Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ery-DACNC Composite
2.3. Morphology Characterization
2.4. aPDI Process
2.5. Ery-DACNC Coating on Kraft Paper
2.6. Water Vapor Barrier and Mechanical Properties of the Coated Paper
3. Results and Discussion
3.1. Morphology Observation and Surface Bonding Analysis
3.2. aPDI Performance of Ery-DACNC Composite
3.3. Analysis of Water Vapor Barrier and Mechanical Properties of the Coated Paper
3.4. aPDI Behavior of Ery-DACNC Coating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fauza, A.N.; Qalbina, F.; Nurdin, H.; Ambiyar, A.; Refdinal, R. The influence of processing temperature on the mechanical properties of recycled PET fibers. Teknomekanik 2023, 6, 21–28. [Google Scholar] [CrossRef]
- Jiang, A.; Patel, R.; Padhan, B.; Palimkar, S.; Galgali, P.; Adhikari, A.; Varga, I.; Patel, M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers 2023, 15, 2235. [Google Scholar] [CrossRef] [PubMed]
- Nurdin, H.; Waskito, W.; Fauza, A.N.; Siregar, B.M.; Kenzhaliyev, B.K. The investigation of physical dan mechanical properties of Nipah-based particle board. Teknomekanik 2023, 6, 94–102. [Google Scholar] [CrossRef]
- Basak, S.; Dangate, M.S.; Samy, S. Oil- and water-resistant paper coatings: A review. Prog. Org. Coat. 2024, 186, 107938. [Google Scholar] [CrossRef]
- Packialakshmi, J.S.; Kang, J.; Jayakumar, A.; Park, S.; Chang, Y.; Kim, J.T. Insights into the antibacterial and antiviral mechanisms of metal oxide nanoparticles used in food packaging. Food Packag. Shelf Life 2023, 40, 101213. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xiao, F.; Xiao, Y.; Ji, W.; Xu, B.; Wang, H. Antimicrobial photodynamic inactivation pH-responsive films based on gelatin/chitosan incorporated with aloe-emodin. Food Chem. 2024, 444, 138686. [Google Scholar] [CrossRef] [PubMed]
- Shatila, F.; Tieman, G.M.O.; Musolino, S.F.; Wulff, J.E.; Buckley, H.L. Antimicrobial photodynamic inactivation of planktonic and biofilm cells by covalently immobilized porphyrin on polyethylene terephthalate surface. Int. Biodeterior. Biodegrad. 2023, 178, 105567. [Google Scholar] [CrossRef]
- Xu, C.; Xu, N.; Yu, J.; Hu, L.; Jia, P.; Fan, Y.; Lu, C.; Chu, F. Utilization of different wood-based microfibril cellulose for the preparation of reinforced hydrophobic polymer composite films via Pickering emulsion: A comparative study. Int. J. Biol. Macromol. 2023, 227, 815–826. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Shi, S.C.; Abral, H.; Ilham, M.K.; Sugiarti, E.; Muslimin, A.N.; Ilyas, R.A.; Lapisa, R.; Putra, N.S.D. Comparative Analysis of the Influence of Different Preparation Methods on the Properties of TEMPO-Oxidized Bacterial Cellulose Powder Films. J. Nat. Fibers 2024, 21, 2301386. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Fuadi, Z.; Kurniawan, R.; Abral, H.; Ilhamsyah, F.; Arafat, A.; Rifelino, R.; Syahri, B.; Indrawan, E. Tribological Properties of Aqueous Carboxymethyl Cellulose/Uncaria Gambir Extract as Novel Anti-Corrosion Water-Based Lubricant. Tribol. Ind. 2022, 44, 584–591. [Google Scholar] [CrossRef]
- Ichwan, M.; Eichhorn, S.; Trask, R. Cellulose Nanocrystal Reinforced Electrospun Composite Nanofibres; University of Bristol: Bristol, UK, 2022. [Google Scholar]
- Babaei-Ghazvini, A.; Vafakish, B.; Patel, R.; Falua, K.J.; Dunlop, M.J.; Acharya, B. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. Int. J. Biol. Macromol. 2024, 258, 128834. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; He, C.; Wang, C.; Huang, Y.; Yu, J.; Wang, C.; Li, W.; Zhang, X.; Zhang, F.; Qing, G. Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat. Small 2023, 19, 2207932. [Google Scholar] [CrossRef]
- An, B.; Xu, M.; Sun, J.; Sun, W.; Miao, Y.; Ma, C.; Luo, S.; Li, J.; Li, W.; Liu, S. Cellulose nanocrystals-based bio-composite optical materials for reversible colorimetric responsive films and coatings. Int. J. Biol. Macromol. 2023, 233, 123600. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Tang, J.; Chen, L.; Yan, C.; Tanvir, S.; Anderson, W.A.; Berry, R.M.; Tam, K.C. Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J. Mater. Chem. B 2015, 3, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Song, Y.; Tanvir, S.; Anderson, W.A.; Berry, R.M.; Tam, K.C. Polyrhodanine coated cellulose nanocrystals: A sustainable antimicrobial agent. ACS Sustain. Chem. Eng. 2015, 3, 1801–1809. [Google Scholar] [CrossRef]
- de Castro, D.O.; Bras, J.; Gandini, A.; Belgacem, N. Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr. Polym. 2016, 137, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, S.; Qian, X.; An, X. High-efficacy and long term antibacterial cellulose material: Anchored guanidine polymer via double “click chemistry”. Cellulose 2020, 27, 8799–8812. [Google Scholar] [CrossRef]
- Sun, L.; Du, Y.; Fan, L.; Chen, X.; Yang, J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 2006, 47, 1796–1804. [Google Scholar] [CrossRef]
- Wu, Y.; Zang, Y.; Xu, L.; Wang, J.; Jia, H.; Miao, F. Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites. Mater. Sci. Eng. C 2021, 126, 112121. [Google Scholar] [CrossRef]
- Jung, J.; Raghavendra, G.M.; Kim, D.; Seo, J. One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. Int. J. Biol. Macromol. 2018, 107, 2285–2290. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Hassan, E.A.; Abou-Zeid, R.E.; Dufresne, A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym. 2015, 124, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Amini, E.; Azadfallah, M.; Layeghi, M.; Talaei-Hassanloui, R. Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 2016, 23, 557–570. [Google Scholar] [CrossRef]
- Zhu, S.; Ukwatta, R.H.; Cai, X.; Zheng, Y.; Xue, F.; Li, C.; Wang, L. The physiochemical and photodynamic inactivation properties of corn starch/erythrosine B composite film and its application on pork preservation. Int. J. Biol. Macromol. 2023, 225, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Li, X.; Wang, L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci. Technol. 2022, 124, 167–181. [Google Scholar] [CrossRef]
- Shi, S.-C.; Liu, G.-T. Cellulose nanocrystal extraction from rice straw using a chlorine-free bleaching process. Cellulose 2021, 28, 6147–6158. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.S.; Ferraria, A.M.; Botelho do Rego, A.M.; Monteiro, S.; Santos, R.; Minhalma, M.; Sánchez-Loredo, M.G.; Tovar-Tovar, R.L.; de Pinho, M.N. Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role. Membranes 2023, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Li, X.; Dai, H. An antibacterial composite film based on cellulose acetate/TiO2 nanoparticles. New J. Chem. 2020, 44, 20751–20758. [Google Scholar] [CrossRef]
- ISO 22196; Measurement of Antibacterial Activity on Plastics And Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- ASTM E96/E96M-2014; Standard Test Methods for Water Vapor Transmission Of Materials. ASTM: West Conshehoken, PA, USA, 2014.
- Chou, C.-T.; Shi, S.-C.; Chen, C.-K. Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Polymers 2021, 13, 4447. [Google Scholar] [CrossRef]
- ISO 2758; Determination of Bursting Strength. International Organization for Standardization: Geneva, Switzerland, 2014.
- Biswas, S.; Rahaman, T.; Gupta, P.; Mitra, R.; Dutta, S.; Kharlyngdoh, E.; Guha, S.; Ganguly, J.; Pal, A.; Das, M. Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass Bioenergy 2022, 158, 106362. [Google Scholar] [CrossRef]
- Rana, A.K.; Frollini, E.; Thakur, V.K. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization. Int. J. Biol. Macromol. 2021, 182, 1554–1581. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Harty-Majors, S.; Ismail, A.A. Investigation of DL-glyceraldehyde–dihydroxyacetone interconversion by FTIR spectroscopy. Carbohydr. Res. 1999, 318, 20–25. [Google Scholar] [CrossRef]
- Jackson, J.C.; Camargos, C.H.M.; Noronha, V.T.; Paula, A.J.; Rezende, C.A.; Faria, A.F. Sustainable Cellulose Nanocrystals for Improved Antimicrobial Properties of Thin Film Composite Membranes. ACS Sustain. Chem. Eng. 2021, 9, 6534–6540. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Wang, J.; Gardner, D.J.; Tajvidi, M. Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packag. Shelf Life 2020, 23, 100464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.-C.; Ouyang, S.-W.; Rahmadiawan, D. Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging. Polymers 2024, 16, 960. https://doi.org/10.3390/polym16070960
Shi S-C, Ouyang S-W, Rahmadiawan D. Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging. Polymers. 2024; 16(7):960. https://doi.org/10.3390/polym16070960
Chicago/Turabian StyleShi, Shih-Chen, Sing-Wei Ouyang, and Dieter Rahmadiawan. 2024. "Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging" Polymers 16, no. 7: 960. https://doi.org/10.3390/polym16070960
APA StyleShi, S. -C., Ouyang, S. -W., & Rahmadiawan, D. (2024). Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging. Polymers, 16(7), 960. https://doi.org/10.3390/polym16070960