Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review
Abstract
:1. Introduction
2. EMR Interaction with Materials
3. Electromagnetic Properties and Synthesis Methods of Spinel Ferrites
4. Radar-Absorbing Parameters of Ferrites and Ferrite–Polymer Composites
- Reflection: part of the energy of electromagnetic waves is reflected.
- Dielectric losses: part of the energy of electromagnetic waves is converted into heat due to dielectric losses in the polymer matrix.
- Eddy current losses in ferrite filler.
- Magnetic losses in ferrite filler: these are the energy losses of electromagnetic waves on the resonance of the domain boundaries and the ferromagnetic resonance in the ferrite filler.
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Redlarski, G.; Lewczuk, B.; Żak, A.; Koncicki, A.; Krawczuk, M.; Piechocki, J.; Jakubiuk, K.; Tojza, P.; Jaworsk, J.; Ambroziak, D.; et al. The Influence of Electro-magnetic Pollution on Living Organisms: Historical Trends and Forecasting Changes. BioMed Res. Int. 2015, 2015, 234098. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Bibi, A.; Frezza, F.; Mangini, F. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3121–3128. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Martínez, R.; Munoz-Gutierrez, F.J.; Rodríguez-Gómez, A. Trajectory optimization for exposure to minimal electromagnetic pollution using genetic algorithms approach: A case study. Expert Syst. Appl. 2022, 207, 118088. [Google Scholar] [CrossRef]
- Balmori, A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology 2009, 16, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wongkasem, N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues. Electromagn. Biol. Med. 2021, 40, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Ahlbom, A.; Feychting, M. Electromagnetic radiation: Environmental pollution and health. Br. Med. Bull. 2003, 68, 157–165. [Google Scholar] [CrossRef]
- Ozdemir, F.; Kargi, A. Electromagnetic waves and human health. In Electromagnetic Waves; IntechOpen: London, UK, 2011; pp. 473–487. [Google Scholar] [CrossRef]
- Wdowiak, A.; Mazurek, P.A.; Wdowiak, A.; Bojar, I. Effect of electromagnetic waves on human reproduction. Ann. Agric. Environ. Med. 2017, 24, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O. Human health effects of nonionizing electromagnetic fields. In Patty’s Toxicology, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 6, pp. 109–132. [Google Scholar] [CrossRef]
- Genuis, S.J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation. Public Health 2008, 122, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.R.; Scully, R.C.; Steffka, M.A. Introduction to Electromagnetic Compatibility; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022. [Google Scholar]
- Ma, M.; Kanda, M.; Crawford, M.; Larsen, E. A review of electromagnetic compatibility/interference measurement methodologies. Proc. IEEE 1985, 73, 388–411. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. [Google Scholar] [CrossRef]
- Elmahaishi, M.F.; Azis, R.S.; Ismail, I.; Muhammad, F.D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220. [Google Scholar] [CrossRef]
- Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef] [PubMed]
- Bur, A.J. Dielectric properties of polymers at microwave frequencies: A review. Polymer 1985, 26, 963–977. [Google Scholar] [CrossRef]
- Kostishin, V.G.; Shakirzyanov, R.I.; Isaev, I.M.; Salogub, D.V. Study of radar absorbing characteristics of polymer composites with ferrite fillers. Ind. Lab. Diagn. Mater. 2022, 88, 31–45. [Google Scholar] [CrossRef]
- Kao, K.C. Dielectric Phenomena in Solids; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Kotsuka, Y. Electromagnetic Wave Absorbers: Detailed Theories and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 2018, 149, 188–197. [Google Scholar] [CrossRef]
- Wang, B.; Wei, J.; Qiao, L.; Wang, T.; Li, F. Influence of the interface reflections on the microwave reflection loss for carbonyl iron/paraffin composite backed by a perfect conduction plate. J. Magn. Magn. Mater. 2012, 324, 761–765. [Google Scholar] [CrossRef]
- Lopatin, A.V.; Kazantseva, N.E.; Kazantsev, Y.N.; D’yakonova, O.A.; Vilčáková, J.; Sáha, P. The efficiency of application of magnetic polymer composites as radio-absorbing materials. J. Commun. Technol. Electron. 2008, 53, 487–496. [Google Scholar] [CrossRef]
- Kim, S.; Jo, S.; Gueon, K.; Choi, K.; Kim, J.; Churn, K. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 1991, 27, 5462–5464. [Google Scholar] [CrossRef]
- Mabhouti, K.; Karamirad, M.; Norouzzadeh, P.; Golzan, M.M.; Naderali, R. Measurement of Electric and Magnetic Properties of ZnO Nanoparticles in the X-Band Using Nicolson–Ross–Weir Analysis. J. Electron. Mater. 2020, 49, 3668–3676. [Google Scholar] [CrossRef]
- Hien, P.-T.; Hong, I.-P. Material Thickness Classification Using Scattering Parameters, Dielectric Constants, and Machine Learning. Appl. Sci. 2021, 11, 10682. [Google Scholar] [CrossRef]
- Saini, M.; Shukla, R.; Kumar, A. Cd2+ substituted nickel ferrite doped polyaniline nanocomposites as effective shield against electromagnetic radiation in X-band frequency. J. Magn. Magn. Mater. 2019, 491, 165549. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, R.; Sokolov, O.; Leontiev, V.; Kuts, V.; Kiselev, D.; Wang, Y. Magnetoelectric Magnetic Field Sensors: A Review. Sensors 2021, 21, 6232. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.N.; Rewatkar, K.G.; Nanoti, V.M.; Tayade, N.T. Soft Ferrite: A brief review on structural, magnetic behavior of nanosize spinel ferrites. Mater. Res. Found. 2018, 31, 237. [Google Scholar] [CrossRef]
- Narang, S.B.; Pubby, K. Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163. [Google Scholar] [CrossRef]
- Gore, S.K.; Jadhav, S.S. Basics of ferrites. In Spinel Ferrite Nanostructures for Energy Storage Devices; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Letyuk, L.M.; Kostishin, V.G.; Gonchar, A.V. Technology of Ferrite Materials of Magnetoelectronics; Monograph; Publishing House, MISiS: Moscow, Russia, 2005; 352p. [Google Scholar]
- Sláma, J.; Šoka, M.; Grusková, A.; Dosoudil, R.; Jančárik, V.; Degmová, J. Magnetic properties of selected substituted spinel ferrites. J. Magn. Magn. Mater. 2013, 326, 251–256. [Google Scholar] [CrossRef]
- Kazantseva, N.E. Magnetic particle-filled polymer microcomposites. In Polymer Composites: Volume 1, 1st ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2012; pp. 613–672. [Google Scholar]
- Fang, G.; Liu, C.; Yang, Y.; Peng, K.; Xu, G.; Zhang, Y. Broad microwave absorption bandwidth achieved by exchange coupling interaction between hard and soft magnetic materials. Ceram. Int. 2021, 47, 2879–2883. [Google Scholar] [CrossRef]
- Dias, A.; Mohallem, N.; Moreira, R. Solid-State Sintering of Hydrothermal Powders: Densification and Grain Growth Kinetics of Nickel–Zinc Ferrites. Mater. Res. Bull. 1998, 33, 475–486. [Google Scholar] [CrossRef]
- Kostishin, V.G.; Shakirzyanov, R.I.; Nalogin, A.G.; Shcherbakov, S.V.; Isaev, I.M.; Nemirovich, M.A.; Mikhailenko, M.A.; Korobeinikov, M.V.; Mezentseva, M.P.; Salogub, D.V. Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology. Phys. Solid State 2021, 63, 435–441. [Google Scholar] [CrossRef]
- Jalali, S.I.A.; Manchón-Gordón, A.F.; Chacartegui, R.; Sánchez-Jiménez, P.E.; Blázquez, J.S.; Perejón, A.; Raj, R.; Pérez-Maqueda, L.A. Touch-free reactive flash sintering of dense strontium hexaferrite permanent magnet. J. Am. Ceram. Soc. 2023, 106, 7202–7208. [Google Scholar] [CrossRef]
- Song, S.; Song, Q.; Li, J.; Mudinepalli, V.R.; Zhang, Z. Characterization of submicrometer-sized NiZn ferrite prepared by spark plasma sintering. Ceram. Int. 2014, 40, 6473–6479. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Bououdina, M.; Judith Vijaya, J.; John Kennedy, L. Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications. In Nanophysics, Nanomaterials, Interface Studies, and Applications; Springer Proceedings in Physics; Springer: Cham, Switzerland, 2017; Volume 195, pp. 305–325. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Zhao, J.; Chen, X.; Gan, G.; Wang, G.; He, L. Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy. Compd. 2019, 778, 8–14. [Google Scholar] [CrossRef]
- Dutta, S.K.; Akhter, M.; Ahmed, J.; Amin, M.K.; Dhar, P.K. Synthesis and Catalytic Activity of Spinel Ferrites: A Brief Review. Biointerface Res. Appl. Chem. 2021, 12, 4399–4416. [Google Scholar] [CrossRef]
- Naidu, K.C.B.; Madhuri, W. Hydrothermal synthesis of NiFe2O4 nano-particles: Structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci. 2017, 40, 417–425. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Chiu, Y.-C.; Lei, C.-M. Hydrothermally Synthesized Mg-Based Spinel Nanoferrites: Phase Formation and Study on Magnetic Features and Microwave Characteristics. Materials 2018, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Shirsath, S.E.; Wang, D.; Jadhav, S.S.; Mane, M.L.; Li, S. Ferrites Obtained by Sol–Gel Method. In Handbook of Sol-Gel Science and Technology; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 1–41. [Google Scholar] [CrossRef]
- Mathew, D.S.; Juang, R.-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 2007, 129, 51–65. [Google Scholar] [CrossRef]
- Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Havlica, J.; Kalina, L.; Urbánek, P.; Machovsky, M.; Skoda, D.; Masař, M.; Holek, M. Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason. Sonochem. 2018, 40, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Šepelák, V.; Wißmann, S.; Becker, K. Magnetism of nanostructured mechanically activated and mechanosynthesized spinel ferrites. J. Magn. Magn. Mater. 1999, 203, 135–137. [Google Scholar] [CrossRef]
- Jänis, A.; Olsson, R.T.; Savage, S.J.; Gedde, U.W.; Klement, U. Microwave Absorbing Properties of Ferrite-Based Nanocomposites. In Proc. SPIE 6526, Behavior and Mechanics of Multifunctional and Composite Materials 2007; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Aherrao, D.S.; Singh, C.; Srivastava, A.K. Review of ferrite-based microwave-absorbing materials: Origin, synthesis, morphological effects, dielectric/magnetic properties, composites, absorption mechanisms, and optimization. J. Appl. Phys. 2022, 132, 240701. [Google Scholar] [CrossRef]
- Ali, N.N.; Atassi, Y.; Salloum, A.; Charba, A.; Malki, A.; Jafarian, M. Comparative study of microwave absorption characteristics of (Polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages. Mater. Chem. Phys. 2018, 211, 79–87. [Google Scholar] [CrossRef]
- Meng, F.; Wang, H.; Huang, F.; Guo, Y.; Wang, Z.; Hui, D.; Zhou, Z. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B Eng. 2018, 137, 260–277. [Google Scholar] [CrossRef]
- Brockman, F.G.; Dowling, P.H.; Steneck, W.G. Dimensional Effects Resulting from a High Dielectric Constant Found in a Ferromagnetic Ferrite. Phys. Rev. B 1950, 77, 85–93. [Google Scholar] [CrossRef]
- Rao, B.P.; Rao, K. Dimensional Effects Resulting from High Dielectric Constants in NiZnSc-Ferrites. J. Magn. Soc. Jpn. 1998, 22, 305–307. [Google Scholar] [CrossRef]
- Andreev, V.; Menshova, S.; Klimov, A.; Vergazov, R.; Bibikov, S.; Prokofiev, M. Influence of microstructure on properties of Ni–Zn ferrite radio-absorbing materials. J. Magn. Magn. Mater. 2015, 394, 1–6. [Google Scholar] [CrossRef]
- Kostishyn, V.G.; Isaev, I.M.; Shakirzyanov, R.I.; Salogub, D.V.; Kayumova, A.R.; Olitsky, V.K. Radar absorbing properties of polyvinyl alcohol/Ni-Znferrite-spinel composite. Tech. Phys. 2022, 92, 104. [Google Scholar] [CrossRef]
- Sebastian, M.T. Dielectric Materials for Wireless Communication; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780080453309. [Google Scholar]
- Isaev, I.M.; Kostishin, V.G.; Korovushkin, V.V.; Salogub, D.V.; Shakirzyanov, R.I.; Timofeev, A.V.; Mironovich, A.Y. Magnetic and Radio-Absorbing Properties of Polycrystalline Li0.33Fe2.29Zn0.21Mn0.17O4 Spinel Ferrite. Tech. Phys. 2021, 66, 1216–1220. [Google Scholar] [CrossRef]
- Yusoff, A.; Abdullah, M. Microwave electromagnetic and absorption properties of some LiZn ferrites. J. Magn. Magn. Mater. 2004, 269, 271–280. [Google Scholar] [CrossRef]
- Rahman, T.; Vargas, M.; Ramana, C. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 2014, 617, 547–562. [Google Scholar] [CrossRef]
- Tsutaoka, T.; Kasagi, T.; Nakamura, T.; Hatakeyama, K. High Frequency Permeability of Mn-Zn Ferrite and its Composite Materials. Le J. De Phys. IV 1997, 7, C1-557–C1-558. [Google Scholar] [CrossRef]
- Tsutaoka, T.; Ueshima, M.; Tokunaga, T.; Nakamura, T.; Hatakeyama, K.J. Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials. Appl. Phys. 1995, 78, 3983–3991. [Google Scholar] [CrossRef]
- Tsutaoka, T. Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 2003, 93, 2789–2796. [Google Scholar] [CrossRef]
- Tsutaoka, T.; Kasagi, T.; Hatakeyama, K.; Koledintseva, M.Y. Analysis of the permeability spectra of spinel ferrite composites using mixing rules. In Proceedings of the 2013 IEEE International Symposium on Electromagnetic Compatibility, Denver, CO, USA, 5–9 August 2013; pp. 545–550. [Google Scholar]
- Isaev, I.M.; Kostishin, V.G.; Shakirzyanov, R.I.; Kayumova, A.R.; Olitsky, V.K.; Salogub, D.V. Radar Absorbing and Shielding Characteristics in Ferrite-Polymer Composites Mn-Zn Ferrite/P (TFE-VDF). Tech. Phys. 2022, 67, 366–375. [Google Scholar] [CrossRef]
- Kostishyn, V.G.; Shakirzyanov, R.I.; Isaev, I.M.; Olitsky, V.K.; Kayumova, A.R.; Salogub, D.V. Electrophysical Characteristics of Polyvinyl Alcohol/Mn–Zn Ferrite–Spinel Magnetic Polymer Composites. Bull. Russ. Acad. Sci. Phys. 2022, 86, 618–622. [Google Scholar] [CrossRef]
- Lagarkov, A.N.; Rozanov, K.N. High-frequency behavior of magnetic composites. J. Magn. Magn. Mater. 2009, 321, 2082–2092. [Google Scholar] [CrossRef]
- Isaev, I.M.; Kostishin, V.G.; Shakirzyanov, R.I.; Kayumova, A.R.; Salogub, D.V. Electromagnetic Properties of Polymer Composites Li0.33Fe2.29Zn0.21Mn0.174/P(VDF-TFE) in the Frequency Range 100–7000 MHz. Semiconductors 2022, 56, 87. [Google Scholar] [CrossRef]
- Xie, X.; Wang, B.; Wang, Y.; Ni, C.; Sun, X.; Du, W. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J. 2021, 428, 131160. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Wang, Y.; Tian, H.; Tong, H.; Xu, B. Characterization of (Mg, La) Substituted Ni-Zn Spinel Ferrite. Phys. Procedia 2013, 50, 43–47. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Xu, B.; Wang, Y.; Tian, H.; Tong, H. Effect of Heat Treatment on Microwave Absorption Properties of Ni–Zn–Mg–La Ferrite Nanoparticles. J. Magn. Magn. Mater. 2014, 349, 57–62. [Google Scholar] [CrossRef]
- Aphesteguy, J.; Damiani, A.; DiGiovanni, D.; Jacobo, S. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Phys. B Condens. Matter 2009, 404, 2713–2716. [Google Scholar] [CrossRef]
- Ren, X.; Xu, G. Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+. J. Magn. Magn. Mater. 2014, 354, 44–48. [Google Scholar] [CrossRef]
- Bueno, A.R.; Gregori, M.L.; Nóbrega, M.C. Microwave-absorbing properties of Ni0.50−xZn0.50−xMe2xFe2O4 (Me = Cu, Mn, Mg) ferrite–wax composite in X-band frequencies. J. Magn. Magn. Mater. 2008, 320, 864–870. [Google Scholar] [CrossRef]
- Gama, A.M.; Rezende, M.C.; Dantas, C.C. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Magn. Mater. 2011, 323, 2782–2785. [Google Scholar] [CrossRef]
- Astakhov, V.A.; Shakirzyanov, R.I.; Morchenko, A.T.; Mingazheva, Z.V.; Kurochka, S.P. Modeling the Permittivity of Ferrite-Dielectric Composites. J. Nano- Electron. Phys. 2016, 8, 03044. [Google Scholar] [CrossRef]
- Zhou, J.; Shu, X.; Wang, Y.; Ma, J.; Liu, Y.; Shu, R.; Kong, L. Enhanced microwave absorption properties of (1−x)CoFe2O4/xCoFe composites at multiple frequency bands. J. Magn. Magn. Mater. 2020, 493, 165699. [Google Scholar] [CrossRef]
- Mahdikhah, V.; Ataie, A.; Babaei, A.; Sheibani, S.; Ow-Yang, C.; Abkenar, S.K. CoFe2O4/Fe magnetic nanocomposite: Exchange coupling behavior and microwave absorbing property. Ceram. Int. 2020, 46, 17903–17916. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Liu, P.; Yao, Z.; Zhou, J. Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram. Int. 2016, 42, 9241–9249. [Google Scholar] [CrossRef]
- Zong, M.; Huang, Y.; Ding, X.; Zhang, N.; Qu, C.; Wang, Y. One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram. Int. 2014, 40, 6821–6828. [Google Scholar] [CrossRef]
- Teber, A.; Cil, K.; Yilmaz, T.; Eraslan, B.; Uysal, D.; Surucu, G.; Baykal, A.H.; Bansal, R. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials. Aerospace 2017, 4, 2. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Lin, H.; Wang, T.; Ding, S.; Li, Z.; Wang, J.; Meng, A.; Li, Q.; Lin, Y. Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B Eng. 2020, 190, 107902. [Google Scholar] [CrossRef]
- He, J.-Z.; Wang, X.-X.; Zhang, Y.-L.; Cao, M.-S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140. [Google Scholar] [CrossRef]
- Wang, C.-P.; Li, C.-H.; Bi, H.; Li, J.-C.; Zhang, H.; Xie, A.-J.; Shen, Y.-H. Novel one-dimensional polyaniline/Ni0.5Zn0.5Fe2O4 hybrid nanostructure: Synthesis, magnetic, and electromagnetic wave absorption properties. J. Nanoparticle Res. 2014, 16, 2289. [Google Scholar] [CrossRef]
- Jiao, Z.; Yao, Z.; Zhou, J.; Qian, K.; Lei, Y.; Wei, B.; Chen, W. Enhanced microwave absorption properties of Nd-doped NiZn ferrite/polyaniline nanocomposites. Ceram. Int. 2020, 46, 25405–25414. [Google Scholar] [CrossRef]
- Moučka, R.; Lopatin, A.V.; Kazantseva, N.E.; Vilčáková, J.; Sáha, P. Enhancement of magnetic losses in hybrid polymer composites with MnZn-ferrite and conductive fillers. J. Mater. Sci. 2007, 42, 9480–9490. [Google Scholar] [CrossRef]
- Bespyatykh, Y.I.; Kazantseva, N.E. Electromagnetic properties of hybrid polymer composites. J. Commun. Technol. Electron. 2008, 53, 143–154. [Google Scholar] [CrossRef]
- Shakirzyanov, R.I.; Kostishyn, V.G.; Morchenko, A.T.; Isaev, I.M.; Kozlov, V.V.; Astakhov, V.A. Synthesis and Property Study of Films of Microwave-Absorbing Composites Consisting of Mn0.5792Zn0.2597Fe2.1612O4 Inclusions and the –[(CH2–CH2)m–(CF2–CF2)n]k– Polymer Matrix. Russ. J. Inorg. Chem. 2020, 65, 829–833. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, T.; Das, S.; Chatterjee, S.; Sutradhar, S. β-Phase improved Mn-Zn-Cu-ferrite-PVDF nanocomposite film: A metamaterial for enhanced microwave absorption. Mater. Sci. Eng. B 2019, 245, 17–29. [Google Scholar] [CrossRef]
- Jacobo, S.E.; Bercoff, P.G.; Herme, C.A.; Vives, L.A. Sr hexaferrite/Ni ferrite nanocomposites: Magnetic behavior and microwave absorbing properties in the X-band. Mater. Chem. Phys. 2015, 157, 124–129. [Google Scholar] [CrossRef]
- Han, Q.; Meng, X.; Lu, C. Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance. J. Alloy. Compd. 2018, 768, 742–749. [Google Scholar] [CrossRef]
- Yang, N.; Luo, Z.-X.; Chen, S.-C.; Wu, G.; Wang, Y.-Z. Fe3O4 Nanoparticle/N-Doped Carbon Hierarchically Hollow Microspheres for Broadband and High-Performance Microwave Absorption at an Ultralow Filler Loading. ACS Appl. Mater. Interfaces 2020, 12, 18952–18963. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Zhang, Y.; Feng, R.; Chen, X.; Xiong, C.; Dong, L. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe2O4/Reduced Graphene Oxide Porous Nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 13860–13868. [Google Scholar] [CrossRef]
- Shu, X.; Zhou, J.; Liu, Y.; Wang, Y.; Hu, B.; Jiang, Y.; Kong, L.; Zhang, T.; Song, H. Hollow Fe3O4 microspheres/graphene composites with adjustable electromagnetic absorption properties. Diam. Relat. Mater. 2019, 97, 107441. [Google Scholar] [CrossRef]
- Saini, M.; Singh, S.K.; Shukla, R.; Kumar, A. Mg Doped Copper Ferrite with Polyaniline Matrix Core–Shell Ternary Nanocomposite for Electromagnetic Interference Shielding. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2306–2315. [Google Scholar] [CrossRef]
- Gairola, S.; Verma, V.; Kumar, L.; Dar, M.A.; Annapoorni, S.; Kotnala, R. Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band. Synth. Met. 2010, 160, 2315–2318. [Google Scholar] [CrossRef]
- Dar, M.A.; Kotnala, R.K.; Verma, V.; Shah, J.; Siddiqui, W.A.; Alam, M. High Magneto-Crystalline Anisotropic Core–Shell Structured Mn0.5Zn0.5Fe2O4/Polyaniline Nanocomposites Prepared by in Situ Emulsion Polymerization. J. Phys. Chem. C 2012, 116, 5277–5287. [Google Scholar] [CrossRef]
- Gandhi, N.; Singh, K.; Ohlan, A.; Singh, D.; Dhawan, S. Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 nanocomposites. Compos. Sci. Technol. 2011, 71, 1754–1760. [Google Scholar] [CrossRef]
- Gill, N.; Sharma, A.L.; Gupta, V.; Tomar, M.; Pandey, O.; Singh, D.P. Enhanced microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. J. Alloy. Compd. 2019, 797, 1190–1197. [Google Scholar] [CrossRef]
- Bera, R.; Das, A.K.; Maitra, A.; Paria, S.; Karan, S.K.; Khatua, B.B. Salt leached viable porous Fe3O4 decorated polyaniline—SWCNH/PVDF composite spectacles as an admirable electromagnetic shielding efficiency in extended Ku-band region. Compos. Part B Eng. 2017, 129, 210–220. [Google Scholar] [CrossRef]
- Cheng, H.; Wei, S.; Ji, Y.; Zhai, J.; Zhang, X.; Chen, J.; Shen, C. Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2019, 121, 139–148. [Google Scholar] [CrossRef]
- Lalan, V.; Ganesanpotti, S. Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites. J. Electron. Mater. 2019, 49, 1666–1676. [Google Scholar] [CrossRef]
Matrix | Filler | |Rl(max)|, dB | h, mm | Δf (−10 dB), GHz | f0, GHz | C, % | Ref. |
---|---|---|---|---|---|---|---|
PVA | Ni0.32Zn0.68Fe2O4 | 22.6 | 7 | 2.4 | 4.46 | 80 (wt. %) | [54] |
PVA | Mn0.58Zn0.26Fe0.16Fe2O4 (100–200 μm) | 22.26 | 6 | 2.3 | 4.42 | 40 (wt. %) | [64] |
P(VDF-PFE), Grade F42 | Mn0.58Zn0.26Fe0.16Fe2O4 (<45 μm) | 24.2 | 5.9 | 2.49 | 5.37 | 20 (wt. %) | [63] |
P(VDF-PFE), Grade F42 | Mn0.58Zn0.26Fe0.16Fe2O4 (<45 μm) | 68.79 | 20.2 | 0.16 | 0.06 | 80 (wt. %) | [63] |
P(VDF-PFE), Grade F42 | Mn0.58Zn0.26Fe0.16Fe2O4 (<45 μm) | 49.67 | 16.2 | 0.52 | 0.98 | 40 (wt. %) | [63] |
P(VDF-PFE), Grade F2M | Mn0.58Zn0.26Fe0.16Fe2O4 (45–100 μm) | 42.55 | 6.5 | 2.52 | 4.07 | 40 (wt. %) | This work |
Polystyrene | Mn0.58Zn0.26Fe0.16Fe2O4 (<45 μm) | 29.75 | 6.8 | 2.4 | 3.57 | 60 (wt. %) | This work |
P(VDF-PFE), Grade F2M | Ni0.32Zn0.68Fe2O4 | 27.5 | 6.9 | 3.37 | 5.37 | 80 (wt. %) | This work |
P(VDF-PFE), Grade F2M | Li0.33Fe2.29Zn0.21Mn0.17O4 | 33.8 | 6 | 4.2 | 5.37 | 60 (wt. %) | [66] |
P(VDF-PFE), Grade F2M | Li0.33Fe2.29Zn0.21Mn0.17O4 | 23.2 | 6 | 3.7 | 3.35 | 80 (wt. %) | [66] |
Paraffin | Co0.2Ni0.4Zn0.4Fe2O4/graphene | 53.5 | 3.1 | 4.8 | 10 | 40 (wt. %) | [77] |
Paraffin | MnFe2O4/multiwalled carbon nanotubes | 56.00 | 3 | 4 и более | 11.41 | 40 (wt. %) | [80] |
Paraffin | ZnFe2O4/multiwalled carbon nanotubes | 42.06 | 3 | 4 | 11.05 | 40 (wt. %) | [80] |
Paraffin | Ni0.35Co0.15Zn0.5La0.02Fe1.98O4 | 34 | 4 | 5.5 | 5.8 | ~85 (wt. %) | [71] |
Wax | Ni0.4Zn0.4Mn0.2Fe2O4 | 29.56 | 4.5 | 2.5 | 8.7 | 80 (wt. %) | [72] |
Wax | Ni0.4Zn0.4Cu0.2Fe2O4 | 35.02 | 4.5 | 2.5 | 8.6 | 80 (wt. %) | [72] |
PVDF | Mn0.8Zn0.2Cu0.2Fe1.8O4 | 32 | 0.2 | 6 | 14 | 5 (wt. %) | [88] |
Paraffin | Ni-Zn ferrite/polyaniline 1:1 | 44.23 | 2.25 | 1.65 | 12.1 | 25 (wt. %) | [49] |
Paraffin | Ni-Zn ferrite/polyaniline 2:1 | 27.5 | 2 | 3 | 6 | 70 (wt. %) | [83] |
Paraffin | Ni-Zn-Nd ferrite/polyaniline 100:25 | 37.4 | 4 | 4.9 | 8.3 | 37.5 (wt. %) | [84] |
Paraffin | Ni0.5Zn0.5Fe2O4/SrFe12O19 1:3 | 47 | 4 | 6.4 | 6.2 | 54 (wt. %) | [89] |
Paraffin | Ba(Zr–Ni)0.6Fe10.8O19/Fe3O4 1:1 | 43.08 | 1.9 | 6.88 | 14 | - | [33] |
Paraffin | CoFe2O4/rGO 1:2 | 67.58 | 2.1 | 6.3 | 13.5 | 10 (wt. %) | [81] |
Paraffin | NiFe2O4/rGO | 42 | 5 | 5.3 | 6.3 | 70 (wt. %) | [82] |
Paraffin | CoFe2O4/CoFe alloy 4:6 | 58.22 | 1.45 | 4.16 | 12.96 | 80 (wt. %) | [75] |
Wax | Fe3O4/carbonized empty nanospheres | 60.3 | 3.72 | 6.4 | 9.5 | 10 (wt. %) | [91] |
Paraffin | CoFe2O4 porous nanospheres/rGO 10:1 | 57.7 | 2.8 | 5.8 | 10.2 | 50 (wt. %) | [92] |
Matrix | Filler | SET, dB | SER, dB | SEA, dB | Frequencies, GHz | h, mm | C, % | Ref. |
---|---|---|---|---|---|---|---|---|
PANI | Ni0.6Cd0.4Fe2O4 | 42 | 7 | 35 | 8–12 | 2.3 | 30 (wt. %) | [26] |
PANI | Mn0.2Ni0.4Zn0.4Fe2O4 | 48.5 | 2.5 | 46 | 8–12 | 2.5 | 80 (wt. %) | [95] |
PANI | Mg0.6Cu0.4Fe2O4 | 32.8 | 8.3 | 24.5 | 8–12 | 2.2 | 15 (wt. %) | [94] |
PANI | Mn0.5Zn0.5Fe2O4 | 31 | 25 | 6 | 8–12 | 2 | 40(wt. %) | [96] |
PANI | CoFe2O4 | 22 | 4 | 18 | 12.4–18 | - | 66 (wt. %) | [97] |
PVDF | Mn-Zn ferrite | 12–16 | 2 | 10–14 | 2–7 | 6 | 60 (wt. %) | This work |
PVDF | Mn-Zn ferrite | 15–35 | 2.5 | 12.5–32.5 | 2–7 | 6 | 80 (wt. %) | This work |
Polypyrrole | CoFe2O4/graphene | 38 | 1 | 37 | 8–12 | 2 | 44 (wt. %) | [98] |
PVDF | Fe3O4/ПАНИ/carbon nanotubes | 37 | 7 | 30 | 14–20 | 2 | 10 (wt. %) | [99] |
PVDF | Fe3O4/carbon nanotubes (8% carbon material) | 32.7 | 5 | 27.7 | 18–26.5 | 1.1 | 5.5 (wt. %) | [100] |
PVDF | Fe3O4/graphene sheets (8% carbon material) | 35.6 | 4 | 31.6 | 18–26.5 | 1.1 | 5.5 (wt. %) | [100] |
PVDF | Fe3O4/soot | 55.3 | 8.9 | 46.4 | 8–12 | 2 | 70 (wt. %) | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostishin, V.G.; Isaev, I.M.; Salogub, D.V. Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review. Polymers 2024, 16, 1003. https://doi.org/10.3390/polym16071003
Kostishin VG, Isaev IM, Salogub DV. Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review. Polymers. 2024; 16(7):1003. https://doi.org/10.3390/polym16071003
Chicago/Turabian StyleKostishin, Vladimir G., Igor M. Isaev, and Dmitrij V. Salogub. 2024. "Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review" Polymers 16, no. 7: 1003. https://doi.org/10.3390/polym16071003
APA StyleKostishin, V. G., Isaev, I. M., & Salogub, D. V. (2024). Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review. Polymers, 16(7), 1003. https://doi.org/10.3390/polym16071003