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Abstract: Bamboo cellulose fiber (BF)-reinforced epoxy (EP) composites were fabricated with BF
subjected to plasma treatment using argon (Ar), oxygen (O2), and nitrogen (N2) gases. Optimal
mechanical properties of the EP/BF composites were achieved with BFs subjected to 30 min of plasma
treatment using Ar. This is because Ar gas improved the plasma electron density, surface polarity, and
BF roughness. Flexural strength and flexural modulus increased with O2 plasma treatment. Scanning
electron microscopy images showed that the etching of the fiber surface with Ar gas improved
interfacial adhesion. The water contact angle and surface tension of the EP/BF composite improved
after 10 min of Ar treatment, owing to the compatibility between the BFs and the EP matrix. The
Fourier transform infrared spectroscopy results confirmed a reduction in lignin after treatment and
the formation of new peaks at 1736 cm−1, which indicated a reaction between epoxy groups of the
EP and carbon in the BF backbone. This reaction improved the compatibility, mechanical properties,
and water resistance of the composites.

Keywords: fiber; plasma; epoxy; reaction; bamboo

1. Introduction

Biocomposites have recently gained attention in the field of materials science as
an environmentally friendly alternative to petroleum-based polymers, addressing envi-
ronmental issues related to non-biodegradable petroleum polymers that impact natural
organisms [1,2]. Biocomposite fibers comprise at least two components, both having differ-
ent properties that contribute to the matrix and reinforcement [3]. The matrix is reinforced
with natural fibers or other materials containing cellulose or agricultural waste. The devel-
opment of biocomposites must consider the qualities of the components as well as their
cost and environmental impact. Several natural fibers have been used to replace synthetic

Polymers 2024, 16, 938. https://doi.org/10.3390/polym16070938 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16070938
https://doi.org/10.3390/polym16070938
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-8157-4433
https://orcid.org/0000-0003-0299-4494
https://orcid.org/0000-0003-3491-5738
https://orcid.org/0000-0002-7498-8416
https://orcid.org/0000-0002-2871-8159
https://doi.org/10.3390/polym16070938
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16070938?type=check_update&version=1


Polymers 2024, 16, 938 2 of 14

ones in composite materials due to their easy availability, low cost, abundance in nature,
environmental friendliness, and natural biodegradability [4].

Bamboo, an abundant natural resource in Asia, is a perennial plant that can grow up
to 40 m in height. It is widely used in constructing living facilities and for paper pulp in
the industry [5]. Bamboo fibers (BFs) possess a cellulose composition of 36.8–54.9% [6]. BFs
have been used as reinforcements in composite materials to improve their strength and
alleviate the environmental impact of bamboo waste [7]. However, BFs are covered with
lignin, imposing limitations in terms of the surface adhesion between the fibers and the
matrix. Therefore, surface improvement is important to increase interfacial adhesion and
compatibility. Various techniques, such as alkali treatment, silane coupling agent treatment,
acetylation treatment, γ-ray irradiation, plasma treatment, ultraviolet irradiation, and
corona treatment, can be used to improve the surface of the fibers [8–10].

Plasma surface treatment involves activating and grafting polymers onto surfaces to
improve various material properties, including adhesion and wettability [11]. Non-thermal
or cold plasma is used for fruit applications [12]. Cold plasma presents an innovative
non-thermal treatment technique with significant potential for natural fiber treatment,
owing to its ecofriendly qualities. Cold plasma is applied to prevent microbial growth
in food applications. The plasma treatment process provides a variety of effects, such as
negative ions, positive ions, free electrons, reactive nitrogen species, reactive oxygen species,
and ozone. These reactive species affect material components, surface modification, and
mechanical properties. Non-thermal plasma is produced from different sources. Electric
fields, heat, chemical reactions, pressure, microwaves, radio frequencies, X-rays, and
electromagnetic fields are methods available to exert energy on a neutral gas [13]. Electric
discharge is plasma created from an electromagnetic field. Charge carriers are induced in
the electrical field and transfer energy by hitting gas particles. Electrons are oriented in
the electric field while energy hits gas particles. This process creates more electrons and
ions. Dielectric barrier discharge (DBD) plasma, a non-thermal or cold plasma generated
by a DBD plasma generator using a high-voltage alternating current, is employed for
this purpose [14]. The DBD plasma technique is an effective method, using low voltage
applications in atmospheric conditions. It is used to improve the surfaces of fibers and
polymers. The advantages of the DBD technique are low-pressure treatment, reproducibility,
ease of control, stability, and inexpensive technology [15]. DBD plasma has received
more attention due to its production of highly active species and its high electron density.
Atmospheric plasma is useful to modify the surface properties of materials such as surface
tension, polarity, surface roughness, and wettability. Lignin, hemicellulose, and impurity of
fibers are removed by the DBD plasma technique. This approach removes compounds from
cellulose fibers, increasing surface roughness and improving compatibility and adhesion
between the surface and the matrix [15,16]. Plasma treatment of a natural fiber alters the
structure, fiber surface, and chemical composition of the fiber. Plasma induces reactions
on natural fiber surfaces by creating active sites and breaking bonds, which destroys the
surface layer of natural fibers.

An epoxy (EP) is a polymer containing epoxy groups, characterized by high cross-
linking and strong adhesion to reinforcing fiber surfaces. They are widely used in thermoset
matrices in composites [17] due to their favorable mechanical properties, chemical resis-
tance, shape stability, and cost effectiveness [18]. EPs have been widely applied in various
industrial processes, such as coating, adhesive, and molding. Bisphenol A diglycidyl ether
is a common material used to prepare EP. Amine- or amide-based hardeners are employed
to create the network structure. Epoxy contains epoxy groups in the structure which react
with amides, hydroxyl, and carboxylic groups. It is synthesized using a reaction of bisphe-
nol A with epichlorohydrin [19]. Epoxy is applied to some applications due to its excellent
mechanical properties, inexpensiveness, flame retardancy, and good adhesive strength. EP
is a thermoset polymer with high brittleness. Reduction of crosslink density and addition
of toughening agents are used to overcome the brittleness problem of EP. Toughening EP
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with fibers is one of the ways to improve EP properties. The addition of natural fiber into
an EP matrix not only reduces the cost of EP, but also enhances its mechanical properties.

Using natural fibers to develop composites offers a promising alternative for the syn-
thesis of materials, but faces challenges due to poor dispersion and incompatibility between
the natural fibers and the matrix. Physical methods for surface modification have gained
considerable attention. Plasma treatment induces physical and chemical changes in the
fiber surface while preserving its original features. Moreover, it is a dry and environmen-
tally friendly process. DBD operates at atmospheric or medium pressures, eliminating
the need for vacuum equipment and allowing for the treatment of large objects on a con-
tinuous production line [14]. Previous research has shown significant improvements in
surface roughness, adhesion, and shear strength after plasma treatment [20]. However,
a knowledge gap exists in detailing the chemical reactions and property improvements
from bamboo fiber surface treatment using plasma technology to enhance interfacial ad-
hesion between a fiber surface and an EP matrix. The effects of DBD plasma on natural
fibers within different types of gas have not been reported. The choice of gas significantly
influences the ability of the fiber surface treatment to improve bonding and roughness. The
generated polarity, roughness surface, and reaction are the key points to investigate for
deep details of knowledge about the mechanisms in the polymer composites. Generated
free radicals are expected to occur during DBD plasma treatment and form a reaction with
reactive functional groups of the polymer matrix. Epoxy resin is a polymer with reactive
functional epoxy groups, which can be reacted with other functional groups. The improve-
ment of the mechanical properties of epoxy resin is a challenge addressed with toughening
from the addition of some natural fibers. However, compatibility and interfacial adhesion
between epoxy resin and natural fiber are poor. Therefore, the improvement of interfacial
adhesion between a polymer matrix and a natural fiber using chemical reaction via the DBD
plasma technique is investigated and explained in deep detail to develop a new toughening
approach for epoxy resin with a natural fiber for wide application.

In this study, BFs were plasma-treated with argon (Ar), argon and oxygen (Ar+O2),
and argon and nitrogen (Ar+N2) gas for 30 min to improve the fiber surface and reinforce
the subsequent EP composite. Plasma treatment improved the surface and polarity of the
BFs, facilitating a reaction with the EP matrix to improve the properties of the composite.
The effect of the plasma treatment on the properties of EP/BF composites was investigated.
The mechanical properties were evaluated based on their tensile strength, flexural strength,
and flexural modulus. The morphology was examined using scanning electron microscopy
(SEM), the effect of water resistance was assessed by contact angle, crystallinity was
analyzed via X-ray diffraction (XRD), and the reactions of the composites were confirmed
using Fourier transform infrared (FTIR) spectroscopy.

2. Materials and Methods
2.1. Materials

BFs were sourced from South Samoeng, Chiang Mai, Thailand. The EP resin (Part A),
grade A 0302, and hardener (Part B), grade A 0301, were purchased from Easy Resin, Co.,
Ltd., Nonthaburi, Thailand. Sodium hydroxide (NaOH) and sodium chlorite (NaClO2)
were obtained from Merck & Co., Inc., Darmstadt, Germany.

2.2. Preparation of Bamboo Fibers

Bamboo trunks were peeled, cut into 2 × 6-inch pieces, and dried at 105 ± 3 ◦C for
12 h. The dried bamboo was ground into powder using a grinder (Grinder ML-SC5-III,
Ming Lee Industrial Ltd., Hong Kong, China) and further dried at 105 ± 3 ◦C for 3 h. The
percentage yield of the dried pulp was calculated. In alkaline treatment, 100 g of bamboo
powder was mixed with NaOH 20% w/v at 80 ◦C, stirred at 1000 rpm for 5 h, washed with
distilled water (pH 6.5–7), and filtered under vacuum. The bamboo pulp was then bleached
with NaClO2 to remove lignin and hemicellulose. The dried pulp (100 g) was mixed with
acetate buffer comprising 5.4% NaOH w/v and 150 mL of acetic acid in 1000 mL of distilled
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water. The mixture was boiled in 3.4% NaClO2 1000 mL at 85 ± 5 ◦C for 3 h with stirring at
500 rpm. The final product was washed with distilled water until the pH reached 6.5–7
and then filtered under vacuum. The final cellulose product was obtained by drying the
bleached pulp at 85 ± 3 ◦C for 12 h (bleaching repeated twice). The cellulose was sieved
through a 180 µ sieve. Dielectric barrier discharge (DBD) plasma was used to treat the fiber
surface. Two electrodes generated DBD plasma for etching and generated polar groups on
the fiber surface. The electrodes, with RF power supply at a frequency of 13.56 MHz, were
used to expose samples under the grounded electrode at a rate of 30 cm/s. The discharge
gap was 1 mm. Plasma discharge power was set at 180 W (3.45 W/cm2). Low-frequency
plasma with long wavelengths was created and provided ions via a large amount of kinetic
energy. Argon (Ar), oxygen (O2), and (N2) gas were employed with rates of 8, 10, and
10 L/min, respectively. The plasma-treated bamboo powder underwent treatment with
Ar, argon with oxygen (Ar+O2), and argon with nitrogen (Ar+N2) gas for 30 min [15]. All
plant experiments were conducted in accordance with relevant institutional, national, and
international guidelines and legislation.

2.3. Preparation of Composites

The EP resin and hardener were mixed in a ratio of 2:1, respectively. Untreated (BFuntr)
and plasma-treated (BFtr) BFs were mixed to prepare the mixed samples (EP/BF). The fibers
were stirred to enable dispersion, and vacuuming was performed to remove air bubbles in
the EP. The resulting mixture was cast into a silicone mold to form a bone-shaped sample
and dried at 80 ◦C for 5 h. Details of proportions and sample names are presented in
Table 1.

Table 1. Composition and sample code of epoxy composite samples (%wt/wt).

Samples Gas Epoxy: Hardener
(2:1) Fiber

Argon Oxygen Nitrogen (%) (%)

EP/BFuntr 95 5
EP/BFtr-Ar 30 min ✓ 95 5
EP/BFtr-Ar+O2 30 min ✓ ✓ 95 5
EP/BFtr-Ar+N2 30 min ✓ ✓ 95 5

2.4. Mechanical Properties

Tensile properties were measured following the JISK-6251-7 standard [21] (Model
MCT-1150, Tokyo, Japan). The tensile strength (TS) and elongation at break (EB) of samples
were observed at a crosshead speed of 50 mm/min. The samples were prepared in a
bone-shaped configuration with dimensions of size 2 mm × 5 mm × 1 mm (width × length
× thickness). Ten replicates were analyzed for each sample.

2.5. Flexural Test

The flexural test, conducted via three-points bending analysis, aimed to determine the
mechanical properties of the composite materials following the D709 standard [22], using
a universal testing machine (UTM) model from H1KS, Hounsfield Test Co., Ltd., Surrey,
UK. Sample sizes were prepared as 13 mm × 65 mm × 3 mm (width × length × thickness)
using a force of 1 kN at room temperature. The strength of the composites was calculated
using Equation (1), and flexural modulus was determined through Equation (2).

Flexural strength (σf ) =
3LF
2bd2 (1)
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Here, σf is flexural strength, F is the maximum load, L is the length of the composites,
b is width, and d is thickness.

Flexural modulus (EB) =
mL3

4bd3 (2)

Here, EB is the flexural modulus, L is length, m is the slope of the stress-strain curve, b
is width, and d is thickness. Five specimens of each sample were tested.

2.6. Scanning Electron Microscopy (SEM)

The morphological properties of the samples were examined at 15 kV using SEM
(SEM; JSM-IT300LV, Tokyo, Japan). Sheets of the samples were created by casting them
into a silicone mold at 80 ◦C for 5 h. Subsequently, the samples were broken in liquid
nitrogen and coated with a thin layer of gold using sputtering (108 Auto/SE sputter coater;
Cressington Co., Ltd., Watford, UK).

2.7. Contact Angle

The water contact angle was observed using drop shape analysis (DSA30E, Krüss Co.,
Ltd., Hamburg, Germany). Samples were prepared by casting into a silicone mold. Water
droplets were applied to the sheet and recorded over 0–10 min to assess sample wettability.
Five replicates were analyzed for each sample.

2.8. X-ray Diffraction (XRD)

XRD analysis was performed using an X-ray diffractometer (Rigaku Mini Flex, Tokyo,
Japan) with Cu Kα at 40 kV. The analysis utilized a scanning rate of 2◦/min in the
2Tscanning mode between 2–80◦.

2.9. Fourier Transform Infrared Spectroscopy

A Fourier transform infrared spectrometer (FTIR; Nicolet 6700, Thermo Fisher Scien-
tific, Woodland, CA, USA) was used for FTIR analysis. Samples were obtained by casting
in a silicone mold and observed in the range of 500–4000 cm−1, with 16 scans at 4 cm−1

resolution using ATR mode.

2.10. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) to determine statistical differ-
ences, followed by multiple comparisons using Duncan’s test with SPSS software (version
17.0). Statistical significance was set at p < 0.05.

3. Results and Discussion
3.1. Mechanical Properties

Figure 1 illustrates the tensile properties of EP/BFuntr and EP/BFtr treated with Ar,
Ar+O2, and Ar+N2 for 30 min. The tensile strength and elongation at break of EP/BFuntr
were 37.7 MPa and 5.8%, respectively. In contrast, the EP/BFtr composite treated with
Ar gas for 30 min exhibited higher tensile strength and elongation at break, at 45.3 MPa
and 6.1%, respectively. Tensile strength and elongation at break of EP/BFtr significantly
decreased with Ar+O2 gas plasma (41.8 MPa and 5.3%) and Ar+N2 gas (34.6 MPa and 4.4%),
respectively. The improved tensile properties of EP/BFtr-Ar (45.3 MPa) were attributed to
Ar gas improving the BF surface through high plasma electron density [23]. Ar gas plasma
increased the surface area and roughness of the BFs, resulting in better dispersion in the EP
matrix and improved interface adhesion [24]. The EP/BFtr composite treated with Ar+O2
exhibited reduced tensile properties due to the oxidation reaction of oxygen gas, BF surface
cracking, and weak adhesion of the composite [25,26]. EP/BFtr composites treated with
Ar+N2 experienced decreased tensile strength and elongation at break compared to other
samples, as N2 gas led to BF degradation, reducing the interfacial adhesion of EP/BF [27].
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Figure 1. Tensile strength and elongation at break of EP/BFuntr and EP/BFtr with Ar, Ar+O2, and
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3.2. Flexural Test

Figure 2 illustrates the calculated flexural properties of the EP/BF composites. The
flexural strength of EP/BFuntr composites was 54.4 MPa, with a flexural modulus of 4.8 GPa.
EP/BF treated with Ar+O2 showed a flexural strength of 52.7 MPa and a flexural modulus
of 4.7 GPa, which did not significantly differ from those of EP/BFuntr. However, the flexural
strength (49.2 and 48.2 MPa) and modulus (4.4 and 3.9 GPa) reduced in EP/BF composites
treated with Ar and Ar+N2 gas, respectively, due to nitrogen gas treatment inducing
degradation between the EP and BFs, reducing interfacial adhesion. The EP/BFtr−Ar+O2
mixture exhibited the highest flexural strength, indicating the effectiveness of argon/oxygen
plasma treatment, thereby improving BF polarity and bonding with the EP matrix [28]. The
treatment also etched the BF surface, improving the roughness and voids in the EP/BF
composites [29,30].
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3.3. Scanning Electron Microscopy (SEM)

SEM scanning was employed to examine the fractured surfaces of the composites.
Figure 3 shows the morphology of the EP blend with untreated fibers and those treated with
different gas plasmas treatments at 200× and 2000× magnification. EP/BFuntr exhibited
the formation of holes on the EP surface at 200×, and fibers were pulled out at 2000×.
Following plasma treatment, EP/BFtr−Ar showed surface improvement, with no observed
fiber pull-out, indicating excellent adhesion between the EP and BFs [31]. The etching of
the fiber surface with Ar gas increased BF surface roughness, improving the interfacial
adhesion of EP/BF and decreasing the number of voids in the composites [32,33]. However,
the interfacial bonding of the samples treated with O2 and N2 gases showed the extent of
the gap between the fibers and matrix, with large holes from fiber removal in both gases.
The removed BF holes on fracture surface images related to the low interfacial adhesion
between fiber and epoxy matrix. Plasma treatment with Ar+O2 gas resulted in higher
surface etching than with Ar gas due to the oxidation of O2 gas on the fiber surface [34,35].
O2 gas reduced the polarity of the fiber by formation of oxygen bonding. Oxidation by
O2 also appeared to provide degradation around the fiber surface and decrease adhesion
between the surface of the fiber and epoxy. The sample treated with Ar+N2 gas presented
fiber pull-out and a larger number of voids than O2 gas, indicating fiber degradation from
N2 gas. Low interfacial adhesion and fiber degradation decreased the mechanical properties
of EP/BFtr−Ar+N2. The EP/BFtr−Ar sample was in the best condition to provide good
morphology via the occurred reaction and high roughness of the surface of the fiber without
surface degradation.
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3.4. Contact Angle

The water droplet contact angles of the composites are shown in Figure 4a. Water
droplets were dropped onto their surface and automatically recorded at 0, 2, 4, 6, 8, and
10 min. EP/BFuntr exhibited the lowest contact angle (67.4◦) after 10 min (Figure 4b). The
contact angle for EP/BFtr−Ar increased to 88.8◦ compared to EP/BFuntr, indicating hy-
drophobization of the composite. Ar gas improved EP/BF compatibility and increased
interfacial adhesion between BFs and the EP matrix [36]. The water contact angles of
EP/BFtr samples with Ar+O2 and Ar+N2 gas treatments were 79.3◦ and 77.7◦, respectively.



Polymers 2024, 16, 938 9 of 14

Plasma treatment etches the surface of the fiber, increasing roughness and the number
of ions on the sample surface [37,38]. Plasma treatment with Ar+O2 gas resulted in high
surface etching due to the oxidation of oxygen gas [26]. Poor interfacial adhesion between
the fiber and EP allowed water to penetrate the interphase gap, decreasing water resis-
tance, while the plasma treatment increased the contact angle and surface tension of the
composites [39].
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3.5. X-ray Diffraction (XRD)

Figure 5 shows the X-ray patterns of the EP blend with untreated BFs and BFs plasma-
treated with argon, argon/oxygen, and argon/nitrogen gas. XRD spectra of the composite
showed a broad peak at 2Tin the range of 5–45◦, indicating the amorphous structure of
the EP with peaks of 7.9◦, 18.1◦, and 42◦ [40]. Upon loading untreated and plasma-treated
fibers into the EP matrix, the peaks appeared similar to those of neat EP. The degree of
crystallinity of the composites was not affected by addition of both treated and untreated
fibers [41], attributed to the good dispersion of BFs in the EP matrix and network structure
of EP [42–44]. Epoxy resin forms in a reaction with a hardener to form a network structure
without the formation of crystals. Crystal formation of a polymer composite is achieved by
addition of a filler or nucleating agent [45]. Crystal formation of EP/BF composites was
not affected with the addition of BFs due to crosslinking of EP by the reaction between
epoxy groups of the EP with –NH groups of the hardener. The large molecules of plasticizer
additions and polymer crosslinking prevented the movement of polymer chains to form
crystals [21]. This network structure of epoxy resin provides amorphous structure without
changing the XRD peak.
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3.6. Fourier Transform Infrared Spectroscopy

Figure 6a shows the FTIR spectra of untreated and plasma-treated fibers. The spectra
showed transmission bands at 3330 cm−1, corresponding to the hydroxyl (OH) stretching
vibration of hydrogen-bonded fibers [46,47]. The peak around 2890 cm−1 was associated
with the C–H stretching vibration of cellulose fiber [48,49]. The band at 1635 cm−1 was
attributed to the aromatic nature of lignin [50–52]. Peaks at 1427, 1340, 1159, and 1031 cm−1

correspond to CH2, CH3 bending vibration (methoxyl group in lignin), and C–O stretching
of cellulose fibers, respectively [53–55]. Following plasma treatment, the intensity of the
band at 1635 cm−1 decreased due to the reduced lignin components [56]. Figure 6b shows
the FTIR spectra of untreated and plasma-treated EP/BF composites. EP exhibited peaks
at 2926 and 2858 cm−1, for asymmetric and symmetric CH2 and CH3, respectively [57].
Peaks at 1456, 1508, 1580, and 1606 cm−1 corresponded to C–C stretching vibration of the
aromatic ring of EP [58], while characteristic peaks at 915 cm−1 and 1610 cm−1 signified
stretching epoxide ring vibration [59,60]. In the EP/BFtr composites, an increase in peak
intensity at 3200–3600 cm−1 was observed, attributed to O–H stretching of hydroxyl groups.
A strong band at 1033 cm−1 indicated C–O and C–OH stretching vibration of cellulose [55].
Plasma with Ar, O2, and N2 generated the polar groups of C–C−, C–O−, and –COO−

by removing hydrogen bonding. These functional groups can form reactions with epoxy
groups. The occurred reactions provided new strong covalent bonds, which increased
interfacial adhesion between fiber surface with epoxy matrix. A new peak at 1736 cm−1

was observed due to plasma treatment, generating new functional polar groups on the
fiber surface [61]. The reaction indicated that–COO− groups on the structure of the fiber
reacted with epoxy groups of the epoxy. It was suggested that these bonds at the fiber
surface reacted with the epoxy groups of the EP, resulting in strong interfacial adhesion
and improving properties [62–64].
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4. Conclusions

A BF-reinforced EP composite was successfully developed using plasma treatment.
The influence of plasma-treated bamboo fibers on the properties of BF reinforcement and
EP was investigated. Tensile strength significantly improved from 37 to 45 MPa after
30 min of Ar gas plasma treatment, attributed to lignin and impurity removal and increased
BF surface roughness. The flexural strength and flexural modulus of the EP/BF compos-
ite increased with Ar+O2 plasma treatment, improving polarity and surface roughness,
thereby promoting connection between the EP and BF surfaces. SEM images showed fiber
pull-out in the EP/BFuntr sample, and a small gap between the BFs and EP in EP/BFtr.
Argon gas treatment increased the water contact angle, due to the enhanced BF surface
roughness from plasma etching, and improved compatibility between the BFs and EP.
XRD spectra presented the amorphous structure of the EP in the composites, unaffected
by BF loading. FTIR analysis showed lignin alterations after plasma treatment, with a
new peak at 1736 cm−1, indicating the generation of new functional polar groups on the
fiber surface. Strong bonding resulted in robust interfacial adhesion between the EP and
BFs. The reaction between epoxy groups of EP and new C–O groups of the BFs improved
the mechanical properties and water resistance of the composites. Such composites hold
potential value in coating, packaging, agricultural, and medical applications.
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