Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Simulation Method
2.2. Simulation Parameters
2.3. Force Field and Numerical Parameters
2.4. Chain Length Selection
2.5. System Size
2.6. Relaxation Mode
2.7. Continuous Deformation Mode
2.8. Anisotropy Γ
2.9. Linearity
2.10. Software
3. Results and Discussion
3.1. Effect of System Size and Isotropy
3.2. Effect of the Temperature
3.2.1. Relaxation Mode
3.2.2. Continuous Deformation Mode
3.3. Effect of the Pressure
3.3.1. Relaxation Mode
3.3.2. Continuous Deformation Mode
3.4. Youngs Modulus and Poisson Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKeen, L.W. 6—Polyimides. In The Effect of Long Term Thermal Exposure on Plastics and Elastomers; William Andrew Publishing: Oxford, UK, 2014; pp. 117–137. [Google Scholar] [CrossRef]
- Neyertz, S.; Brown, D. An optimized fully-atomistic procedure to generate glassy polymer films for molecular dynamics simulations. Comput. Mater. Sci. 2019, 174, 109499. [Google Scholar] [CrossRef]
- Lee, G.; Kim, Y.; Kwon, D. Mechanical characterization of polymer passivation layer in semiconductor applications using IIT and FEA. Microelectron. Eng. 2010, 87, 2288–2293. [Google Scholar] [CrossRef]
- Lei, H.; Qi, S.; Wu, D. Hierarchical multiscale analysis of polyimide films by molecular dynamics simulation: Investigation of thermo-mechanical properties. Polymer 2019, 179, 121645. [Google Scholar] [CrossRef]
- Odegard, G.M.; Clancy, T.C.; Gates, T.S. Prediction of Mechanical Properties of Polymers with Various Force Fields. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; pp. 586–597. [Google Scholar] [CrossRef]
- Riccardi, E.; Michael, C.B.; Florian, M. Molecular dynamics method to locally resolve Poisson’ s ratio: Mechanical description of the solid–soft-matter interphase. Phys. Rev. E 2012, 86, 036704. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, E.; Böhm, M.C.; Müller-Plathe, F. Molecular dynamics approach to locally resolve elastic constants in nanocomposites and thin films: Mechanical description of solid-soft matter interphases via Young’s modulus, Poisson’s ratio and shear modulus. Eur. Phys. J. E 2014, 37, 103. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA 2005, 102, 6665–6670. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, D.N.; Suter, U.W. Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 1986, 19, 139–154. [Google Scholar] [CrossRef]
- Brown, D.; Clarke, J.H.R. Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology. Macromolecules 1991, 24, 2075–2082. [Google Scholar] [CrossRef]
- Lyulin, A.V.; Balabaev, N.K.; Mazo, M.A.; Michels, M.A.J. Molecular dynamics simulation of uniaxial deformation of glassy amorphous atactic polystyrene. Macromolecules 2004, 37, 8785–8793. [Google Scholar] [CrossRef]
- Nazarychev, V.M.; Lyulin, A.V.; Larin, S.V.; Gurtovenko, A.A.; Kenny, J.M.; Lyulin, S.V. Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides. Soft Matter 2016, 12, 3972–3981. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.I.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Ramos, M.M.D.; Stoneham, A.M.; Sutton, A.P. Aluminum Polyimide Adhesion. Acta Metall. Mater. 1993, 41, 2105–2111. [Google Scholar] [CrossRef]
- Jewett, A.I.; Stelter, D.; Lambert, J.; Saladi, S.M.; Roscioni, O.M.; Ricci, M.; Autin, L.; Maritan, M.; Bashusqeh, S.M.; Keyes, T.; et al. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J. Mol. Biol. 2021, 433, 166841. [Google Scholar] [CrossRef] [PubMed]
- Gartner, T.E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. [Google Scholar] [CrossRef]
- Abbott, L.J.; Hart, K.E.; Colina, C.M. Polymatic: A generalized simulated polymerization algorithm for amorphous polymers. Theor. Chem. Acc. 2013, 132, 1334. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Rackers, J.A.; Wang, Z.; Lu, C.; Laury, M.L.; Lagardère, L.; Schnieders, M.J.; Piquemal, J.-P.; Ren, P.; Ponder, J.W. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput. 2018, 14, 5273–5289. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, P.; Brunsteiner, M.; Khinast, J. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations. Int. J. Pharm. 2012, 431, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Barrat, J.L.; Baschnagel, J.; Lyulin, A. Molecular dynamics simulations of glassy polymers. Soft Matter 2010, 6, 3430–3446. [Google Scholar] [CrossRef]
- Hossain, D.; Tschopp, M.A.; Ward, D.K.; Bouvard, J.L.; Wang, P.; Horstemeyer, M.F. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 2010, 51, 6071–6083. [Google Scholar] [CrossRef]
- Pan, R.; Liu, X.; Zhang, A.; Gu, Y. Molecular simulation on structure-property relationship of polyimides with methylene spacing groups in biphenyl side chain. Comput. Mater. Sci. 2007, 39, 887–895. [Google Scholar] [CrossRef]
- Low, B.T.; Xiao, Y.; Chung, T.S. Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture. Polymer 2009, 50, 3250–3258. [Google Scholar] [CrossRef]
- Liu, X. A Study on Patent Compulsory License System in China—With Particular Reference to the Drafted 3rd Amendment to the Patent Law of the P.R. of China. Pat. Technol. Prog. A Glob. World 2009, 6, 115–126. [Google Scholar] [CrossRef]
- Goyal, S.; Park, H.-H.; Lee, S.H.; Savoy, E.; McKenzie, M.E.; Rammohan, A.R.; Mauro, J.C.; Kim, H.; Min, K.; Cho, E. Characterizing the Fundamental Adhesion of Polyimide Monomers on Crystalline and Glassy Silica Surfaces: A Molecular Dynamics Study. J. Phys. Chem. C 2016, 120, 23631–23639. [Google Scholar] [CrossRef]
- Ries, M.; Weber, F.; Striegel, M.; Steinmann, P.; Pfaller, S. Multiscale fe-md coupling: Influence of the Chain Length on the Mechanical Behavior of Coarse-Grained Polystyrene. In Proceedings of the World Congress in Computational Mechanics and ECCOMAS Congress, Virtual Congress, 11–15 January 2021; Volume 300, pp. 1–12. [Google Scholar] [CrossRef]
- Siviour, C.R.; Jordan, J.L. High Strain Rate Mechanics of Polymers: A Review. J. Dyn. Behav. Mater. 2016, 2, 15–32. [Google Scholar] [CrossRef]
- Schnell, W.; Gross, D.; Hauger, W. Technische Mechanik, 6th ed.; Springer-Lehrbuch: Heidelberg/Berlin, Germany, 1998. [Google Scholar] [CrossRef]
- Dupont (USA). DuPont Kapton—Summary of Properties; Dupont: Hayward, CA, USA, 2021. [Google Scholar]
- Ries, M.; Possart, G.; Steinmann, P.; Pfaller, S. Extensive CGMD simulations of atactic PS providing pseudo experimental data to calibrate nonlinear inelastic continuum mechanical constitutive laws. Polymers 2019, 11, 1824. [Google Scholar] [CrossRef]
- Chang, W.Y.; Fang, T.H.; Lin, Y.C. Physical characteristics of polyimide films for flexible sensors. Appl. Phys. A Mater. Sci. Process 2008, 92, 693–701. [Google Scholar] [CrossRef]
- Kuo, C.T.; Yip, M.C.; Chiang, K.N.; Tsou, C. Characterization study of time- and temperature-dependent mechanical behavior of polyimide materials in electronic packaging applications. J. Electron. Mater. 2005, 34, 272–281. [Google Scholar] [CrossRef]
- Rahimi, M.; Iriarte-Carretero, I.; Ghanbari, A.; Böhm, M.C.; Müller-Plathe, F. Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation. Nanotechnology 2012, 23, 305702. [Google Scholar] [CrossRef]
- Material Property Database. Available online: https://www.mit.edu/~6.777/matprops/polyimide.htm (accessed on 7 August 2023).
- Miyauchi, M.; Kazama, K.I.; Sawaguchi, T.; Yokota, R. Dynamic tensile properties of a novel Kapton-type asymmetric polyimide derived from 2-phenyl-4,4′-diaminodiphenyl ether. Polym. J. 2011, 43, 866–868. [Google Scholar] [CrossRef]
- Song, G.; Wang, S.; Wang, D.; Zhou, H.; Chen, C.; Zhao, X.; Dang, G. Rigidity enhancement of polyimides containing benzimidazole moieties. J. Appl. Polym. Sci. 2013, 130, 1653–1658. [Google Scholar] [CrossRef]
System | Chains | Monomers per Chain | Atoms |
---|---|---|---|
A | 27 | 5 | 5265 |
B | 16 | 20 | 12,480 |
C | 80 | 20 | 62,400 |
System | Chains | Monomers per Chain | Atoms |
---|---|---|---|
B | 16 | 20 | 14,496 |
C | 80 | 20 | 72,480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenauer, P.; Kratzer, C.; Larisegger, S.; Radl, S. Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides. Polymers 2024, 16, 813. https://doi.org/10.3390/polym16060813
Rosenauer P, Kratzer C, Larisegger S, Radl S. Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides. Polymers. 2024; 16(6):813. https://doi.org/10.3390/polym16060813
Chicago/Turabian StyleRosenauer, Philipp, Christoph Kratzer, Silvia Larisegger, and Stefan Radl. 2024. "Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides" Polymers 16, no. 6: 813. https://doi.org/10.3390/polym16060813
APA StyleRosenauer, P., Kratzer, C., Larisegger, S., & Radl, S. (2024). Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides. Polymers, 16(6), 813. https://doi.org/10.3390/polym16060813