; Castanheira, E.M.S.; Lima, R.; Minas, G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J. Funct. Biomater. 2021, 13, 2. [Google Scholar] [CrossRef]
- Yang, J.; Pu, Y.; Miao, D.; Ning, X. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor. Polymers 2018, 10, 460. [Google Scholar] [CrossRef]
- Cerny, P.; Bartos, P.; Olsan, P.; Spatenka, P. Hydrophobization of cotton fabric by Gliding Arc plasma discharge. Curr. Appl. Phys. 2019, 19, 128–136. [Google Scholar] [CrossRef]
- Cerny, P.; Bartos, P.; Kriz, P.; Olsan, P.; Spatenka, P. Highly Hydrophobic Organosilane-Functionalized Cellulose: A Promising Filler for Thermoplastic Composites. Materials 2021, 14, 2005. [Google Scholar] [CrossRef]
- Matouk, Z.; Torriss, B.; Rincón, R.; Dorris, A.; Beck, S.; Berry, R.M.; Chaker, M. Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric—Pressure plasmas. Appl. Surf. Sci. 2020, 511, 145566. [Google Scholar] [CrossRef]
- Leal, S.; Cristelo, C.; Silvestre, S.; Fortunato, E.; Sousa, A.; Alves, A.; Correia, D.M.; Lanceros-Mendez, S.; Gama, M. Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. Cellulose 2020, 27, 10733–10746. [Google Scholar] [CrossRef]
- Yao, M.Z.; Liu, Y.; Qin, C.N.; Meng, X.J.; Cheng, B.X.; Zhao, H.; Wang, S.F.; Huang, Z.Q. Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treatment. Carbohydr. Polym. 2021, 253, 117193. [Google Scholar] [CrossRef]
- Babaei, S.; Profili, J.; Asadollahi, S.; Sarkassian, A.; Dorris, A.; Beck, S.; Stafford, L. Analysis of transport phenomena during plasma deposition of hydrophobic coatings on porous cellulosic substrates in plane-to-plane dielectric barrier discharges at atmospheric pressure. Plasma Process. Polym. 2020, 17, 2000091. [Google Scholar] [CrossRef]
- Samanta, K.K.; Joshi, A.G.; Jassal, M.; Agrawal, A.K. Hydrophobic functionalization of cellulosic substrate by tetrafluoroethane dielectric barrier discharge plasma at atmospheric pressure. Carbohydr. Polym. 2021, 253, 117272. [Google Scholar] [CrossRef] [PubMed]
- Oberlintner, A.; Shvalya, V.; Vasudevan, A.; Vengust, D.; Likozar, B.; Cvelbar, U.; Novak, U. Hydrophilic to hydrophobic: Ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Appl. Surf. Sci. 2022, 581, 152276. [Google Scholar] [CrossRef]
- Oberlintner, A.; Vesel, A.; Naumoska, K.; Likozar, B.; Novak, U. Permanent hydrophobic coating of chitosan/cellulose nanocrystals composite film by cold plasma processing. Appl. Surf. Sci. 2022, 597, 153562. [Google Scholar] [CrossRef]
- Kawano, T.; Wang, M.J.; Andou, Y. Surface Modification of a Regenerated Cellulose Film Using Low-Pressure Plasma Treatment with Various Reactive Gases. ACS Omega 2022, 7, 44085–44092. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, D.; Hou, Y.; Shah, P.; Ellinas, K.; Kappl, M.; Sapalidis, A.; Constantoudis, V.; Butt, H.J.; Gogolides, E. Plasma-Induced Superhydrophobicity as a Green Technology for Enhanced Air Gap Membrane Distillation. ACS Appl. Mater. Interfaces 2023, 15, 18493–18504. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.-P. Optical and electrical diagnostics of fluorocarbon plasma etching processes. Plasma Sources Sci. Technol. 1999, 8, 249–257. [Google Scholar] [CrossRef]
- Oehrlein, G.S.; Williams, H.L. Silicon etching mechanisms in a CF4/H2 glow discharge. J. Appl. Phys. 1987, 62, 662–672. [Google Scholar] [CrossRef]
- Zanini, S.; Riccardi, C.; Orlandi, M.; Fornara, V.; Colombini, M.P.; Donato, D.I.; Legnaioli, S.; Palleschi, V. Wood coated with plasma-polymer for water repellence. Wood Sci. Technol. 2007, 42, 149–160. [Google Scholar] [CrossRef]
- Mahlberg, R.; Niemi, H.E.M.; Denes, F.; Rowell, R.M. Effect of oxygen and hexamethyldisiloxane plasma on morphology, wettability and adhesion properties of polypropylene and lignocellulosics. Int. J. Adhes. Adhes. 1998, 18, 283–297. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Mori, K. Hydrophobic polymer films plasma-polymerized from CF4/hydrocarbon and hexafluroacetone/hydrocarbon mixtures. J. Appl. Polym. Sci. 1991, 43, 581–588. [Google Scholar] [CrossRef]
- Hochart, F.; Levalois-Mitjaville, J.; De Jaeger, R.; Gengembre, L.; Grimblot, J. Plasma surface treatment of poly(acrylonitrile) films by fluorocarbon compounds. Appl. Surf. Sci. 1999, 142, 574–578. [Google Scholar] [CrossRef]
- Benedikt, J. Plasma-chemical reactions: Low pressure acetylene plasmas. J. Phys. D Appl. Phys. 2010, 43, 043001. [Google Scholar] [CrossRef]
- Dorai, R.; Kushner, M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003, 36, 666–685. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. NIST Chemistry WebBook, SRD 69. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C107460&Units=SI&Mask=4&Type=ANTOINE&Plot=on (accessed on 1 September 2023).
- Despax, B.; Makasheva, K.; Caquineau, H. Cyclic powder formation during pulsed injection of hexamethyldisiloxane in an axially asymmetric radiofrequency argon discharge. J. Appl. Phys. 2012, 112, 093302. [Google Scholar] [CrossRef]
- Garofano, V.; Bérard, R.; Glad, X.; Joblin, C.; Makasheva, K.; Stafford, L. Time-resolved analysis of the precursor fragmentation kinetics in an hybrid PVD/PECVD dusty plasma with pulsed injection of HMDSO. Plasma Process. Polym. 2019, 16, 1900044. [Google Scholar] [CrossRef]
- Popok, V.N.; Kylián, O. Formation of Advanced Nanomaterials by Gas-Phase Aggregation. Appl. Nano 2021, 2, 82–84. [Google Scholar] [CrossRef]
- Cacot, L.; Carnide, G.; Kahn, M.L.; Clergereaux, R.; Naudé, N.; Stafford, L. Kinetics driving thin-film deposition in dielectric barrier discharges using a direct liquid injector operated in a pulsed regime. J. Phys. D Appl. Phys. 2022, 55, 475202. [Google Scholar] [CrossRef]
- Diversified Enterprises. Critical Surface Tension and Contact Angle with Water for Various Polymers. Available online: https://www.accudynetest.com/polytable_03.html?sortby=contact_angle (accessed on 1 September 2023).
- Parker, J.L.; Claesson, P.M.; Wang, J.-H.; Yasuda, H.K. Surface Forces between Plasma Polymer Films. Langmuir 2002, 10, 2766–2773. [Google Scholar] [CrossRef]
- Fernandes, J.C.S.; Ferreira, M.G.S.; Haddow, D.B.; Goruppa, A.; Short, R.; Dixon, D.G. Plasma-polymerised coatings used as pre-treatment for aluminium alloys. Surf. Coat. Technol. 2002, 154, 8–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Ishikawa, K.; Mozetič, M.; Tsutsumi, T.; Kondo, H.; Sekine, M.; Hori, M. Polyethylene terephthalate (PET) surface modification by VUV and neutral active species in remote oxygen or hydrogen plasmas. Plasma Process. Polym. 2019, 16, 1800175. [Google Scholar] [CrossRef]
- Chaiwong, C.; Rachtanapun, P.; Sarapirom, S.; Boonyawan, D. Plasma polymerization of hexamethyldisiloxane: Investigation of the effect of carrier gas related to the film properties. Surf. Coat. Technol. 2013, 229, 12–17. [Google Scholar] [CrossRef]
- Von Ahsen, S.; Willner, H.; Argüello, G.A. Fluorocarbon oxy and peroxy radicals. J. Fluor. Chem. 2004, 125, 1057–1070. [Google Scholar] [CrossRef]
- Saathoff, H.; Zellner, R. LIF detection of the CF3O radical and kinetics of its reactions with CH4 and C2H6. Chem. Phys. Lett. 1993, 206, 349–354. [Google Scholar] [CrossRef]
- Paul, D.; Mozetic, M.; Zaplotnik, R.; Primc, G.; Donlagic, D.; Vesel, A. A Review of Recombination Coefficients of Neutral Oxygen Atoms for Various Materials. Materials 2023, 16, 1774. [Google Scholar] [CrossRef]
- D’Agostino, R.; Cramarossa, F.; Illuzzi, F. Mechanisms of deposition and etching of thin films of plasma-polymerized fluorinated monomers in radio frequency discharges fed with C2F6-H2 and C2F6-O2 mixtures. J. Appl. Phys. 1987, 61, 2754–2762. [Google Scholar] [CrossRef]
- Huff, M. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Petit-Etienne, C.; Tatoulian, M.; Mabille, I.; Sutter, E.; Arefi-Khonsari, F. Deposition of SiOχ-Like Thin Films from a Mixture of HMDSO and Oxygen by Low Pressure and DBD Discharges to Improve the Corrosion Behaviour of Steel. Plasma Process. Polym. 2007, 4, S562–S567. [Google Scholar] [CrossRef]
- Yun, T.; Tao, Y.; Li, Q.; Cheng, Y.; Lu, J.; Lv, Y.; Du, J.; Wang, H. Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydr. Polym. 2023, 305, 120570. [Google Scholar] [CrossRef]
Author | Ref. | Pressure | Power [W] | Carrier Gas | Precursor | ttreatment | WCA [°] | Material Type |
---|---|---|---|---|---|---|---|---|
Yang | [16] | 1 bar | N/A | Oxygen | HMDSO | 0.1 s | 160 | Textile |
Yang | [16] | 1 bar | N/A | Nitrogen | HMDSO | 0.1 s | 150 | Textile |
Černy | [17] | 1 bar | 750 | Air | HMDSO | 30 min | 140 | Textile |
Černy | [17] | 5 Pa | 500 | None | HMDSO | 90 min | 140 | Powder |
Matouk | [19] | 1 bar | N/A | Argon | SiH4 | 1 min | 53 | Film |
Matouk | [19] | 1 bar | N/A | Argon | SiH4 | 2 min | 60 | Film |
Matouk | [19] | 1 bar | N/A | Argon | SiH4 | 3 min | 150 | Film |
Leal | [20] | Plasma pre-treatment only | TCMS | 133 | Membrane | |||
Yao | [21] | Plasma pre-treatment only | TS-POSS | 153 | Film | |||
Babaei | [22] | 1 bar | N/A | Helium | HMDSO | 30 min | 140 | Paper |
Babaei | [22] | 1 bar | N/A | Helium | HMDSO | 30 min | 140 | Paper |
Author | Ref. | Pressure | Power [W] | Carrier Gas | Precursor | ttreatment | WCA [°] | Material Type |
---|---|---|---|---|---|---|---|---|
Samanta | [23] | 1 bar | N/A | Helium | C2F4 | 1 min | 127 | Textile |
Samanta | [23] | 1 bar | N/A | Helium | C2F4 | 8 min | 153 | Textile |
Oberlintner | [24] | A few 10 Pa | 80 | None | CF4 | 10 s | 90 | Foil |
Oberlintner | [24] | A few 10 Pa | 80 | None | CF4 | 55 s | 130 | Foil |
Oberlintner | [25] | 50 Pa | 150 | None | CF4 | 1 s | 120 | Composite |
Oberlintner | [25] | 50 Pa | 150 | None | CF4 | 30 s | 127 | Composite |
Kawano | [26] | 67 Pa | 40 | None | CF4 | 30 s | 115 | Film |
Kawano | [26] | 67 Pa | 40 | None | CF4 | 60 s | 120 | Film |
Kawano | [26] | 67 Pa | 40 | None | CF4 | 240 s | 25 | Film |
Ionanou | [27] | 5.33 Pa | 900 | None | C4F8 | 240 s | 160 | Membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primc, G.; Vesel, A.; Zaplotnik, R.; Gorjanc, M.; Gselman, P.; Lehocký, M.; Mozetič, M. Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments. Polymers 2024, 16, 789. https://doi.org/10.3390/polym16060789
Primc G, Vesel A, Zaplotnik R, Gorjanc M, Gselman P, Lehocký M, Mozetič M. Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments. Polymers. 2024; 16(6):789. https://doi.org/10.3390/polym16060789
Chicago/Turabian StylePrimc, Gregor, Alenka Vesel, Rok Zaplotnik, Marija Gorjanc, Peter Gselman, Marián Lehocký, and Miran Mozetič. 2024. "Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments" Polymers 16, no. 6: 789. https://doi.org/10.3390/polym16060789
APA StylePrimc, G., Vesel, A., Zaplotnik, R., Gorjanc, M., Gselman, P., Lehocký, M., & Mozetič, M. (2024). Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments. Polymers, 16(6), 789. https://doi.org/10.3390/polym16060789