Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Preparation of Rind Cornstalk Cellulose Microfibers (CSCF)
2.3. Preparation of CMC/CSCF/PVA Aerogels
2.4. Hydrophobic Modification of CSCF/PVA Aerogels
2.5. Characterization
3. Results and Discussion
3.1. Preparation of Cornstalk-Based Aerogel
3.2. XRD and FTIR of Characterizations
3.3. Mechanical Properties of Aerogel
3.4. Thermogravimetric Analysis
3.5. Adsorption and Recycling Capacity of CMC/CSCFS/PVA Aerogels
3.6. Thermal Insulation Performance of CSCFS/PVA Aerogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.R.; Zhu, L.L.; Li, H.Y.; Zheng, M.; Zhang, J.; Zheng, Y.J.; Zheng, R.B. From corn husks to scalable, strong, transparent bio-plastic using direct delignification-splicing strategy. Adv. Sustain. Syst. 2022, 6, 2100495. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Borhana, O.A.A.; Vinod, K.; Abdulhafid, M.E.; Ilyas, R.A.; Sapuan, S.M. Corn: Its structure, polymer, fiber, composite, properties and applications. Polymers 2022, 14, 4396. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, K.; Zhang, J.; Zhu, L.; Du, G.; Zheng, R. Cheap, high yield, and strong corn husk-based textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Ind. Crops Prod. 2022, 188, 115699. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, F. Properties and potential applications of natural cellulose fibers from corn husks. Green Chem. 2005, 7, 190. [Google Scholar] [CrossRef]
- Smyth, M.; García, R.C.; Rader, C.; Foster, E.J.; Bras, J. Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind. Crops Prod. 2017, 108, 257–266. [Google Scholar] [CrossRef]
- Ratna, A.S.; Ghosh, A.; Mukhopadhyay, S. Advances and prospects of corn husk as a sustainable material in composites and other technical applications. J. Clean. Prod. 2022, 371, 133563. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.Z. Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation. Bioresour. Technol. 2013, 139, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Longaresi, R.; de Menezes, A.; Pereira-Da-Silva, M.; Baron, D.; Mathias, S. The maize stem as a potential source of cellulose nanocrystal: Cellulose characterization from its phenological growth stage dependence. Ind. Crops Prod. 2019, 133, 232–240. [Google Scholar] [CrossRef]
- Yang, H.; Bai, L.; Duan, Y.; Xie, H.; Wang, X.; Zhang, R.; Ji, X.; Si, C. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: Application as building blocks for high-performance films. J. Clean. Prod. 2023, 390, 136215. [Google Scholar] [CrossRef]
- Rehman, N.; Miranda, M.I.G.; Rosa, S.M.L.; Pimentel, D.M.; Nachtigall, S.M.B.; Bica, C.I.D. Cellulose, and nanocellulose from cornstalk: An insight on the crystal properties. J. Polym. Environ. 2013, 22, 252–259. [Google Scholar]
- Reddy, N.; Yang, Y.Q. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 2005, 46, 5494–5500. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Zhou, F.; Peng, Y.; Wang, N. Mechanical properties of maize fibre bundles and their contribution to lodging resistance. Biosyst. Eng. 2016, 151, 298–307. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Bao, J.; Xie, J.; Tang, X.; Che, J.; Ma, Y.; Tong, J. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbonydrate Polym. 2019, 218, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, J.; Wu, N.; Wang, L.; Ma, Y.; Tong, J. Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol. Int. 2019, 131, 398–405. [Google Scholar] [CrossRef]
- Luo, Z.; Li, P.; Cai, D.; Chen, Q.; Qin, P.; Tan, T.; Cao, H. Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Ind. Crops Prod. 2017, 95, 521–527. [Google Scholar] [CrossRef]
- Hou, Y.S.; Wu, W.L. Derived from corn straw cellulose: Modified used tire rubber powder composites. Cellulose 2022, 29, 3935–3945. [Google Scholar] [CrossRef]
- Ge, J.F.; Li, F.S.; Gao, Y.B.; Jin, J.; Jiang, W. A high-performance structural material based on cornstalks and its biodegradable composites of poly (propylene carbonate). Cellulose 2021, 28, 11381–11395. [Google Scholar] [CrossRef]
- Li, R.Z.; Zhu, X.H.; Peng, F.Y.; Lu, F. Biodegradable, colorless, and odorless PLA/PBAT bioplastics incorporated with cornstalk. ACS Sustain. Chem. Eng. 2023, 11, 8870–8883. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhou, X.; Jing, Y.J.; Sun, H.; Zhu, Z.Q.; Liang, W.D.; Li, A. Ionic liquid-assisted alignment of corn straw microcrystalline cellulose aerogels with low tortuosity channels for salt-assistance solar steam evaporators. ACS Appl. Mater. Interfaces 2021, 13, 12181–12190. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, B.; Huang, X.; Wang, Y.; Du, X.Y. Corn stalk-based carbon microsphere/reduced graphene oxide composite hydrogels for high-performance symmetric supercapacitors. Energy Fuels 2022, 36, 2268–2276. [Google Scholar] [CrossRef]
- Xiong, Y.; Luo, B.; Chen, G.; Cai, J.; Jiang, Q.; Gu, B.; Wang, X. CuS@corn stalk/chitin composite hydrogel for photodegradation and antibacterial. Polymers 2019, 11, 1393. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Liu, A.; Chen, X.; Xu, W.; Duan, X.; Shi, J.; Li, X. Preparation and properties of oriented and hydrophobic aerogels from corn stover. Ind. Crops Prod. 2023, 205, 117414. [Google Scholar] [CrossRef]
- Lei, C.; Bian, Y.; Zhi, F.; Hou, X.; Lv, C.; Hu, Q. Enhanced adsorption capacity of cellulose hydrogel based on corn stalk for pollutants removal and mechanism exploration. J. Clean. Prod. 2022, 375, 134120. [Google Scholar] [CrossRef]
- Chen, Z.; Zhan, B.; Li, S.; Wei, D.; Zhou, W.; Liu, Y. Facile fabrication of corn stover-based aerogel for oil/water separation. Sep. Purif. Technol. 2022, 298, 121642. [Google Scholar] [CrossRef]
- Jia, C.; Chen, C.; Kuang, Y.; Fu, K.; Wang, Y.; Yao, Y.; Kronthal, S.; Hitz, E.; Song, J.; Xu, F.; et al. From wood to textiles: Top-down assembly of aligned cellulose nanofibers. Adv. Mater. 2018, 30, 1801347. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y.; Yang, F.; Yang, L. Preparation process and characterization of mechanical properties of twisted bamboo spun fiber bundles. J. Mater. Res. Technol. 2021, 14, 2131. [Google Scholar] [CrossRef]
- Li, H.; Guo, X.; He, Y.; Zheng, R. House model with 2–5 cm thick translucent wood walls and its indoor light performance. Eur. J. Wood Wood Prod. 2019, 77, 843. [Google Scholar] [CrossRef]
- Li, H.; Guo, X.; He, Y.; Zheng, R. A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 2019, 34, 932. [Google Scholar] [CrossRef]
- Zhu, L.L.; Dang, B.; Zhang, K.R.; Zhang, J.; Zheng, M.; Zhang, N.; Du, G.B.; Chen, Z.; Zheng, R.B. Transparent bioplastics from super-low lignin wood with abundant hydrophobic cellulose crystals. ACS Sustain. Chem. Eng. 2022, 10, 13775. [Google Scholar] [CrossRef]
- Zhang, J.; Ying, Y.L.; Yi, X.Y.; Han, W.B.; Yin, L.; Zheng, Y.J.; Zheng, R.B. H2O2 solution steaming combined method to cellulose skeleton for transparent wood infiltrated with cellulose acetate. Polymers 2023, 15, 1733. [Google Scholar] [CrossRef]
- Zhu, L.L.; Chen, T.A.; Zheng, Y.J.; Zhang, K.R.; Zhang, J.; Zheng, M.; Zheng, R.B. Preparation and enhanced photostability of TiO2@SiO2 delignified wood. Sci. Silvae Sinacae 2022, 58, 129–138. [Google Scholar]
- Ying, Y.; Zheng, R.; Zheng, Y.; Wang, H.; Niu, J.; Xia, H. Synthesis and reduction processes of silver nanowires in a silver(I) sulfamate-poly(vinylpyrrolidone) hydrothermal system. Molecules 2024, 29, 1558. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Yuan, X.; He, M.; Yao, K. Preparation of PVA/PEI ultra-fine fibers and their composite membrane with PLA by electrospinning. J. Biomater. Sci. 2006, 17, 631–643. [Google Scholar] [CrossRef] [PubMed]
- de Lima, G.G.; Ferreira, B.D.; Matos, M.; Pereira, B.L.; Nugent, M.J.; Hansel, F.A.; Magalhães, W.L.E. Effect of cellulose size-concentration on the structure of polyvinyl alcohol hydrogels. Carbohydr. Polym. 2020, 245, 116612–116621. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, K.; Zhao, C.; Zou, Y.; Liu, Y.; Qu, X.; Jiang, D.; Li, Z.; Zhang, M.; Li, Z. Customization of conductive elastomer based on PVA/PEI for stretchable sensors. Small 2020, 16, 1904758–1904766. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.W. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.B.; Tshabalala, M.A.; Li, Q.Y.; Wang, H. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures. Appl. Surf. Sci. 2015, 328, 453. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, X.; Zhou, H.; Li, J. Preparation of magnetic hydrophobic polyvinylalcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 2018, 25, 1217–1227. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Chhajed, M.; Yadav, C.; Agrawal, A.; Maji, P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym. 2019, 226, 115286. [Google Scholar] [CrossRef]
H1 | H2 | C1 | C2 | Quality | |
---|---|---|---|---|---|
CMC | 1.5 | 1.5 | 1.5 | 1.5 | g |
CSCF | 1.5 | 4.5 | 4.5 | 4.5 | g |
PVA | 0.125 | 0.125 | 0.125 | 0.25 | g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Zhang, Z.; Niu, J.; Wang, H.; Li, T.; Gong, J.; Zheng, R. Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation. Polymers 2024, 16, 1260. https://doi.org/10.3390/polym16091260
Yi X, Zhang Z, Niu J, Wang H, Li T, Gong J, Zheng R. Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation. Polymers. 2024; 16(9):1260. https://doi.org/10.3390/polym16091260
Chicago/Turabian StyleYi, Xiaoyang, Zhongxu Zhang, Junfeng Niu, Hongyan Wang, Tiankun Li, Junjie Gong, and Rongbo Zheng. 2024. "Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation" Polymers 16, no. 9: 1260. https://doi.org/10.3390/polym16091260
APA StyleYi, X., Zhang, Z., Niu, J., Wang, H., Li, T., Gong, J., & Zheng, R. (2024). Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation. Polymers, 16(9), 1260. https://doi.org/10.3390/polym16091260