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Abstract: The mechanical integrity of two commercially available lithium-ion battery separators was
investigated under uniaxial and biaxial loading conditions. Two dry-processed microporous films
with polypropylene (PP)/polyethylene (PE)/polypropylene (PP) compositions were studied: Celgard
H2010 Trilayer and Celgard Q20S1HX Ceramic-Coated Trilayer. The uniaxial tests were carried out
along the machine direction (MD), transverse direction (TD), and diagonal direction (DD). In order
to generate a state of in-plane biaxial tension, a pneumatic bulge test setup was prioritized over
the commonly performed punch test in an attempt to eliminate the effects of contact friction. The
biaxial flow stress–strain behavior of the membranes was deduced via the Panknin–Kruglov method
coupled with a 3D Digital Image Correlation (DIC) technique. The findings demonstrate a high
degree of in-plane anisotropy in both membranes. The ceramic coating was found to negatively affect
the mechanical performance of the trilayer microporous separator, compromising its strength and
stretchability, while preserving its failure mode. Derived from experimentally calibrated constitutive
models, a finite element model was developed using the explicit solver OpenRadioss. The numerical
model was capable of predicting the biaxial deformation of the semicrystalline membranes up until
failure, showing a fairly good correlation with the experimental observations.

Keywords: lithium-ion batteries; polymer separators; battery abuse tolerance; battery safety

1. Introduction

In response to rapidly evolving trends in communication and transportation industries,
high-performance and low-cost energy storage solutions are required for a sustainable
future. Lithium-ion (Li-ion) batteries offer many advantages such as high energy density,
long cycle life, and low self-discharge; however, their safety under mechanical, thermal,
and electrical abuse conditions is of great concern, c.f. [1–5]. This is particularly the case for
plug-in hybrid electric vehicles (PHEVs) as well as electric vehicles (EVs), which have the
potential of experiencing mechanical abuse loading.

One of the critical safety components within liquid electrolyte batteries is their sepa-
rator. Its function is to prevent any physical contact between the positive (cathode) and
negative (anode) electrodes while permitting free ionic transport [2,3]. The separator is
required to be chemically and electrochemically stable while being mechanically strong to
endure stresses caused during the battery’s assembly as well as throughout its operation
(i.e., charging–discharging cycles exert a biaxial loading state on the separator) [4]. Any
damage to its integrity would trigger an internal short circuit, which may lead to thermal
runaway [6].

Battery separators can be categorized into three groups: microporous polymer mem-
branes, non-woven fabric mats, and inorganic composite membranes [2]. The former,
particularly the ones based on semi-crystalline polyolefin materials, have dominated the
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market for lithium-ion batteries owing to their good mechanical performance combined
with high electrochemical stability, high porosity, and low cost [1]. These polyolefin-based
microporous membranes can be manufactured either by dry processes or wet processes,
which can substantially influence their mechanical behavior.

They usually come in the form of polyethylene (PE), polypropylene (PP), or their
combination, namely, PE/PP (bilayer) [7] and PP/PE/PP (trilayer) [8,9]. The multilayer
design offers an additional safety feature known as thermal shutdown; at a temperature
below the occurrence of thermal runaway, the PE layer (with a melting point of 130 ◦C)
turns into a nonporous film by melting and filling the pores, terminating the ionic flow and
the battery operation, while the PP layer (165 ◦C) provides enough mechanical integrity
to prevent a short circuit between the anode and cathode [3,5]. Due to this improved
reliability, large industrial batteries have started utilizing trilayer separators. A study
carried out by Li et al. [10] demonstrates the potential of multilayer membranes for use in
high-safety lithium-ion batteries. Further information on monolayer separators and their
benchmarking against multilayer ones can be found in [2,3,11–13].

Another issue with polyolefin-based separators is their low thermal stability which
could lead to thermal runaway, raising safety concerns in the event of overheating. To
enhance their electrochemical properties, separators are coated via inorganic particles such
as alumina (Al2O3), silica (SiO2), titanium oxide (TiO2), and zirconia oxide (ZrO2) [14–18].
Gong et al. [15]. studied the influence of ceramic coatings on separators by coating an
ultrathin layer of Al2O3 on a polyethylene (PE) separator via atomic layer deposition.
The authors reported that ceramic deposition impedes separator shrinkage at elevated
temperatures, enhances the thermal dimensional stability of the battery cell, and improves
ionic conductivity and electrolyte wettability [15]. Apart from the safety concerns, the
mechanical integrity of the separator also plays a substantial role in the electrochemical
performance of Li-ion battery cells, compromising cell capacity and charge–discharge
cycles; see [2].

In the literature, a number of research works investigating the mechanical behavior
and failure mechanism of these microporous films exist [19–24]. Amongst them, Chen
et al. [20] built a morphological model to illustrate the tensile deformation mechanism
of dry-processed polymer separators in the machine direction (MD) and the transverse
direction (TD). Using in situ tensile testing and atomic force microscope (AFM) imaging,
the authors associated the observed anisotropic behavior of the dry-processed separator
with its deformation mechanism: it stretched parallel to the MD results in the separation of
crystalline lamellae along with the elongation of fibrils in the amorphous phase, followed by
the breakage of the crystallite lamellae; loading along the TD, however, led to the breakage
of the crystalline lamellae by chain pull-out; see [20].

Recent studies have focused on investigating the effects of compression stress on
polypropylene separators in lithium-ion batteries. Hu et al. [25] developed a novel mul-
tiphysics model utilizing Thiessen polygons to simulate the structural evolution of a
separator, correlating mechanical properties with battery performance. Xu et al. [26] em-
ployed a multiscale simulation methodology, reconstructing separator microstructures
based on SEM images and conducting explicit dynamic simulations to analyze mechanical
behavior and predict the performance of a Li-ion battery. Both studies highlight the effect
of compression stress on reducing ionic conductivity, which in turn adversely affects the
battery discharge capacity and increases cell temperature due the structural variation.
These findings offer valuable insights for future efforts in optimizing separator design for
enhanced battery performance and safety.

The biaxial mechanical behavior of monolayer PP (Celgard PP2075) and trilayer
PP/PE/PP (Celgard 2325) separators was investigated by Kalnaus et al. [23]. Through
employing Digital Image Correlation (DIC) technique, the authors reported a degree of
sticking between the membranes and the surface of the spherical indenter; nonetheless, the
final failure was in the form of a straight crack running along the MD.
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Zhang et al. [19] studied the mechanical integrity of dry-processed PE and trilayer
(PP/PE/PP) separators under a uniaxial tensile condition (along the machine, transverse,
and diagonal directions), compression, and biaxial punch tests. Therefore, two different fail-
ure modes under the biaxial loading condition were detected, either through the formation
of a crack along the MD or one that exceeded beyond this stage and formed a transparent
zone, followed by a zig-zag failure surface along the TD. The former is more prevalent and
may increase the probability of a short circuit and the subsequent thermal reaction in a
cell [19].

Concerning the rate sensitivity of microporous separators, there is a consensus in the
literature: a positive strain rate dependency was noted under both tensile and compressive
loadings owing to the viscoelastic behavior of separator materials, c.f. [27–31]. A number of
studies thereby proposed a material model to describe the mechanical and fracture behavior
of microporous separators; these include, among others, a linear viscoelastic model based
on the Kelvin–Voigt model [28,32], a viscoelastic poroelastic model for a range of strain
rates [33], an anisotropic crushable foam model [34], and a fully 3D microstructural model
using the stochastic reconstruction approach [35].

The present study investigates the mechanical performance of two commercially
available polyolefin trilayer (PP/PE/PP) separators under uniaxial and biaxial loading
conditions. To generate a state of in-plane biaxial tension, a pneumatic bulge test setup
was prioritized over the commonly performed punch test method. Derived from the
experimentally calibrated constitutive models, a preliminary finite element model was
developed to predict the biaxial deformation of the membranes. The accuracy of the
acquired predictions was confirmed through a comparison with experimental observations.

2. Materials and Methods
2.1. Separator Materials

Two types of microporous polymer separators were studied: Celgard® H2010 (tri-
layer) and Celgard® Q20S1HX (Ceramic-Coated Trilayer); both membranes encompass a
PP/PE/PP composition with a thickness of 20 and 16 µm, respectively. The latter possesses
an additional 4 µm ceramic coating on one side. The materials were supplied by Celgard
(Celgard, LLC, Charlotte, NC, USA). Table 1 presents further information provided by
the manufacturer.

Table 1. Properties of the membranes.

Product Name Composition Thickness [µm] Porosity [%] Gurley (JIS) [Sec] Manufacturing Process

Celgard H2010
Trilayer Membrane PP/PE/PP 20 46 240 Dry-processed

Celgard Q20S1HX
Ceramic-Coated

Trilayer
Membrane

PP/PE/PP 20 49 195 Dry-processed

2.2. Uniaxial Tests

Concerning the uniaxial loading configuration, the materials were tested in three
directions, the machine direction (MD), transverse direction (TD), and diagonal direction
(DD), conforming to the instructions proposed by ASTM D882 [36]. Samples were cut in
strips dimensioned as 60 × 12 × 0.02 mm3 in length, width, and thickness, respectively.
Generally, a width of 10 mm or more is recommended to enhance the reliability of the
measurements and to minimize the deviation in the failure strain value [34].

Uniaxial tensile tests were carried out using a Hegewald and Peschke (Inspekt Table
Blue) testing machine (Hegewald & Peschke Meß- und Prüftechnik GmbH, Nossen, Ger-
many) with a 10 N load cell for the specimens in the TD and DD; a 100 N load cell, however,
was employed for the MD specimens, owing to their higher strength. The values were
registered at 5 Hz.
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To prevent grip-induced failure and stress concentration, steel tabs, with a thickness
of 0.1 mm, were introduced, resulting in a gauge length of 36 mm. Five tests per test
arrangement were carried out under a constant crosshead speed of 0.1 mm/s, yielding a
constant strain rate of 0.0027 s−1. All the experiments were carried out at room temperature.
Figure 1 presents a general view of the uniaxial test setup.
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Figure 1. Uniaxial tension test setup equipped with the 3D-DIC system.

2.3. Biaxial Tests

To model a more realistic loading condition which a separator may encounter dur-
ing battery assembly and operation, biaxial tension experiments were carried out. They
resembled a mechanical abuse condition that separators may endure under external impact
loading or during battery charging–discharging cycles (by the expansion and shrinkage
of electrodes in the battery cell) [2,19]. A state of in-plane biaxial tension on membranes
is generally realized via a punch test configuration. Following ASTM F1306-90 [37], a
small punch diameter (around 3.2 mm) was employed to assess the puncture resistance of
separator films. However, biaxial stretching with larger hemispherical punch heads may
restrain the material flow owing to the inevitable contact friction, thus affecting the strain
distribution; see [19,23].

To this end, a bulge test setup was built; a pneumatic system was prioritized over a
hydraulic one owing to the sensitivity of polymers to moisture and their relatively low
failure pressure. The setup, equipped with an optical measurement system, is shown in
Figure 2. A test chamber was designed to enclose and inflate the membranes. The test
specimen was sandwiched between two rubber sheets of 1 mm thickness. The assembly
was clamped between the concentric upper and lower flanges, with an inner diameter of
32 mm, by applying a torque of 1.4 Nm. Thereby, a fixed boundary condition was attained
without any slippage, air leakage, nor any grip-induced damage on the separator material.

A proportional pressure regulator VPPM, NPT (from Festo with a regulation range
of up to 6 bar) was employed to provide a linear pressure increase in a controlled manner.
The compressed air was directed to the test specimen through an air channel. The pressure
history was registered using a 2.5 bar pressure transducer (Thermokon Sensortechnik
GmbH, Mittenaar, Germany).

Regarding the data acquisition system, a measurement card, coupled with a PC
equipped with DASYLab® (2020) DAQ software, was employed. The software was also
used to trigger the regulator. Prior to the main experiments, a series of preliminary tests
were carried out with a polymer film to confirm the measurements and the test setup.
Five tests per material were carried out. All the experiments were conducted at room
temperature and under a pressure-controlled mode, with an average loading duration of
100 s, recorded at 20 Hz.
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To attain the flow stress curves of biaxially deformed thin sheets, membrane theory is
commonly employed. The theory is valid provided the ratio between the sheet thickness
and the bulge diameter remains small, hence neglecting bending stresses; see [38,39].
Thereby, the biaxial stress can be obtained as follows:

σb =
pR
2t

(1)

where p, R, and t are, respectively, the pressure, curvature radius of the spherical dome,
and the thickness of the membrane at the apex of the dome. Unlike the inflating pressure,
the geometrical parameters can only be acquired indirectly; see Figure 3. As proposed by
Hill [39], the curvature radius of the dome, assuming that is spherical, can be calculated
analytically as follows:

R =
(d/2)2 + h2

2h
(2)

where h and d are the dome height and the diameter of the bulge chamber. Panknin [40],
as well as Shang and Shim [41], considered the effect of the fillet on the upper flange, R f ,
ignored by Equation (2); therefore, the radius of the dome can be defined as follows:

R =
R2

+ h2

2h
− R f (3)

As the membrane is inflated, the meridional profile of the membrane, at this interface,
is assumed to be tangential to the round edge of the flange. Equation (3) solely requires the
continuous registration of the dome height and remains valid up to h/d = 0.28, c.f. [38,40].
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With respect to the quantification of the thickness value at the dome apex, a pragmatic
model, as a function of curvature radius, was proposed by Kruglov et al. [42]. Thereby,
assuming the incompressibility of the material, the instantaneous thickness at the pole
position can be expressed as [42] follows:

t = t0

[
(d/2)/R

arcsin ((d/2)/R)

]2
(4)

The thickness of the undeformed membrane is designated as t0. There exists a number
of other approaches to quantify the instantaneous thickness and bulge radius [43,44];
nonetheless, the methodologies proposed by Panknin [40] and Kruglov et al. [42] were
incorporated in this study, as their combination, proven by [43], yields a more accurate
determination of the flow stress curve.

2.4. Optical Measurement

The experimental setups were coupled with a stereovision 3D Digital Image Cor-
relation (DIC) system—a non-interferometric technique that employs image-matching
algorithms to quantify the displacement and strain values of an object.

For both setups, the images were recorded using two Basler ace cameras (12 MP
resolution) with a CMOS image sensor and illuminated by two spotlights. The cameras
were equipped with Xenoplan 2.8/50 lenses (Jos. Schneider Optische Werke GmbH, Bad
Kreuznach, Germany). The working distance and acquisition interval were accordingly set
to 920 mm and 4 fps (for uniaxial tests) and 450 mm and 5 fps (for biaxial experiments).
With the given optical measurement system, pixel sizes of approximately 17.2 px/mm and
50.9 px/mm were attained, respectively, for the uniaxial and biaxial experiments. However,
in the case of uniaxial tests in the diagonal direction, the working distance of 1250 mm
(pixel size of 12.8 px/mm) was selected in order to accommodate larger strain values of
around 350%, thereby circumventing the usage of crosshead displacement.

To enhance the image correlation, a random speckle pattern was applied to the speci-
mens. As for the postprocessing, commercial software, VIC-3D (Version 8), from Correlated
Solutions©, was employed. A subset size of 29 pixels was used for image analysis. The
usage of 3D-DIC enabled us to quantify the dome height and strain values, proving to be
an indispensable complement, particularly to the bulge test.
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3. Results and Discussion

This section is dedicated to presenting the results obtained from experiments doc-
umented by the DIC. Subsequently, a detailed discussion of the results is provided to
offer readers comprehensive insights. Furthermore, a preliminary numerical analysis
is conducted to validate the pressure variation concerning displacement for both stud-
ied membranes.

3.1. Uniaxial Tests

Uniaxial tensile tests have been performed according to the test configuration de-
scribed in the previous section. As a result, Figure 4 presents the representative stress–strain
curves of both Celgard membranes under uniaxial loading condition. As anticipated from
dry-processed polymer-based separators, both membranes demonstrate a high degree of
in-plane anisotropy.
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Figure 4. Representative engineering stress–strain response of both membranes under uniaxial
loading condition.

For the MD-oriented samples, a mean strength of 164.5 ± 5 MPa and 131.8 ± 7.2 MPa,
with a coefficient of variation of 3% and 5.4%, were measured, respectively, for Celgard
H2010 Trilayer and Celgard Q20S1HX Ceramic-Coated Trilayer. However, the strength
values attained in the transverse and diagonal directions, for both membranes, were lower
than that of the MD by an order of magnitude; see Figure 4.

This orientation dependence stems from the deformation mechanism (breakage and
separation) of crystallite lamellae, arranged parallel to the transverse direction, along with
the generation and elongation of pores parallel to the machine direction (i.e., these MD-
oriented oval-shaped pores impede the propagation of the crack, hence increasing the
failure strength) [19,20].

The TD and DD-oriented samples demonstrated bilinear behavior with rather evident
yield points, followed by a plateau under a relatively stable stress state until rupture.
However, in the DD case, both separators tolerated much higher strain values, reaching a
mean failure strain of 318% and 290%, sporadic to a degree, with a coefficient of variation
of 22.5% and 27%, respectively, for Celgard H2010 and Celgard Q20S1HX. Such a relatively
large variation with the dry-processed separators on the DD was also reported by [34]. It is
worth mentioning that only Celgard Q20S1HX underwent strain softening, particularly
in the diagonal direction by a decline of around 13%, which proceeded by a cold drawing
region, i.e., the plateau.

Figure 5a shows the full-field strain map of Celgard Q20S1HX, stretched in three
directions, prior to the failure (the DD-oriented sample at a strain value of around 120%).
When stretched along the MD, a homogenous strain distribution was observed in all the
samples up until rupture, with failure gravitating towards the gripping zones. With the
TD- and DD-oriented samples, however, strain localized within a shear band parallel to the
machine direction, resulting in a fairly straight failure surface, as opposed to the wrinkling
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effect observed with the MD samples. Such pronounced strain accumulation in bands arises
from the elongation of crystallite lamellae (i.e., the bulk section parallel to the transverse
direction) and the pores in the membrane. The failure mechanism of microporous polymer
separators is elucidated in other related works, c.f. [2,19,20].
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A comparable trend in the strain evolution for Celgard H2010 was detected, which is
not included here for the sake of brevity. Figure 5b shows the measured Young’s moduli
for both membranes.

The mechanical behavior of membranes in the machine direction can be described
by Swift’s law [45], the power law as shown in Equation (5), and Voce’s law [46], the
exponential law as shown in Equation (6), formulated below.

σ
(
εp
)

Swi f t = A
(
εp + ε0

)n (5)

σ
(
εp
)

Voce = σ0 + Q
(

1 − e−βεp
)

(6)

where the following terms are used:

εp—Equivalent plastic strain;
A—Swift hardening coefficient (MPa);
ε0—Swift hardening parameter;
n—Swift hardening exponent;
σ0—Voce hardening parameter (MPa);
Q—Voce hardening coefficient (MPa);
B—Voce plastic strain coefficient.

Table 2 reports the hardening parameters associated with Swift’s and Voce’s laws
characterized for both H2010 and Q20S1HX membranes in the MD.

Table 2. Swift and Voce hardening parameters for the machine direction.

A [MPa] ε0 n σ0 [MPa] Q [MPa] B

H2010 613.12 0.9 0.82 2.81 522.0 1.67
Q20S1HX 554.40 0.83 0.79 3.87 396.3 1.98

Moreover, G’Sell–Jonas [47,48] proposed a constitutive model to assess the behavior
of semicrystalline polymers by incorporating both viscoelasticity and viscoplasticity in
a material model. Therefore, the flow behavior under a constant strain rate at room



Polymers 2024, 16, 1174 9 of 16

temperature can take the following formulation shown in Equation (7). Notice that the
recent equation is a modified equation as presented in [29], in which

σ
(
εp
)
= K + B

(
1 − e−Cεp

)
.
(

1 + Dεp + Fεp
2
)

(7)

where the following terms are used:

εp—Equivalent plastic strain;
K—Initial yield stress parameter (MPa);
B—Hardening coefficient (MPa);
C—Hardening plastic strain coefficient;
D—Second hardening plastic strain coefficient;
F—Third hardening plastic strain coefficient.

In addition, Table 3 presents material coefficients for the G’Sell–Jonas model achieved
for both the H2010 and Q20S1HX membranes in the TD and DD. Figure 6 illustrates the true
stress in terms of true plastic strain curves derived from the Swift and G’Sell–Jonas models.

Table 3. The material coefficients for G’Sell–Jonas model.

K [MPa] B [MPa] C D F

H2010–TD 3.46 5.556 285.96 2.24 0.314
Q20S1HX–TD 4.52 2.780 61.88 0.83 0.743

H2010–DD 6.51 13.06 14.84 0.14 2.76
Q20S1HX–DD 5.45 7.54 29.12 0.096 2.60
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It is noteworthy that the principal material coefficients of the G’Sell-Jonas model
have been experimentally documented in this study, which is invaluable for prospective
applications. Although the model was originally designed to accommodate strain rate
dependency, for the purposes of this study, strain dependency has been disregarded in the
numerical modeling study.
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3.2. Biaxial Tests

Figure 7a,b present the response of both separator films under a biaxial loading state.
Overall, the findings demonstrated good repeatability, and mean critical principal strain
values of 22% ± 3.7 and 11.8% ± 1.1 were attained, respectively, for the H2010 and
Q20S1HX membranes. Likewise, the required failure pressure for the PP/PE/PP trilayer
(Celgard H2010) was around 0.9 bar, while the ceramic coating of a similar membrane
(Celgard Q20S1HX) resulted in a decline of 29%.
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Figure 7. (a) The output from the pneumatic bulge test; (b) the biaxial stress–strain response
of separators.

A similar trend was detected with the uniaxial tests; H2010 outperformed Q20S1HX,
demonstrating higher strength and stretchability. Nonetheless, despite a degree of com-
promise on the mechanical performance of Q20S1HX, applying a thin layer of ceramic
particles on the polyolefin-based membranes enhanced the thermal stability and wettability
of an otherwise hydrophobic film—a positive contribution to the overall safety of the
battery [5,18].

The principal strain distribution of Celgard H2010 and Celgard Q20S1HX is pre-
sented in Figure 8. The use of a pneumatic system enabled a free flow of the material;
this may not be the case with a punch test, as the membrane may partially stick to the
hemispherical indenter as it stretches, as demonstrated in [19,23], rendering a more biased
deformation state.

Both membranes reveal a similar failure mode through the formation of a crack
running along the machine direction, owing to the highly anisotropic nature of the dry-
processed separators. In a number of tests, the strain was accumulated along a small number
of bands always parallel to each other, mostly passing with an offset from the dome’s center
line. The failure surface, however, was smooth, similar to the one observed under uniaxial
tension loading along the TD (see Figure 5a), which arose from the elongation of crystallite
lamellae in the membrane.

It is also worth noting that the failure was preceded by the formation of transparent
bands. This is evident from the DIC footage captured prior to the failure, as shown
in Figure 8b,d. However, Figure 8a,c illustrate the onset of transparent zones, which,
on average, corresponded to strain values of around 17.5% (for H2010) and 7.6% (for
Q20S1HX), as presented in Figure 7b. With the final failure values in mind, Celgard H2010
demonstrated a favorable performance with delayed localization, as confirmed via the
3D-DIC analysis. However, the start of thinning and the formation of a transparent zone
may trigger an internal short circuit, altering the electrochemical performance of a battery
cell prior to the actual failure of the separator.
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3.3. Finite Element Analysis

This section deals with the numerical modeling simulation on the biaxial loading
condition through finite element method (FEM) formulations. Here, an explicit FEM
model was generated using commercial software Altair Engineering Inc. (Troy, MI, USA)
HyperWorks 2022.2. Figure 9 shows a general view of the numerical model with details on
the FE mesh. The FE mesh was formed using four-node quadrilateral elements with an
element size of 0.2 mm.

Given the fact that the current study did not cover the strain rate dependency of the
investigated materials, the applied material hardening curve uses only the quasi-static
hardening curve. Regarding the boundary conditions, the pressure rate ranged between
0 and 100 bar within 1 s in which the pressure load was applied on the central area
of the separator material, perpendicular to the surface; see Figure 10. The constitutive
law incorporating elastoplastic characteristics was employed. This law was specifically
associated with Hill’s yield surface, a mathematical representation defining the onset
of plastic deformation in materials. Notably, this constitutive law underwent a distinct
calibration process, with a particular focus on accurately characterizing and fine-tuning its
parameters within the plastic region of the material’s stress–strain behavior.
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Regarding the material failure model, a tabulated hardening curve was considered
with a Hill-based material model, as used in a previously published paper [24]. It aimed to
achieve the calibration and validation of the orthotropic failure model proposed by Bulla
et al. [24]. Therefore, Tables 4 and 5 accordingly report the fracture strain limits for Celgard
H2010 and Celgard Q20S1HX for all three directions. The presented values have been
derived from the performed experiments in 0◦, 45◦, and 90◦ orientations and adjusted to
the element size. No strain-rate-dependent values were used within this failure model.

Table 4. Fracture strain limits used within the failure criterion for Celgard H2010.

Uniaxial
Compression Pure Shear Uniaxial

Tension
Plain Strain

Tension
Biaxial
Tension

0◦ 1.20 0.32 0.12 0.072 0.084
45◦ 33.0 8.91 3.30 1.98 0.084
90◦ 11.0 2.97 1.10 0.66 0.084

Table 5. Fracture strain limits used within the failure criterion for Celgard Q20S1HX.

Uniaxial
Compression Pure Shear Uniaxial

Tension
Plain Strain

Tension
Biaxial
Tension

0◦ 1.3 0.351 0.13 0.08 0.091
45◦ 35.0 9.450 3.50 2.10 0.091
90◦ 14.5 3.915 1.45 0.87 0.091

Simulations were performed using the explicit FEA solver OpenRadioss (Altair En-
gineering Inc., Troy, MI, USA) on a Windows64 computer with four Intel i7-6820 CPUs at
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2.7 GHz with 64GB RAM. OpenRadioss solved the entire simulation with 230,000 cycles
and an average timestep of 7 × 10−5 to 1 × 10−5 ms. The simulation duration for 42 ms of
simulation time was about 11 h and 6 min, with a total number of 1,096,301 cycles.

Figure 11 shows the pressure in terms of displacement variations obtained for both
studied membranes subjected to the biaxial loading condition. With a closer look at the
results, it can be inferred that Celgard H2010 possesses higher stiffness/rigidity at the
corresponding displacement, exposing higher ductility. In other words, this material would
have better capability to resist deformation under the applied pressure, leading to more
resistance to change in shape. This phenomenon has already been proved by the Young’s
modulus characterized through the DIC analysis.
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Concerning the material instability which plays a key role in orthotropic material
models, it must be mentioned that as the elements in the material became closer to the
critical strain levels, the material underwent instability, leading to localized deformation
within these elements. On the other hand, other elements began to endure relaxation. This
meant that the total deformation was uniformly distributed across numerous elements in
the initial state. Nevertheless, as the material experienced plastic behavior, the element
size became a key factor in determining fracture behavior. Owing to the aforementioned
considerations, the element size has been properly selected in this FEA, in which the
material did not experience significant instability.

In addition, four-node quadrilateral elements reflected a proper performance to simu-
late the nonlinear behavior of the studied materials. Thin structures often involve large
deformations, and the elements used should be less sensitive to mesh distortions. Quadri-
lateral elements generally exhibit reduced sensitivity to mesh distortions compared to
triangular elements, providing better numerical stability.

Overall, the numerical model was able to capture the pressure variation versus the
displacement of the membranes subjected to the biaxial loading condition, yielding a fairly
good correlation with the experimental observations.
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4. Conclusions

The mechanical integrity of two polyolefin trilayer (PP/PE/PP) separators was stud-
ied. Both separators displaced a notable anisotropy. Celgard H2010 exhibited superior
mechanical performance compared to Celgard Q20S1HX, demonstrating higher strength
and stretchability under both biaxial and uniaxial loading conditions. The resilience of
Celgard H2010 mitigates the risk of internal short circuits between electrodes, thereby
improving battery safety and longevity.

While surface coating polyolefin separators with ceramic material (Celgard Q20S1HX)
provides the benefits of enhanced wettability and thermal stability, it appears to compro-
mise, to a degree, the mechanical performance. However, both separators demonstrated
a comparable failure mode in the form of thinning and semi-transparent zones running
along the machine direction, as confirmed via DIC analysis.

Lastly, a preliminary finite element model of the biaxial tests was developed in Open-
Radioss. The numerical model was able to capture the pressure–displacement behavior
of the separators fairly well concerning the experimental findings. Advanced numerical
modeling is ongoing to better simulate the failure behavior of the studied materials.
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