The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Results of Characterization Chemistry
3.2. Results of Adsorptions of Cr (VI) and Pb (II)
3.3. Analysis EM y EDS
3.4. Hydrolysis Results
3.5. Production of Biohidrogen
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zia, Z.; Hartland, A.; Mucalo, M.R. Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. Int. J. Environ. Sci. Technol. 2020, 17, 4389–4406. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Ballesteros Ballesteros, V. Development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Sci. Rep. 2023, 13, 1970. [Google Scholar]
- Carreño Sayago, U.F.; Piñeros Castro, Y.; Conde Rivera, L.R. Design of a Fixed-Bed Column with Vegetal Biomass and Its Recycling for Cr (VI) Treatment. Recycling 2022, 7, 71. [Google Scholar] [CrossRef]
- Carreño Sayago, U.F. Design, scaling, and development of biofilters with e crassipes for treatment of water contaminated with Cr (VI). Water 2021, 13, 1317. [Google Scholar] [CrossRef]
- Fubara, A.G.; Uche, C.C.; Nwoko, C.O.; Tony-Njoku, R.F.; Ojiaku, A.A.; Edo, F.A. Assessment of the effectiveness of water hyacinth (E. crassipes) in the biosorption of heavy metals from Aluminium extruding company effluents. J. Appl. Sci. Environ. Manag. 2022, 26, 37–46. [Google Scholar] [CrossRef]
- Mardliyah, R.; Kusumadewi, R.A.; Wijayanti, A. Effectiveness test of using natural adsorbent of water hyacinth leaves (eichhornia crassipes) in heavy metal lead (Pb) treatment in batik industry wastewater. In AIP Conference Proceedings; AIP Publishing: Boston, MA, USA, 2023; Volume 2706. [Google Scholar]
- Hazarika, L.; Shah, K.K.; Baruah, G.; Bharali, R.K. Kinetic and equilibrium studies on bioadsorption of copper and lead by water hyacinth (Eichhornia crassipes) plant powder. Vietnam J. Chem. 2023, 61, 238–252. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Zhou, S.; Zuo, X.; Wang, C. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review. J. Water Process Eng. 2022, 47, 102666. [Google Scholar] [CrossRef]
- Zou, W.; Feng, X.; Wang, R.; Wei, W.; Luo, S.; Zheng, R.; Yang, D.; Mi, H.; Chen, H. High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO4 Battery. J. Hazard. Mater. 2021, 402, 123583. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Huang, G.; Yang, C.; Chen, C.; Zhou, T.; Zhao, Y.; Ma, J. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere 2020, 260, 127650. [Google Scholar] [CrossRef] [PubMed]
- Mittal, J.; Ahmad, R.; Mariyam, A.; Gupta, V.K.; Mittal, A. Expedi-tious and enhanced sequestration of heavy metal ions from aqueous envi-ronment by papaya peel carbon: A green and low-cost adsorbent. Desalin. Water Treat. 2021, 210, 365–376. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, F.; Ju, T.; Gong, Y.; Zhang, Y.; Wu, X.; Hou, H.; Zhao, L.; Shi, H. Mass bal-ance-based inventory of heavy metals inputs to and outputs from agricultur-al soils in Zhejiang Province, China. Sci. Total Environ. 2019, 649, 1269–1280. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Bussi, G.; Peters, R.; Hossain, M.A.; Softley, L.; Shawal, S.; Jin, L.; Rampley, C.P.N.; Holdship, P.; Alabaster, G.; et al. Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Sci. Total Environ. 2019, 697, 134090. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design and development of a biotreatment of E. crassipes for the decontamination of water with Chromium (VI). Sci. Rep. 2021, 11, 9326. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environ. Monit. Assess. 2019, 191, 221. [Google Scholar] [CrossRef]
- Carreño-Sayago, U.F. Desarrollo de un sistema sostenible de fitorremediación y bioetanol con E. crassipes. Tecnol. Cienc. Agua 2021, 12, 269–292. [Google Scholar] [CrossRef]
- Carreño-Sayago, U.F.; Rodríguez-Parra, C. Eichhornia crassipes (Mart.) Solms: An integrated phytoremediation and bioenergy system. Rev. Chapingo Ser. Cienc. For. Ambiente 2019, 25, 399–411. [Google Scholar] [CrossRef]
- Chuang, Y.S.; Lay, C.H.; Sen, B.; Chen, C.C.; Gopalakrishnan, K.; Wu, J.H.; Lin, C.S.; Lin, C.Y. Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: Effects of substrate concentration and incubation temperature. Int. J. Hydrog. Energy 2011, 36, 14195–14203. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, J.; Zhao, P.; Zhang, Y.; Li, Y.; Xu, S.; Ye, J.; Qian, C. Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production. Biochem. Eng. J. 2023, 194, 108885. [Google Scholar] [CrossRef]
- Sarma, M.K.; Ramkumar, N.; Subudhi, S. Biohydrogen Production from Aquatic Plant and Algae Biomass by Enterobacter cloacae Strain DT-1. Chem. Eng. Technol. 2023, 46, 234–241. [Google Scholar] [CrossRef]
- Öztep, G.; Güngören-Madenoğlu, T.; Özdemir, G.; Işık, E.; Serez, H.; Kabay, N.; Yüksel, M. Optimization and microbial community analysis for anaerobic digestion of water hyacinth (Eichhornia crassipes) with waste sludge at different solid contents and temperatures. Environ. Technol. Innov. 2023, 32, 103395. [Google Scholar] [CrossRef]
- Sharma, P.; Jain, A.; Bora, B.J.; Balakrishnan, D.; Show, P.L.; Ramaraj, R.; Ağbulut, Ü.; Khoo, K.S. Application of modern approaches to the synthesis of biohydrogen from organic waste. Int. J. Hydrog. Energy 2023, 48, 21189–21213. [Google Scholar] [CrossRef]
- Hawkes, F.R.; Hussy, I.; Kyazze, G.; Dinsdale, R.; Hawkes, D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrog. Energy 2007, 32, 172–184. [Google Scholar] [CrossRef]
- Pal, D.B.; Tiwari, A.K.; Srivastava, N.; Ahmad, I.; Abohashrh, M.; Gupta, V.K. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis. Environ. Res. 2022, 214, 114046. [Google Scholar] [CrossRef]
- Hasan, S.; Girindran, R.; Zacharia, P.U.; Jaya, H.; Kooren, R.; Sayooj, P.; Benny, S.; Joseph, D.; Hussain, S.V. Climate resilient products development through valorization of Eichhornia crassipes to biofuel and biochar. Int. J. Environ. Sci. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Hemida, M.H.; Moustafa, H.; Mehanny, S.; Morsy, M.; Dufresne, A.; Rahman, E.N.A.E.; Ibrahim, M.M. Cellulose nanocrystals from agricultural residues (Eichhornia crassipes): Extraction and characterization. Heliyon 2023, 9, e16436. [Google Scholar] [CrossRef]
- Tran, T.K.; Kim, N.; Leu, H.J.; Pham, M.P.; Luong, N.A.; Vo, H.K. The production of hydrogen gas from modified water hyacinth (Eichhornia Crassipes) biomass through pyrolysis process. Int. J. Hydrog. Energy 2021, 46, 13976–13984. [Google Scholar] [CrossRef]
- Abreu Sherrer, J.S. Aprovechamiento de Bagazo de Agave Tequilana Weber Para la Produccion de Bio-Hidrógeno. Master’s Thesis, Instituto Potosino de Investigación, San Luis Potosí, Mexico, 2013. [Google Scholar]
- Dessì, P.; Lakaniemi, A.M.; Lens, P.N. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res. 2017, 115, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Ri, P.C.; Ren, N.Q.; Ding, J.; Kim, J.S.; Guo, W.Q. CFD optimization of horizontal continuous stirred-tank (HCSTR) reactor for bio-hydrogen production. Int. J. Hydrog. Energy 2017, 42, 9630–9640. [Google Scholar] [CrossRef]
- Imizcoz, M.; Puga, A.V. Assessment of photocatalytic hydrogen production from biomass or wastewaters depending on the metal co-catalyst and its deposition method on TiO2. Catalysts 2019, 9, 584. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: Process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Boodhun, B.S.F.; Mudhoo, A.; Kumar, G.; Kim, S.H.; Lin, C.Y. Research perspectives on constraints, prospects and opportunities in biohydrogen production. Int. J. Hydrog. Energy 2017, 42, 27471–27481. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.; Liu, Y.; Zhang, X.; Guo, J.; Chang, S.W.; Nguyen, D.D.; Wang, J. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew. Energy 2018, 129, 754–768. [Google Scholar] [CrossRef]
- Obi, L.U.; Roopnarain, A.; Tekere, M.; Adeleke, R.A. Bioaugmentation potential of inoculum derived from anaerobic digestion feedstock for enhanced methane production using water hyacinth. World J. Microbiol. Biotechnol. 2023, 39, 153. [Google Scholar] [CrossRef]
- Jarusiripot, C.; Sungthong, D. Biohydrogen and Biomethane Production from Acid Pretreated Water Hyacinth and Kinetics. Trends Sci. 2023, 20, 6462. [Google Scholar] [CrossRef]
- Naveed, M.H.; Khan, M.N.A.; Mukarram, M.; Naqvi, S.R.; Abdullah, A.; Haq, Z.U.; Ullah, H.; Al Mohamadi, H. Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches. Renew. Sustain. Energy Rev. 2024, 189, 113906. [Google Scholar] [CrossRef]
- Murugesh, V.; Devi, S.K.; Unni, P.M.; Hemalatha, S.; Venugopalan, V. Chemical Properties of Water Hyancinth Plant Ash. J. Adv. Zool. 2023, 44, 539–545. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Poddar, M.K.; Chakma, S. Biohydrogen production from waste substrates and its techno-economic analysis. In Hydrogen Economy; Academic Press: Cambridge, MA, USA, 2023; pp. 399–429. [Google Scholar]
- Magdum, S.M.; More, S.; Nadaf, A.A. Biochemical conversion of acid pretreatment water hyacinth (eichonnia crassipes) to alcohol using pichia stipitis NCIM 3497. Int. J. Adv. Biotechnol. Res. 2012, 3, 585–590. [Google Scholar]
- Mishima, D.; Kuniki, M.; Sei, B.; Soda, S.; Ike, M.; Fujita, M. Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioreosur. Tecnhol. 2008, 99, 2495–2500. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.; Beltrán, M.; Moreno, G.; León, N. Behaviour of Fecal Contamination Indicators (Fecal Coliforms, Somatic Phages and Helminth Eggs) in Biosolid-Soil Mixtures for Ryegrass Sward Farming. In Proceedings of the Residuals and Biosolids Conference 2010, Savannah, Georgia, 23–26 May 2010; Water Environment Federation: St. Alexandria, VA, USA, 2010; pp. 195–203. [Google Scholar]
- Sayago, U.F.C.; Castro, Y.P.; Rivera, L.R.C.; Mariaca, A.G. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Echeverry-Gallego, R.A.; Espinosa-Barrera, P.A.; Delgado-Vargas, C.A.; Vanegas, J.; Clavijo-Buriticá, D.C.; Martínez-Pachón, D.; Moncayo-Lasso, A. The application of the photo-electro-Fenton process in the treatment of wastewater reduces the abundance of genes associated with pathogenicity factors, antibiotic resistance, and metabolism: A metagenomic analysis. J. Environ. Chem. Eng. 2023, 11, 109937. [Google Scholar] [CrossRef]
- Lay, B.; Sen, C.C.; Chen, J.H.; Wu, S.C.; Lee, C.Y.L. Co-fermentation of water hycianth and beverage wastewater in powder and pellet form for hydrogen production. Bioresour. Technol. 2013, 135, 610–615. [Google Scholar] [CrossRef]
- Tan, L.; Zhu, D.; Zhou, W.; Mi, W.; Ma, L.; He, W. Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper. Bioresour. Technol. 2008, 99, 4460–4466. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Lei, T.; Negulescu, I.I. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem. Eng. J. 2014, 251, 17–24. [Google Scholar] [CrossRef]
- Balasubramaniana, K.; Arunachalama, A.; Dasb, K.; Arunachalama, A. Decomposition and nutrient release of Eichhornia crassipes (Mart.) Solms. under different trophic conditions in wetlands of eastern Himalayan foothills. Ecol. Eng. 2012, 44, 111–122. [Google Scholar] [CrossRef]
- Lu, C.; Jing, Y.; Zhang, H.; Lee, D.J.; Tahir, N.; Zhang, Q.; Li, W.; Wang, Y.; Liang, X.; Zhang, X.; et al. Biohydrogen production through active saccharification and photo-fermentation from alfalfa. Bioresour. Technol. 2020, 304, 123007. [Google Scholar] [CrossRef]
- Argun, H.; Dao, S. Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. Int. J. Hydrog. Energy 2016, 42, 2569–2574. [Google Scholar] [CrossRef]
- Song, W.; Ding, L.; Liu, M.; Cheng, J.; Zhou, J.; Li, Y.Y. Improving biohydrogen production through dark fermentation of steam-heated acid pretreated Alternanthera philoxeroides by mutant Enterobacter aerogenes ZJU1. Sci. Total Environ. 2020, 716, 134695. [Google Scholar] [CrossRef]
- Katakojwala, R.; Mohan, S.V. Multi-product biorefinery with sugarcane bagasse: Process development for nanocellulose, lignin and biohydrogen production and lifecycle analysis. Chem. Eng. J. 2022, 446, 137233. [Google Scholar] [CrossRef]
- Gupta, M.; Velayutham, P.; Elbeshbishy, E.; Hafez, H.; Khafipour, E.; Derakhshani, H.; El Naggar, M.H.; Levin, D.B.; Nakhla, G. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int. J. Hydrog. Energy 2014, 39, 20958–20967. [Google Scholar] [CrossRef]
- Rani, P.; Yadav, D.K.; Yadav, A.; Bishnoi, N.R.; Kumar, V.; Ram, C.; Pugazhendhi, A.; Kumar, S.S. Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: Challenges and future prospects. Fuel 2024, 366, 131187. [Google Scholar] [CrossRef]
- da Silva, D.C.; Rodrigues, C.V.; Marin, D.F.C.; Lazaro, C.Z.; Jacobus, A.P.; Pires, L.O.; Maintinguer, S.I. Performance of clostridium species and autochthonous bacteria from citrus wastewater under different carbon sources to produce biofuels. Int. J. Hydrog. Energy 2024, 49, 398–412. [Google Scholar] [CrossRef]
- Tripathi, D.M.; Tripathi, S. Microbial Advancements in Dark Fermentative Biohydrogen Production: Applications and Innovations. In Emerging Trends and Techniques in Biofuel Production from Agricultural Waste; Springer Nature Singapore: Singapore, 2024; pp. 57–80. [Google Scholar]
- Zhao, Z.T.; Ding, J.; Wang, B.Y.; Bao, M.Y.; Liu, B.F.; Pang, J.W.; Ren, N.-Q.; Yang, S.S. Advances in the biomass valorization in dark fermentation systems: A sustainable approach for biohydrogen production. Chem. Eng. J. 2024, 2024, 148444. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Pengadeth, D. Mixed culture biotechnology and its versatility in dark fermentative hydrogen production. Bioresour. Technol. 2024, 394, 130286. [Google Scholar] [CrossRef] [PubMed]
- Saratale, G.D.; Saratale, R.G.; Lo, Y.C.; Chang, J.S. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production. Biotechnol. Prog. 2010, 26, 406–416. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, F.; Li, Y.; Zhu, S.; Wu, Q.; Duan, Z.; Liu, H.; Qian, L.; Zhang, Q.; Zhang, Y. Co-production process optimization and carbon footprint analysis of biohydrogen and biofertilizer from corncob by photo-fermentation. Bioresour. Technol. 2023, 375, 128814. [Google Scholar] [CrossRef]
- Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Buelna, G. Liquid waste from bio-hydrogen production—A commercially attractive alternative for phosphate solubilizing bio-fertilizer. Int. J. Hydrog. Energy 2013, 38, 8704–8707. [Google Scholar] [CrossRef]
- Tashyrev, O.B.; Matvieieva, N.A.; Hovorukha, V.M.; Tashyreva, H.O.; Bielikova, O.I.; Havryliuk, O.A.; Duplij, V.P. Application of lignocellulosic substrate obtained after hydrogen dark fermentation of food waste as biofertilizer. Ind. Biotechnol. 2018, 14, 315–322. [Google Scholar] [CrossRef]
- Ai, F.; Zhang, Y.; Fan, X.; Li, Y.; Zhang, H.; Jiao, Y.; Zhang, Q.; Yong, C.; Zhao, J.; Zhang, Z.; et al. Clean style recovery and utilization of residual nutrients in effluents from biohydrogen production: In Situ immobilization based on sodium alginate. Front. Bioeng. Biotechnol. 2022, 10, 906968. [Google Scholar] [CrossRef]
- Goria, K.; Kothari, R.; Singh, H.M.; Singh, A.; Tyagi, V.V. Biohydrogen: Potential applications, approaches, and hurdles to overcome. In Handbook of Biofuels; Academic Press: Cambridge, MA, USA, 2022; pp. 399–418. [Google Scholar]
Model Thomas | (1) |
Model Carreño | = (2) |
Lignin (%) | Cellulose (%) | Hemicellulose (%) | Other (%) | Reference |
---|---|---|---|---|
9 | 23 | 43 | 23 | Present |
1.1 | 17.3 | 24.7 | [39] | |
4.1 | 19.7 | 27.1 | [40] | |
1.1 | 17.3 | 24.7 | [44] | |
11 | 31 | 27 | 10 | [45] |
11 | 27 | 27 | 10 | [46] |
12 | 36 | 42 | [47] |
Element | Weight (g) | Percentage % |
---|---|---|
Carbon | 43.64 | 44.67 |
Oxygen | 45.15 | 39.94 |
Cr (VI) | 12.13 | 14.37 |
Element | Weight (g) | Percentage % |
---|---|---|
Carbon | 43.64 | 43.67 |
Oxygen | 45.15 | 38.94 |
Pb (II) | 15.6 | 16.6 |
Biomass | Yield mL H2/g | |
---|---|---|
Present research | Crassipes | 81.7 |
Present research | Crassipes-Cr (VI) | 71 |
Present research | Crassipes-Pb (II) | 60 |
[44] | Crassipes | 73 |
[48] | Alfalfa | 55.6 |
[49] | waste peach pulp | 59 |
[50] | Alternanthera hiloxeroides. | 89 |
[51] | cellulose | 102.6 |
[52] | Cellulomonas biazotea | 105.5 |
[53] | lignocellulosic biomass | 108 |
[54] | Performance of clostridium species | 120 |
[55] | Enterobacter, Bacillus, and Clostridium | 109 |
[56] | Performance of clostridium species Bacillus | 110 |
[57] | Performance of clostridium species | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayago, U.F.C. The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes. Polymers 2024, 16, 893. https://doi.org/10.3390/polym16070893
Sayago UFC. The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes. Polymers. 2024; 16(7):893. https://doi.org/10.3390/polym16070893
Chicago/Turabian StyleSayago, Uriel Fernando Carreño. 2024. "The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes" Polymers 16, no. 7: 893. https://doi.org/10.3390/polym16070893
APA StyleSayago, U. F. C. (2024). The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes. Polymers, 16(7), 893. https://doi.org/10.3390/polym16070893