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Abstract: Polymer flooding has achieved considerable success in medium–high permeability reser-
voirs. However, when it comes to low-permeability reservoirs, polymer flooding suffers from poor
injectivity due to the large molecular size of the commonly used high-molecular-weight (high-MW)
partially hydrolyzed polyacrylamides (HPAM). Herein, an amphiphilic polymer (LMWAP) with a
low MW (3.9 × 106 g/mol) was synthesized by introducing an amphiphilic monomer (Allyl-OP-10)
and a chain transfer agent into the polymerization reaction. Despite the low MW, LMWAP exhibited
better thickening capability in brine than its counterparts HPAM-1800 (MW = 1.8 × 107 g/mol) and
HPAM-800 (MW = 8 × 106 g/mol) due to the intermolecular hydrophobic association. LMWAP also
exhibited more significant shear-thinning behavior and stronger elasticity than the two counterparts.
Furthermore, LMWAP possesses favorable oil–water interfacial activity due to its amphiphilicity. The
oil–water interfacial tension (IFT) could be reduced to 0.88 mN/m and oil-in-water (O/W) emulsions
could be formed under the effect of LMWAP. In addition, the reversible hydrophobic association
endows the molecular chains of LMWAP with dynamic association–disassociation transition ability.
Therefore, despite the similar hydrodynamic sizes in brine, LMWAP exhibited favorable injectivity
under low-permeability conditions, while the counterpart HPAM-1800 led to fatal plugging. Further-
more, LMWAP could enhance oil recovery up to 21.5%, while the counterpart HPAM-800 could only
enhance oil recovery by up to 11.5%, which could be attributed to the favorable interfacial activity
of LMWAP.

Keywords: enhanced oil recovery; low molecular weight; amphiphilic polymer; interfacial activity;
low-permeability reservoirs

1. Introduction

The low-permeability reservoirs host more than two-thirds of the total hydrocarbon re-
serves in China and have become the strategic substitute for conventional energy sources [1].
However, low-permeability reservoirs suffer from poor porosity, low permeability, small
laryngeal radius, and significant heterogeneity. As a result, the water displacement effi-
ciency in low-permeability reservoirs is low and a large amount of residual oil cannot be
mobilized, which leads to a low oil recovery [2–8]. To meet an increasing energy demand
and to prevent the deterioration of the oil production rates from mature fields, the develop-
ment of enhanced oil recovery (EOR) methods for low-permeability reservoirs has become
highly important.

Polymer flooding has been proven to be an efficient EOR method to increase oil
production and reduce the water cut by various mechanisms [9–20], including controlling
the mobility ratio of water and oil, improving the viscoelasticity of water, and improving
sweep efficiency. The polymer flooding method has been applied in many fields across the
world, both onshore and offshore. Renouf [21] reported 32 cases of polymer flooding in
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western Canada, and incremental recovery ranged from 0.5 to 14% of the original oil in
place over periods lasting between 1 and 9 years. Sixteen of the thirty-two polymer floods
reduced their water–oil ratio (WOR), and screening criteria for polymer floods should be
adjusted from the previous recommendations of recovering oils with viscosity less than 150
mPa·s and API gravity above 15◦. Delamaide [22] summarized ten polymer flood projects
in Canada, Argentina, China, Oman, and Suriname and found that the key screening criteria
for polymer flooding are oil viscosity (lower than 5000 cp), low reservoir temperature (less
than 80 ◦C preferred), no bottom aquifer, high permeability, low salinity and low hardness
water, sandstone reservoirs, and mobile oil saturation (>30%). Sheng et al. [23] collected
and surveyed 733 polymer-flooding projects in 24 countries worldwide. The results showed
that the median incremental oil-recovery factor was 6.7% and the median decrease in water
cut after polymer injection was 13%.

In the design of a polymer flooding pilot test, the selection of polymer is the most
crucial problem to be resolved. Hydrolyzed polyacrylamide (HPAM) is the most commonly
used polymer in polymer flooding. Normally, high-molecular-weight (MW) HPAM has
a higher thickening capability and higher permeability-reducing factor than low MW
HAPM. For the same amount of polymer injected, the HPAM with higher MW would
result in a higher oil recovery. However, the MW of HPAM must be small enough for the
HPAM molecules to enter and propagate effectively through the reservoir rock. For a given
permeability and a pore throat size, a threshold MW exists, above which HPAM molecules
exhibit poor injectivity. The MW of the HPAM used in polymer flooding is usually higher
than 12 million daltons, which makes the use of HPAM applicable in reservoirs with an
average permeability greater than 100 mD [24–30]. When it comes to low-permeability
reservoirs with an average permeability lower than 50 mD, an HPAM with medium and
high WM is not applicable. The use of low-WM HPAM, however, would weaken the
thickening capability and mobility control ability of HPAM.

In order to achieve polymer flooding in low-permeability reservoirs, many functional-
ized polymers have been developed. Gong et al. [31] synthesized encapsulated polymers
with different shell–core ratios and the encapsulated polymers exhibited delayed thickening
capability. The encapsulated polymers with a shell–core ratio of 0.25 had a uniform particle
size distribution (297.8~531.8 nm), and the viscosity of the fluid increased from 1 mPa·s to
12.84 mPa·s after 9 d. This feature helps to improve the injectability of the fluid into the
low-permeability reservoir. Mejía et al. [32] studied the potential of polyethylene oxide
(PEO) as an oil displacement agent for polymer flooding. The results demonstrated that
high MW PEO solutions had favorable injectivity in low-permeability (~20 md) carbonate
cores and improved oil recovery by 15% in an artificially fractured limestone core. Zhang
et al. [33] proposed the use of a self-adaptive polymer (SAP) in low-permeability reservoirs
to alleviate issues such as poor injectivity and ease of mechanical degradation for HPAM.
SAP can be smoothly injected into the 60 mD cores and improve oil recovery up to 18.7%,
which may open a new pathway for the molecular design of polymers used for EOR in low-
permeability reservoirs. Despite extensive studies, up to now, the application of polymer
flooding for EOR in low-permeability reservoirs is still very challenging.

In this study, an amphiphilic monomer Allyl-OP-10 was synthesized based on a com-
mercial surfactant OP-10. Then, an amphiphilic polymer (LMWAP) with a low MW was
synthesized by the copolymerization of acrylamide (AM), acrylic acid (AA), and Allyl-
OP-10. LMWAP was characterized through FTIR, 1H-NMR, SEM, and static–dynamic
light scattering. The thickening capability, rheology, and viscoelasticity of LMWAP were
comparatively studied with two counterparts, HPAM-800 and HPAM-1800. The molec-
ular weights of HPAM-800 and HPAM-1800 were 8 × 106 g/mol and 18 × 106 g/mol,
respectively. Oil–water interfacial tension and emulsification tests were conducted to study
the interfacial activity of LMWAP. The injectivity and oil displacement ability of LMWAP
under low-permeability conditions were studied by core flooding experiments. The results
of this study could provide some enlightenment on the molecular design of polymers used
for EOR in low-permeability reservoirs.
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2. Experimental Section
2.1. Materials

Acrylamide (AM), acrylic acid (AA), sodium hydroxide, ethanol, bromo-propylene,
OP-10, sodium formate, and 2,2′-Azobis(2-methylpropionamidine) dihydrochloride
(V50) were purchased from Aladdin Chemical Reagent Company (Shanghai, China). All
the chemicals were used as received without further purification. High-MW HPAM
(MW = 1.8 × 107 g/mol) and medium-WM HPAM (MW = 8 × 106 g/mol) were provided
by Jiangsu Feymer Technology Co., Ltd. (Zhangjiagang, China). Crude oil and formation
water were provided by Daqing oilfield (Daqing, China). The oil viscosity was 10.3 mPa·s.
The ion composition of the formation water is shown in Table 1.

Table 1. Ion composition of formation water.

Ion Concentration (mg/L)
Salinity (mg/L)

Ca2+ Mg2+ Na+ CO32− HCO3− Cl− SO42−

44.7 15.1 1518.7 150.1 2410.3 868.8 24.0 5031.7

2.2. Synthesis of Allyl-OP-10

The synthesis route of Allyl-OP-10 is illustrated in Scheme 1. An amount of 20 g of
OP-10 and 1.48 g of sodium hydroxide were put into 250 mL of a single neck flask. After
stirring for 30 min at 50 ◦C, 4.5 g of bromo-propylene was added slowly to the mixture and
kept on reaction for 24 h. After the reaction, 50 mL of ethanol was poured into the solution
and the product (Allyl-OP-10) was obtained using a rotary evaporator at 60 ◦C.
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Scheme 1. The synthesis route of Allyl-OP-10.

2.3. Synthesis of LMWAP

The synthesis route of LMWAP is illustrated in Scheme 2. An amount of 1.2 g of
Allyl-OP-10, 2.5 g of AA, 10 g of AM, and 0.11 g of sodium formate were dissolved in
water. The pH value of the solution was adjusted to 6–8. Then, the initiator V50 was added
dropwise into the previous solution. Finally, the system was placed in a water bath (50 ◦C)
to react for 8 h. The product (LMWAP) was purified and separated using ethanol.
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2.4. Structure Characterization

The chemical groups of Allyl-OP-10 and LMWAP were analyzed with a Fourier
transform infrared (FTIR) spectrophotometer (Bruker, Ettlingen, Germany). The samples
were mixed with KBr powder and then pressed into pellets for testing. In the 1H-NMR test,
samples were dissolved in deuteroxide and then analyzed by nuclear magnetic resonance
spectroscopy (Bruker, Germany) to determine the chemical structure. In addition, the
morphology of LMWAP was characterized with a scanning electron microscope (SEM, FEI,
Hillsboro, OR, USA). Static and dynamic light scattering (SLS, DLS) measurements were
performed on a wide-angle light scattering detector (Brookhaven, Holtsville, NY, USA)
to study the MW and hydrodynamic radius of LMWAP. All the LMWAP solutions were
clarified with a 0.8 µm Millipore filter, and the brines were also clarified with a 0.1 µm
Millipore filter to remove dust.

2.5. Solution Properties

Polymers were dissolved in fresh water or formation water to prepare polymer solu-
tions with designed concentration and salinity. Then, the viscosity of the polymer solutions
was measured by using a DV-2T viscometer (Brookfield, MA, USA). The rheological curves
were conducted by using a rheometer (MCR 302, Anton Paar, Tokyo, Japan). In rheological
experiments, the shear rate was 0.1 s−1 to 1000 s−1 and the frequency was 0.1 Hz to 20 Hz.

2.6. Interfacial Activity Measurements

The IFTs between the crude oil and different polymer solutions were measured using
the spinning drop method with a JJ2000B2 spinning drop IFT apparatus (Zhongchen,
Shanghai, China). The polymer solution was primarily filled in a glass tube, and then a
droplet of oil was injected into the center of the water phase. Finally, the IFT was measured
at a set rotating velocity (6000 rpm) and a given temperature (45 ◦C).

2.7. Emulsification Measurements

Generally, 10 mL of oil and 10 mL of polymer solution were placed in a glass measuring
cylinder. The mixture was emulsified using a mechanical stirrer at 500 r/min for 30 min. The
emulsion volume was recorded and the emulsion stability was determined by monitoring
the emulsion as a function of time. The microstructure of the microgels and emulsion
droplets was observed using a DM4500P optical microscope (Leica, Wetzlar, Germany).
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2.8. Core Flooding Experiments

Five artificial cores with a diameter of 2.5 cm and a length of 10 cm were used in the
core flooding experiments. The basic parameters of the cores are listed in Table 2. The
radius of the pore throat (Rc) was calculated using the Kozeny–Carmen equation [34,35]:

Rc = [K(1 − φ)2/φ·C]0.5 (1)

where K is the water permeability of the core, µm2; φ is the porosity, %; and C is the Kozeny
constant, which is generally 0.2.

Table 2. Basic parameters of artificial cores in the core flooding experiments.

Core Sample Diameter (cm) Length (cm) Porosity (%) Permeability (mD) Oil Saturation (%) Rc (nm)

1 2.50 10.02 21.4 41 / 769
2 2.50 10.11 21.8 42 / 768
3 2.50 10.04 21.1 41 / 778
4 2.50 10.08 21.9 43 70.4 774
5 2.50 10.04 21.5 42 71.2 776

The polymer injection experiments were carried out according to the schematic dia-
gram shown in Scheme 3. Polymer solutions were injected into the brine-saturated cores
separately at 45 ◦C until the pressure drop reached stable. Subsequent water flooding
was then conducted until the pressure drop reached stable again. The flow rate was fixed
at 0.5 mL/min. The resistance factor (RF) and residual resistance factor (RRF) could be
calculated according to the following formulas:

RF = ∆Pp/∆Pwb (2)

RRF = ∆Pwa/∆Pwb (3)

where ∆Pwb, ∆Pp, and ∆Pwa refer to the stable injection pressure during water flooding,
polymer flooding, and subsequent water flooding, respectively.
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In the oil displacement experiments, the cores were first evacuated and saturated
with the formation brine. Afterward, they were saturated with crude oil until the water
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production was zero. Then, water flooding was carried out until the water cut reached
98%. Subsequently, after injecting a 0.3 PV polymer slug, the subsequent water flood-
ing was conducted until the water cut reached 98% again. The flow rate was fixed at
0.1 mL/min. The pressure, water cut, and oil recovery were recorded during the whole oil
displacement process.

3. Results and Discussion
3.1. Characterizations of Allyl-OP-10 and LMWAP

Figure 1 shows the FTIR spectra of OP-10, Allyl-OP-10, and LMWAP. From the curve
of OP-10, the bands observed at 3470 cm−1 and 2930–2820 cm−1 were attributed to the
stretching vibration peaks of -OH and -CH2-, respectively. The peak area of -OH at
3470 cm−1 in the spectrum of Allyl-OP-10 obviously decreased, demonstrating that -OH
had been transformed. The peaks of -CH2- and benzene were observed in the spectra of
LMWAP, demonstrating the introduction of Allyl-OP-10 in the polymer chain. In addition,
as illustrated in Figure 2, the H1-NMR results further confirmed the structure of OP-10,
Allyl-OP-10, and LMWAP. The Zimm plot of LMWAP is shown in Figure 3. By extrapolating
to infinite dilution and taking the intercept, the weight-average MW was determined to
be 3.9 × 106 mol/g. Furthermore, the intermolecular hydrophobic association contributes
to strengthening the interaction between polymer chains and forming a spatial network;
therefore, as shown in Figure 4, the morphology of LMWAP exhibited a typical three-
dimensional network structure.

Polymers 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

3. Results and Discussion 

3.1. Characterizations of Allyl-OP-10 and LMWAP 

Figure 1 shows the FTIR spectra of OP-10, Allyl-OP-10, and LMWAP. From the curve 

of OP-10, the bands observed at 3470 cm−1 and 2930–2820 cm−1 were attributed to the 

stretching vibration peaks of -OH and -CH2-, respectively. The peak area of -OH at 3470 

cm−1 in the spectrum of Allyl-OP-10 obviously decreased, demonstrating that -OH had 

been transformed. The peaks of -CH2- and benzene were observed in the spectra of 

LMWAP, demonstrating the introduction of Allyl-OP-10 in the polymer chain. In addition, 

as illustrated in Figure 2, the H1-NMR results further confirmed the structure of OP-10, 

Allyl-OP-10, and LMWAP. The Zimm plot of LMWAP is shown in Figure 3. By extrapo-

lating to infinite dilution and taking the intercept, the weight-average MW was deter-

mined to be 3.9 × 106 mol/g. Furthermore, the intermolecular hydrophobic association con-

tributes to strengthening the interaction between polymer chains and forming a spatial 

network; therefore, as shown in Figure 4, the morphology of LMWAP exhibited a typical 

three-dimensional network structure. 

 

Figure 1. FIIR spectra of Allyl-OP-10 and LMWAP. 

  

Figure 1. FIIR spectra of Allyl-OP-10 and LMWAP.



Polymers 2024, 16, 1036 7 of 17
Polymers 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

 

 

Figure 2. H1-NMR spectra of (a) OP-10, (b) Allyl-OP-10, and (c) LMWAP. 

  

Figure 2. H1-NMR spectra of (a) OP-10, (b) Allyl-OP-10, and (c) LMWAP.

Polymers 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Zimm plot of LMWAP. 

  

Figure 4. SEM images of LMWAP. 

3.2. Thickening Capability of LMWAP 

The thickening capability of a polymer is the primary consideration for achieving 

mobility control during polymer flooding. The thickening capability of LMWAP was stud-

ied in both fresh water and formation water through the relationship between apparent 

viscosity (ηs) and polymer concentration. As shown in Figure 5a, the viscosity of all the 

polymers increases with the polymer concentration, and the three polymers all exhibit 

classical power law behavior. It is well known that the viscometric properties of polymer 

solutions closely relate to the structure and conformation of polymers in solution. The 

power law index, a representation of the entangled characteristics of linear polymers [36], 

is 2.25 for LMWAP in fresh water, which is greater than that of the counterparts HPAM-

1800 and HPAM-800, suggesting that LMWAP has the highest thickening efficiency 

among all the polymers. However, due to its low MW, the viscosity of LMWAP was lower 

than that of HPAM-1800 at the same concentration. In contrast, as shown in Figure 5b, the 

viscosity of LMWAP was higher than that of HPAM-1800 when the polymer concentration 

was higher than 1000 mg/L. The metal cation in formation water significantly weakened 

the thickening capability of HPAM-1800 and HPAM-800 through charge screening. Mean-

while, the hydrophobic association promoted the formation of intermolecular aggregates, 

which significantly improved the viscosity retention of LMWAP in formation water. The 

critical association concentration (CAC) of LMWAP is approximately 870 mg/L and 825 

mg/L, respectively, in fresh water and formation water, which demonstrates that the hy-

drophobic association of LMWAP was enhanced and the intermolecular aggregates were 

formed at a lower concentration. Therefore, LMWAP exhibited better thickening capabil-

ity than HPAM-1800 and HPAM-800 in formation water when the polymer concentration 

Figure 3. Zimm plot of LMWAP.



Polymers 2024, 16, 1036 8 of 17

Polymers 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Zimm plot of LMWAP. 

  

Figure 4. SEM images of LMWAP. 

3.2. Thickening Capability of LMWAP 

The thickening capability of a polymer is the primary consideration for achieving 

mobility control during polymer flooding. The thickening capability of LMWAP was stud-

ied in both fresh water and formation water through the relationship between apparent 

viscosity (ηs) and polymer concentration. As shown in Figure 5a, the viscosity of all the 

polymers increases with the polymer concentration, and the three polymers all exhibit 

classical power law behavior. It is well known that the viscometric properties of polymer 

solutions closely relate to the structure and conformation of polymers in solution. The 

power law index, a representation of the entangled characteristics of linear polymers [36], 

is 2.25 for LMWAP in fresh water, which is greater than that of the counterparts HPAM-

1800 and HPAM-800, suggesting that LMWAP has the highest thickening efficiency 

among all the polymers. However, due to its low MW, the viscosity of LMWAP was lower 

than that of HPAM-1800 at the same concentration. In contrast, as shown in Figure 5b, the 

viscosity of LMWAP was higher than that of HPAM-1800 when the polymer concentration 

was higher than 1000 mg/L. The metal cation in formation water significantly weakened 

the thickening capability of HPAM-1800 and HPAM-800 through charge screening. Mean-

while, the hydrophobic association promoted the formation of intermolecular aggregates, 

which significantly improved the viscosity retention of LMWAP in formation water. The 

critical association concentration (CAC) of LMWAP is approximately 870 mg/L and 825 

mg/L, respectively, in fresh water and formation water, which demonstrates that the hy-

drophobic association of LMWAP was enhanced and the intermolecular aggregates were 

formed at a lower concentration. Therefore, LMWAP exhibited better thickening capabil-

ity than HPAM-1800 and HPAM-800 in formation water when the polymer concentration 

Figure 4. SEM images of LMWAP.

3.2. Thickening Capability of LMWAP

The thickening capability of a polymer is the primary consideration for achieving
mobility control during polymer flooding. The thickening capability of LMWAP was
studied in both fresh water and formation water through the relationship between apparent
viscosity (ηs) and polymer concentration. As shown in Figure 5a, the viscosity of all the
polymers increases with the polymer concentration, and the three polymers all exhibit
classical power law behavior. It is well known that the viscometric properties of polymer
solutions closely relate to the structure and conformation of polymers in solution. The
power law index, a representation of the entangled characteristics of linear polymers [36], is
2.25 for LMWAP in fresh water, which is greater than that of the counterparts HPAM-1800
and HPAM-800, suggesting that LMWAP has the highest thickening efficiency among all
the polymers. However, due to its low MW, the viscosity of LMWAP was lower than that
of HPAM-1800 at the same concentration. In contrast, as shown in Figure 5b, the viscosity
of LMWAP was higher than that of HPAM-1800 when the polymer concentration was
higher than 1000 mg/L. The metal cation in formation water significantly weakened the
thickening capability of HPAM-1800 and HPAM-800 through charge screening. Meanwhile,
the hydrophobic association promoted the formation of intermolecular aggregates, which
significantly improved the viscosity retention of LMWAP in formation water. The critical
association concentration (CAC) of LMWAP is approximately 870 mg/L and 825 mg/L,
respectively, in fresh water and formation water, which demonstrates that the hydrophobic
association of LMWAP was enhanced and the intermolecular aggregates were formed at a
lower concentration. Therefore, LMWAP exhibited better thickening capability than HPAM-
1800 and HPAM-800 in formation water when the polymer concentration was higher than
1000 mg/L. It was reported that the introduction of a long alkyl chain or aromatic ring
contributes to improving the thickening ability of water-soluble polymers, especially above
the CAC [37]. The carbon number of the alkyl chain or aromatic ring in one hydrophobic
monomer has a significant effect on the CAC and thickening ability of polymers. For
example, Jiang et al. [38] synthesized a novel double-tailed hydrophobically associating
polymer whose hydrophobic monomer possesses two alkyl chains with a carbon number
of 22, which is higher than that of LMWAP. The CAC of the reported polymer was only
750 mg/L. In addition, the hydrophobic group content on a polymer also has an effect
on the thickening ability. Yang et al. [39] reported that higher hydrophobic group content
contributes to improving the association function between hydrophobic groups and the
thickening ability of polymers. However, since the carbon number of the hydrophobic
group was only 11, the CAC was 1000 mg/L for the sample with the highest hydrophobic
group content in the study. Therefore, the increase in the carbon number and content of
the hydrophobic monomer could be the method to further improve the thickening ability
of LMWAP.
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and LMWAP in (a) fresh water and (b) formation water at 45 ◦C (7.34 s−1).

3.3. Rheology and Viscoelasticity of LMWAP

Steady rheological experiments are performed to investigate the rheological behavior
of the LMWAP solution. Figure 6a shows that the viscosities of all polymer solutions
decreased gradually with the increase in shear rate, demonstrating that all the polymer
solutions are typical shear-thinning fluids. It is accepted that the physical entanglements
and intermolecular forces, such as hydrogen bonds, Van Edward forces, and hydrophobic
associations, were gradually broken down as the shear rate increased, resulting in the
destruction of the three-dimensional network of polymer molecules and the decrease in
viscosity. Due to the molecular structure characteristics, the networks of HPAM-1800
and HPAM-800 were mainly formed by physical entanglements, while the network of
LMWAP was formed by both physical entanglements and hydrophobic association. As
a result, LMWAP exhibited more significant shear-thinning behavior than HPAM-800
and HPAM-1800, which contributes to improving the injectivity of LMWAP in the near
wellbore zone.
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Figure 6. (a) Shear viscosity plotted as a function of shear rate; (b) G′/G′′ as a function of frequency
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frequency for LMWAP (Cp = 1200 mg/L, 45 ◦C, formation water).

The viscoelasticity of the polymer solution relates closely to the micro-displacement
efficiency since the polymer with strong elasticity contributed to mobilizing the residual oil
at dead ends in reservoirs. The plots of G′/G′′ versus the frequency of polymer solutions
are presented in Figure 6b–d. The phenomenon occurs in HPAM-1800 and HPAM-800
solutions wherein G′ increases and overtakes G′′ along with the frequency measured, which
indicates that the solution behaves as a viscous fluid at low frequencies but is elastic at
high frequencies. The solution of LMWAP exhibits a similar viscoelastic property but
the intersection point of G′ and G′′ shifts to a lower frequency. This result indicates that
LMWAP exhibited stronger elasticity than HPAM-1800 and HPAM-800 regardless of the fact
that the two counterparts possess higher MW. The intermolecular hydrophobic association
contributes greatly to the elasticity of LMWAP molecular networks.

3.4. IFT Measurements

Oil–water IFT is an important indicator for enhancing oil recovery since the reduction
in IFT can significantly reduce the capillary force during the displacement. The decrease
in capillary force leads to an increase in the capillary number, which contributes to the
mobilization of the remaining crude oil and enhances ultimate oil recovery. The equilibrium
IFTs between oil and the LMWAP solution as a function of polymer concentration are
shown in Figure 7. The presence of Allyl-OP-10 in molecular chains endows LMWAP
with amphiphilicity. As the LMWAP concentrations were increased, the IFTs reduced
sharply for the fresh water solution and the formation water solution with 100–3000 mg/L
LMWAP, and then decreased slowly above 3000 mg/L LMWAP, which could be attributed
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to the saturated adsorption of LMWAP molecules at the oil–water interface. Meanwhile,
the IFTs reached 2.91 mN/m and 0.88 mN/m, respectively, in fresh water and formation
water. LMWAP exhibited better interfacial activity in the formation water, which may be
because the electrostatic repulsion generated from -COO− was weakened by cations in
formation water and LMWAP formed a tighter adsorption layer at the oil–water interface.
Furthermore, the relatively high content of Allyl-OP-10 in LWMAP could be the main reason
for its favorable interfacial activity. Normally, the mass ratio of hydrophobic monomer
in a polymer used for EOR is less than 3% to ensure water solubility. Therefore, despite
the introduction of a hydrophobic monomer such as alkylphenol ethoxylates [40] and
(E)-N-(docos-13-enoyl)-N-methylglycine [41], many amphiphilic polymers used for EOR
can only reduce IFT to ~10 mN/m. However, the Allyl-OP-10 in LWMAP was almost 8.8%,
and the water solubility was guaranteed by its low MW. Likewise, Babu et al. [42] reported
a polymeric surfactant whose hydrophobic monomer mass ratio was higher than 50%. The
high hydrophobic monomer content endowed the polymeric surfactant with favorable
activity, and the IFT could be reduced to 10−2 mN/m. Therefore, increasing the content of
Allyl-OP-10 while ensuring water solubility is one way to enhance the interfacial activity
of LMWAP.
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3.5. Emulsifying Measurements

In situ emulsification is considered an important micro behavior during chemical
flooding because the Jamin effect of emulsion droplets is positive to improve the swept
efficiency in micro heterogeneous distributions. As mentioned in Section 3.4, LMWAP pos-
sesses an amphiphilic structure and favorable interfacial activity. Therefore, the emulsifying
ability of LMWAP was studied at different concentrations in formation water. Figure 8a
illustrates the emulsion volume of oil and water at different LMWAP concentrations. The
emulsion volume increased from 14 mL to 20 mL as the LMWAP concentration increased
from 1000 mg/L to 4000 mg/L, which results from more adsorbed LMWAP molecules at
the oil–water interface at higher concentrations. Meanwhile, as shown in Figure 8b, the
increased LMWAP concentration also leads to a decrease in the size of emulsion droplets.
The average droplet size (D50) decreased from 41.5 um to 8.5 um when the LMWAP con-
centration increased from 1000 mg/L to 4000 mg/L. According to the Stokes equation, the
emulsion systems with smaller droplets possess better stability. In addition, the higher
solution viscosity results in better emulsion stability. Therefore, as illustrated in Figure 8c,
the emulsions with higher concentrations of LMWAP showed better stability and higher
residual emulsion volume after 10 days of aging.
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3.6. Flow Behavior of Polymers in Porous Media

The flow behavior of polymers reflects the compatibility of the polymer molecular coils
and the pore throats, which is an indicator of injectivity and the migration characteristic of
polymers. The relationship between pressure drop change and the cumulative injected pore
volume (PV) during water flooding, polymer flooding, and subsequent water flooding is il-
lustrated in Figure 9. The pressure drop of LMWAP and HPAM-800 increased progressively
with polymer injection before finally reaching an equilibrium stage, implying their smooth
transportation in porous media. In contrast, the pressure drop consistently increased as
HPAM-1800 was injected into the core, which indicates that it is difficult for HPAM-1800
to migrate in porous media, and strong plugging happened during HPAM-1800 flooding.
Considering that the viscosity of LMWAP was higher than HPAM-1800 in formation water,
this phenomenon is most likely caused by the large coil size of HPAM-1800, which leads to
fatal pore throat plugging. As shown in Table 3, the hydrodynamic sizes of HPAM-1800,
HPAM-800, and LMWAP were 186 nm, 124 nm, and 192 nm, respectively, in formation
water. The radius of the pore throat of the cores was around 770 nm. It is believed that
stable plugging would occur when the ratio of the size of the pore throat to that of the size
of the injected polymer is less than 5.0 [34]. The Rc/Rh value of HPAM-800 is 6.19, which is
larger than the threshold (5.0). In contrast, the Rc/Rh values of LMWAP and HPAM-1800
are 4.13 and 4.05, respectively, which are smaller than the threshold (5.0). However, a plug-
ging issue only happened for HPAM-1800, which may be related to the shear-reversible
network structure of LMWAP. As shown in Scheme 4, the reversible intermolecular hy-
drophobic association endowed the network of LMWAP with better flexibility to adapt the
space of the pore throats. The physical crosslinked polymer network of LMWAP could be
disassociated into separated polymer chains, and this dynamic transition would decrease
the size of polymer coils. As a result, the LMWAP molecules passed the narrow throats
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and re-assembled at the pores of the rock. This repeated micro process enables LMWAP
to maintain good injectivity under low-permeability conditions. In contrast, the coils of
HPAM cannot undergo dissociation under external forces, which leads to plugging once
the size of HPAM exceeds the threshold value. Therefore, LMWAP exhibited favorable in-
jectivity under low-permeability conditions. Furthermore, despite the lower MW, LMWAP
exhibited higher RF and RRF than HPAM-800, which indicates that the capacity of LMWAP
to reduce the water–oil mobility ratio and permeability of porous media to water is greater
than that of HPAM-800 under identical conditions, which contributes to resulting in higher
sweep efficiency.
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Table 3. Comparison of Rc, Rh, Rc/Rh, RF, RRF for HPAM-1800, HPAM-800, and LMWAP.

Core Sample Polymer Rc (nm) Rh (nm) Rc/Rh RF RRF

1 HPAM-1800 769 186 4.13 / /
2 HPAM-800 768 124 6.19 9.26 4.31
3 LMWAP 778 192 4.05 11.92 4.94
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3.7. Enhanced Oil Recovery by LMWAP

The oil displacement experiments were carried out to intuitively reveal the ability
of LMWAP for EOR. The concentration of LMWAP used in the oil displacement experi-
ments was set at 1200 mg/L. The concentration of HPAM-800 was set at 1500 mg/L for
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comparative studies considering the close viscosity. HPAM-1800 was not investigated in
this section due to its poor injectivity, as mentioned above. As shown in Figure 10, the
pressure gradually increases with the injection of polymer for both LMWAP and HPAM-
800. A higher peak pressure (1.88 MPa) for 1200 mg/L LMWAP is taken compared to
1.16 MPa for 1500 mg/L HPAM-800, even though they have the same initial shear viscosi-
ties. The stronger sensitivity of the entanglement structure to the elongational stress of
the pore throat is considered an important reason for this [33]. In addition, considering
the amphiphilicity of LMWAP, in situ emulsification could be the other reason resulting
in the difference in pressure. Higher peak pressure usually reflects better mobility control
ability, which results in higher sweep efficiency for LMWAP. In addition, as mentioned in
Section 3.4, LMWAP could significantly reduce the IFT, which contributes to improving
capillary number. Capillary number, understood as the ratio of viscous force to capillary
force, is one of the most important parameters in enhanced oil recovery [43]. A higher
capillary number leads to a higher micro oil displacement efficiency. The oil recovery
at different stages is summarized in Table 4. The better mobility control ability, along
with the IFT-reducing ability, endowed LMWAP with significantly higher enhanced oil
recovery compared to HPAM-800. A total of 0.3 PV of polymer slug and a subsequent water
slug can further increase oil recovery up to 21.5% for LMWAP compared with only 11.5%
for HPAM-800. Since the thickening and interfacial activity of LMWAP could be further
improved by optimizing the content and alkyl chain length of hydrophobic groups, the
structure–activity relationships could be systematically studied in future studies to provide
more systematic theoretical guidance for the structural design of the polymers used for
EOR in low-permeability reservoirs.

Polymers 2024, 16, x FOR PEER REVIEW 14 of 17 
 

 

section due to its poor injectivity, as mentioned above. As shown in Figure 10, the pressure 

gradually increases with the injection of polymer for both LMWAP and HPAM-800. A 

higher peak pressure (1.88 MPa) for 1200 mg/L LMWAP is taken compared to 1.16 MPa 

for 1500 mg/L HPAM-800, even though they have the same initial shear viscosities. The 

stronger sensitivity of the entanglement structure to the elongational stress of the pore 

throat is considered an important reason for this [33]. In addition, considering the am-

phiphilicity of LMWAP, in situ emulsification could be the other reason resulting in the 

difference in pressure. Higher peak pressure usually reflects better mobility control abil-

ity, which results in higher sweep efficiency for LMWAP. In addition, as mentioned in 

Section 3.4, LMWAP could significantly reduce the IFT, which contributes to improving 

capillary number. Capillary number, understood as the ratio of viscous force to capillary 

force, is one of the most important parameters in enhanced oil recovery [43]. A higher 

capillary number leads to a higher micro oil displacement efficiency. The oil recovery at 

different stages is summarized in Table 4. The better mobility control ability, along with 

the IFT-reducing ability, endowed LMWAP with significantly higher enhanced oil recov-

ery compared to HPAM-800. A total of 0.3 PV of polymer slug and a subsequent water 

slug can further increase oil recovery up to 21.5% for LMWAP compared with only 11.5% 

for HPAM-800. Since the thickening and interfacial activity of LMWAP could be further 

improved by optimizing the content and alkyl chain length of hydrophobic groups, the 

structure–activity relationships could be systematically studied in future studies to pro-

vide more systematic theoretical guidance for the structural design of the polymers used 

for EOR in low-permeability reservoirs. 

 

 

Figure 10. Injection pressure and oil recovery as a function of injected pore volume for (a) LMWAP 

and (b) HPAM-800 (45 °C, formation water). 

  

Figure 10. Injection pressure and oil recovery as a function of injected pore volume for (a) LMWAP
and (b) HPAM-800 (45 ◦C, formation water).



Polymers 2024, 16, 1036 15 of 17

Table 4. Results of oil flooding experiments.

Core Sample Polymer Viscosity (mPa·s) Oil Recovery after
Water Flooding (%)

Oil Recovery after
Subsequent Water

Flooding (%)

Enhanced Oil
Recovery (%)

4 LMWAP 19.2 55.6 77.1 21.5
5 HPAM-800 19.5 53.8 65.3 11.5

4. Conclusions

In summary, an amphiphilic polymer LMWAP with a low MW (3.9 × 106 g/mol)
was proposed in this study as a polymer flooding agent for low-permeability reservoirs.
Due to the intermolecular hydrophobic association caused by the hydrophobic groups
on the polymer chains, LMWAP exhibited better thickening capability in brine than its
counterparts, a high-WM HPAM-1800 and a medium-WM HPAM-800. The intermolecu-
lar hydrophobic association also endowed LMWAP with more significant shear-thinning
behavior and stronger elasticity compared to the two counterparts. Furthermore, de-
spite the higher hydrodynamic size, LMWAP exhibited better injectivity than HPAM-1800
under low-permeability conditions, which relates closely to the reversible association–
disassociation transition characteristics of LMWAP. The amphiphilic monomer endowed
LMWAP with favorable IFT reduction and emulsification ability. As a result, LMWAP could
enhance oil recovery up to 21.5%, which is almost twice as high as that for its counterpart
HPAM-800, regardless of the close solution viscosities. The findings of this study provide
some enlightenment on designing the structure of polymers used for oil displacement
in low-permeability reservoirs. The structure–activity relationships of LMWAP could be
future research to build a more systematic theoretical guidance for the structural design of
the polymers.
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