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Abstract: This research follows the principles of circular economy through the zero waste
concept and cascade approach performed in two steps. Our paper focuses on the first
step and explores the characteristics of developed biocomposite materials made from
a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated
from the second generation of biomass (agricultural biomass and weeds). Two plants,
Spartium junceum L. (SJL) and Sida hermaphrodita (SH), were applied. To enhance their
mechanical, thermal, and antimicrobial properties, their modification was performed with
environmentally friendly additives—linseed oil (LO), organo-modified montmorillonite
nanoclay (MMT), milled cork (MC), and zinc oxide (ZnO). The results revealed that SH
fibers exhibited 38.92% higher tensile strength than SJL fibers. Composites reinforced with
SH fibers modified only with LO displayed a 27.33% increase in tensile strength compared
to neat PLA. The addition of LO improved the thermal stability of both biocomposites
by approximately 5–7 ◦C. Furthermore, the inclusion of MMT filler significantly reduced
the flammability, lowering the heat release rate to 30.25%, and enabling the categorization
of developed biocomposite in a group of flame retardants. In the second step, all waste
streams generated during the fibers extraction process are repurposed into the production
of solid biofuels (pellets, briquettes) or biogas (bio)methane.

Keywords: biocomposites; mechanical properties; thermal properties; nanoclay;
polylactide; Sida hermaphrodita (L.) Rusby; Spartium junceum L.

1. Introduction
The era of development of composites with a synthetic polymer matrix reinforced

with synthetic fibers began already 100 years ago [1]. This type of composite was repre-
sented in a wide range of industries due to its good properties, such as high strength and
stiffness, enhanced dimensional stability, and thermal properties [2]. In recent years, due to
increasing environmental concerns, the development of green composite materials whose
matrix and reinforcement are both made from renewable and biodegradable sources, has
been initiated. One of the most commonly used thermoplastic and biodegradable polymers
is poly(lactic acid) (PLA). It is one of the most studied polymers of the aliphatic polyester
family because it is produced via the fermentation of renewable resources, like sugar, beets,
or corn starch [3]. Natural bast fibers are most commonly used as reinforcement in green
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biocomposites due to their favorable properties of wide availability, low price, and good
mechanical properties [4,5]. The good mechanical properties of natural plant fibers (bast
fibers) are due to cellulose—a natural polymer with a chain structure that is the main
component of plant cell walls. One possible source of cellulose fibers is agro waste. Agro
waste is a lignocellulosic material by its chemical composition, which, in addition to lignin
and hemicellulose, is abundant in cellulose-rich areas. Most often, agro waste in the form
of stems is thrown away, burned or buried in the ground, which leads to environmental
pollution instead of being used as a source of cellulose fibers that can subsequently be
used as reinforcements for composite materials. Due to the continuous increase in the
global population, enhanced demand for food, and care for the preservation of agricultural
land, novel procedures for isolating fibers from agricultural biomass waste have been
developed [2].

In this work, fibers from two different plants, Spanish broom (Spartium junceum L.) and
Virginia mallow (Sida hermaphrodita (L.) Rusby) were isolated for biocomposite reinforcement
(Figure 1).
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Figure 1. (a) Spanish broom (Spartium junceum L.) and (b) Virginia mallow (Sida hermaphrodita
(L.) Rusby).

Spartium junceum L. is a wild plant from the leguminous family (Fabaceae/Luguminosae)
that mostly grows in Mediterranean countries. Throughout history, it has had a wide range
of different applications (e.g., for scents and dyes derived from flowers, baskets made
from stems, and textile materials made from isolated fibers). Fibers are the most valuable
product, so there has been a renewed interest in their production in recent times [3,6–9].

Sida hermaphrodita belongs to the mallow family (Malvaceae) and is native to the USA
and Canada [10]. In the 1930s, its cultivation began in Poland primarily as a fodder and
fiber crop [11], but when its favorable energetic properties were discovered, cultivation
for energy purposes began [12–14]. In order to meet the high demand for biomass and
avoid the use of soils suitable for food production, the future cultivation of energy crops
must rely on marginal and poor-quality soils. One such energy plantations that thrive on
unfavorable soils is the Sida hermaphrodita one, which enables the production of biofuel
with an exploitation time of up to 20 years [10]. Cultivation of Sida hermaphrodita does not
require any special soil conditions. However, to achieve a high biomass yield, there is still
a need for moderate fertilization. Nabel, M. et al. (2018) suggested intercropping of Sida
hermaphrodita with legumes, which have the ability to fix nitrogen (N) from the atmosphere
and enrich the cropping system with this essential nutrient and consequently increase the
biomass yield [15]. The cultivation of Spartium junceum L., which is considered a weed,
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in combination with Sida hermaphrodita on poor-quality soils is one of the ideas that will
be examined in our future research. Taking into consideration that the fibers of Spartium
junceum L. are already categorized as natural bast fibers, maceration methods characteristic
for flax fibers isolation were applied [16,17]. The fibers were isolated in the same way
and characterized to determine the possibility of their application for biocomposites. The
process of isolating fibers in a low-concentration alkaline medium using microwave energy
showed promising results, both from the ecological and economic side. The advantages
of natural fiber reinforced composites (NFRC) lie in their low mass, density, and price,
combined with high strength. However, it is equally important to emphasize the negative
aspects related to the interaction of hydrophilic natural fibers with a hydrophobic polymer
matrix. Since natural fibers do not show good compatibility with non-polar polymer
matrices, it is necessary to modify the fibers or the matrix to achieve better adhesion between
these layers [18,19]. Therefore, it is often necessary to add fillers to enable composite usage
in highly demanding applications.

Although PLA is one of the most used polymers in biocomposites due to its good
mechanical properties [20,21], they can be further enhanced with the addition of drying
vegetable oils (i.e., linseed oil) as plasticizers [22]. Plasticizers affect the processability
of PLA by lowering the melt viscosity and increasing its ductility [23]. The requirement
to substitute conventional with sustainable materials and retain superior properties is
derived development of bio-based fillers obtained from renewable sources or industrial
by-products [24]. This research combines conventional fillers, such as metal oxide and
nanoclay, with renewable and sustainable ones, such as cork. Zinc oxide (ZnO) fillers
have already proven their antimicrobial activity, non-toxicity, stability, availability, and
low cost. In this paper, micro-sized ZnO particles were used since European regulation
considered nanosized ZnO particles as potentially nanotoxic, while microparticles of ZnO
show adequate antimicrobial properties with low cytotoxicity [25]. Furthermore, Mitjans,
M. et al. (2023) pointed out that no acute toxicity was observed at low ZnO concentra-
tions [26]. Venkatesh, C. et al. (2020) have coated PLA with ZnO microparticles and tested
its biodegradability in biological fluids—the simulated body fluid and artificial urine. Com-
plete dissolution of the ZnO layer was observed after a 5-day treatment for the samples
immersed in artificial urine [27]. ZnO has been used as a filler in composites in order
to improve antimicrobial properties and combined with nanoclay to improve the flame
retardancy of the final product. Nanoclays are commonly used as reinforcing fillers for the
improvement of composite system thermal stability. These layer silicates are applied due
to their availability, versatility, and respectability towards the environment and health [3].
The silicate layers are miscible only with hydrophilic polymers, while for hydrophobic
polymers, organic compounds have to be introduced. Such organic modification improves
not only compatibilization between hydrophilic clay and hydrophobic polymer matrix but
also increases interlayer spacing as well [3]. Additionally, natural cork was added since
it exhibits good compressibility, flexibility, durability, acoustic insulation, and improved
flame retardancy and, therefore, has broad application in the automotive, construction,
food, and aviation sectors [28,29]. Cork is the outer bark of the oak tree with a pronounced
alveolar structure that reminds of honeycomb [30]. Fabijanski, M. (2024) combined PLA and
cork filler in quantities ranging from 5% to 30% and its positive influence on hardness and
decrease in the formation of agglomerates inspired us to perform further investigations [28].

1.1. State of the Art on Spartium junceum L. Reinforced Composites

Composites reinforced with SJL fibers are relatively new products. An Algerian group
of scientists introduced them in 2006. Nekkaa, S. et al. (2006, 2009, 2012) developed Spartium
junceum fiber-reinforced polypropylene (PP) composites. The weight fraction of used fibers
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inside the composite was 10–50 wt.% and fibers were cut to the length ranging from 2 mm
to 4 mm. They have found that composites reinforced with silane-treated fibers show an
increase in composite stiffness and a loss in bending modulus compared to neat PP. Silane
treatment reduces the water absorption capacity of composites while impact properties of
such water-saturated composite samples were very poor [31–33]. Kovačević, Z. et al. (2012,
2014, 2015, 2018, 2019) developed composites made of PLA polymer and 20 wt.% of SJL
fibers, previously cut to the length of 2–5 mm. Prior to the composite production, the fibers
were modified with nanoclay and citric acid for the improvement of mechanical and thermal
properties. Significant improvement in strength (164%) was obtained in comparison to the
neat PLA polymer [34–38]. Chidichimo, G. et al. (2015) have used a milled SJL plant (approx.
50 µm granulation) ranging from 5 wt.% to 30 wt.% as reinforcement of polyurethane matrix.
Improved mechanical properties were obtained in the presence of minimally 20 wt.% of
SJL fibers [39]. Bouhank, S. et al. (2016) analyzed water absorption characteristics, thermal
degradation, and morphological properties in their study of SJL-reinforced poly(vinyl
chloride) composites. The applied fiber size ranged from 200 to 400 µm. Water uptake of
composites increased with the fiber content increase. Therefore, fiber modification with
alkali and silane was needed for the reduction of water uptake and increase in composite
impact properties [40]. Bedreddine, M. et al. (2019) added SJL flour into the PLA matrix.
The disappearance of peaks at 1740 and 1250 cm−1 indicates that alkali treatment has
removed hemicellulose and a part of lignin. The bands between 1420 and 1430 cm−1 and
at 900 cm−1 are assigned to the contributions of the crystalline and amorphous structures
into the cellulosic fibers. Melting endotherm temperature is increasing at 7 ◦C from neat
polymer to composite indicating that in the presence of SJL fibers, more ordered crystals
are produced due to the fiber’s nucleating effect. The melting enthalpies depend on the
amount of PLA in the composite material [41]. Messaoudi, K. et al. (2019) have used SJL
flour as reinforcement of polypropylene composites. SJL flour was treated with maleic
anhydride and silane and ester linkages were formed due to the reaction between maleic
anhydride and SJL hydroxyl groups. Applied chemicals influence the increase in the SJL
crystallinity index because of the removal of amorphous material that covers the fiber.
Additionally, the incorporation of SJL flour in the polypropylene matrix increases the
composite crystallinity due to the heterogeneous nucleation of the PP matrix. SJL flour
reinforcement significantly increases the composite resilience and decreases composite
water uptake. An increase in crystalline temperature Tc indicates that SJL flour acts as a
nucleating agent and favors the polypropylene phase crystallization within the composites
by increasing the crystallization rate. FTIR results show that chemical treatment of SJL
fibers shifted the band at 1725 cm−1 (carbonyl groups) to a lower wavelength and induced
a significant increase in the carbonyl groups intensity, which confirmed the formation
of ester groups. Higher flour content directly decreases composite impact strength [42].
Nouar, Y. et al. (2020) applied SJL flour (with an average particle size below 100 µm)
as reinforcement of polypropylene matrix in biocomposites. In order to enhance the
interfacial interactions between fibers and matrix, authors have modified the fibers with
2 wt.% of sodium hydroxide (NaOH) and 5 wt.% of vinyltrimethoxysilane (VTMS). Alkali
treatment increased the relative crystallinity of SJL flour particles while silane treatment
had a minor influence on the crystallinity degree. SJL flour content above the 20 wt.%
caused a significant increase in composite thermal conductivity leading to poor insulating
properties [43]. Corapi, A. et al. (2023) investigated the potential toxicity of polyurethane
biocomposites reinforced with functionalized SJL fibers. The addition of SJL fibers in
polyurethane matrix shows positive ecotoxicological effects on the aquatic and atmospheric
environments since cellulose fibers pose a considerable amount of chemical functional
groups that immobilize free organic ammines and amides presented in polyurethane
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structure that are released in leachates [44]. Govorčin Bajsić, E. et al. (2023) investigate the
impact of SJL fiber content on the thermal properties of different composite materials with
polypropylene, polycarbonate, and thermoplastic polyurethane (TPU) matrix. A decrease
in crystallinity degree was observed in comparison to the neat polypropylene matrix. The
thermal stability of the composites with polypropylene and polyurethane matrix increased
while in the composites with polycarbonate matrix it decreased with the fiber content
increase [45]. Juradin, S. et al. (2023) used SJL fibers as reinforcement in cement mortar.
They applied fibers of 1 cm and 3 cm length at 0.5 vol.% content and obtained an increase
in flexural and compressive strength of 13.5% and 11.7%, respectively. Therefore, SJL
fibers already found their way to the construction industry as reinforcement in cement
constructions [46].

1.2. State of the Art on Sida hermaphrodita (L.) Rusby Reinforced Composites

Sida hermaphrodita (L.) Rusby (SH) has not been applied as reinforcement of composites
up to now. This plant was initially used to produce fibers until its excellent energy proper-
ties were revealed. Nowadays, it is most represented as a raw material in the production
of biofuels [47]. Czarnecki, R. et al. (2010) have applied pulverized stem of SH plant and
various kinds of resin for particle board production. Results revealed that low-density
boards made with the addition of SH are not very different from those made solely from
wood particles [48]. Furthermore, SH fibers were applied in the construction industry as
reinforcement of cement constructions. Khadka, R. (2021) developed eco-friendly concrete
building material reinforced with SH stems of 0.5–2 cm in length. According to their
results of density, compressive and flexural strength, and thermal conductivity, concrete
reinforced with SH shows sufficiently good properties and confirms its application in the
construction field [49]. A few studies were recently performed to develop more sustainable
raw materials for the pulp and paper industry. Holler, M. et al. (2021) confirmed that SH
could become a profound alternative to common energy and fiber plants. They revealed
good paper properties and confirmed usage for one- or multilayer cardboard packaging
where fiber strength is needed [50]. Kmiotek, M. et al. (2024) have studied the SH plant as
a non-woody raw material for papermaking. Its chemical composition and morphological
characteristics designated these fibers as suitable for various paper production (e.g., for
printing, writing, and tissue paper) [51].

The aim of this paper was to develop biocomposite material reinforced with long natu-
ral fibers derived from the wild plant Spartium junceum L. and energy crop Sida hermaphrodita
and to drive its functionalization towards the automotive industry. The previously proven
positive influence of various additives for the improvement of composite mechanical, ther-
mal, and antibacterial properties guided our choice, but the applied combination of MMT,
ZnO, and cork presents novelty, and results are summarized in patent pending [52].

2. Materials and Methods
2.1. Materials

SJL fibers were isolated from plants harvested from the area around town of Šibenik,
Croatia. SH fibers were isolated from plants and harvested from the experimental field of
the University of Zagreb Faculty of Agriculture situated near the park Maksimir, Zagreb,
Croatia. Sodium hydroxide pellets (NaOH), purity ≥ 97%, and nanoclay modified with
25–30 wt.% octadecylamine were obtained from Sigma-Aldrich Inc., Dorset, UK. Zinc
oxide (ZnO), p.a. purity ≥ 99% and particle size < 5 µm, was obtained from Kemika d.d.,
Zagreb, Croatia. PLA polymer 6201D was purchased from Nature Works LLC, Plymouth,
USA (specific gravity 1.24, relative viscosity 3.1, melt index 15–30 g/10 min, melt density
1.08 g/cm3). Milled cork (MC) was obtained by milling wine bottle stoppers in a cryogenic
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mill 6875, SPEXSamplePrep LLC, Metuchen, NJ, USA, through five cycles for 15 min
in total.

2.2. Methods
2.2.1. Fibers Isolation

Both fibers (SJL and SH) were extracted from the plant according to the method
described in Kovačević, Z. et al. (2015) [36], with the acceptance that the processing time
was increased for SH plants from 5 min to 20 min.

Fiber isolation was performed in a domestic microwave oven YC-GG252A, Sharp,
Osaka, Japan, under 900 W and 2.45 GHz frequency. Plant’s stems were treated in PTFE
round container ∅ 16.5 cm. Treatment was conducted by using 5 wt.% NaOH and solid-to-
liquid ratio was 1:6. After microwave treatment stems were washed in hot and cold water,
neutralized with 1.5% acetic acid (CH3COOH), and finally rinsed with distilled water to
obtain pH 7.

2.2.2. Fibers Moisture Content and Moisture Regain

The moisture regain and content were calculated according to ASTM D2495-07 [53].
After the sample was air-dried and weighed, it was placed in a climatic chamber and
exposed to standard atmospheric conditions for 24 h. Afterwards, the sample was weighed
again and subjected to another cycle of drying for 24 h. The moisture regain and content
were calculated according to Equations (1) and (2). Testing was carried out in triplicate to
ensure precision and consistency.

MC% =

(
m1 − m2

m1

)
× 100 (1)

MR% =

(
m3 − m2

m2

)
× 100 (2)

where MC% represents moisture content, MR% represents the moisture regain, m1 (g)
represents the mass of an air-dried sample, m2 (g) represents the completely dried sample’s
mass, and m3 (g) represents the conditioned sample’s mass.

2.2.3. Fiber Density

The sample density was evaluated with Ultrapyc 1200e, Anton Paar, Boynton Beach,
FL, USA, gas pycnometer. The density of the fibers was conducted according to ASTM
D8171-18 method [54]. Nitrogen gas (N2) of high purity was utilized due to its capability
to seep into the minuscule pores, thus augmenting the precision of the measurement. The
measurements were performed in triplicate to guarantee accuracy.

2.2.4. Fibers Mechanical Properties

Mechanical properties of individual fibers were measured using the Vibroskop 500
and Vibrodyn 500, Lenzing Instruments, Gampern, Austria. Preload, testing speed, and
gauge length were 1500 mg, 3 mm/min, and 5 mm, respectively. Samples were adjusted to
standard conditions (temperature and humidity) prior to the examination. An average of
100 measurements for individual fibers was used in this study.

2.2.5. Fiber Morphology

Morphological features of plant stem cross-section, fiber cross-section, and fiber longi-
tudinal view were measured by scanning electron microscope FE-SEM Mira II LMU, Tescan,
Brno, Czech Republic. Prior to SEM examination, samples for plant cross-section analysis
were prepared by immersing them into Dewar filled with liquid nitrogen. Afterward, they
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were cut and sputter-coated with Cr in order to increase their electrical conductivity. SEM
imaging was conducted at 5.00 kV voltage and the following magnifications were taken:
333×, 2.00k×, and 6.68k×.

2.2.6. Composite Formation

PLA pellets were used to prepare sheets in vacuum oven VO 49, Memmert, Nuremberg,
Germany, at 180 ◦C, under 700 mbar pressure for 5 min. All composite constituents (fibers,
PLA, MMT, ZnO, MC) were absolutely dried at 100 ◦C for 24 h prior to the processing.
Slurries made of linseed oil 10 wt.%, MMT 1 wt.%, ZnO 1 wt.%, and MC 1 wt.% were
prepared by using laboratory Vortex Mixer MX-S, DLAB until the homogeneity has been
achieved. Then, 20 wt.% of fibers were combed and parallelized before the treatment
with the slurry. Treated fibers were manually laid in one direction between two PLA
sheets and this sandwiched structure was placed inside the square aluminum mold of
80 cm × 80 mm × 3 mm. Such assembly was pressed in the laboratory compression
molding press LAB 100 C, Pinette PEI at 190 ◦C and 30 kN pressure for 3 min with a 30 s
degassing cycle.

Table 1 shows a legend of the labels of each specimen made in this experiment.

Table 1. Specimens legend.

Specimen Description/Constituents

Specimen 1 PLA
Specimen 5 PLA + SJL
Specimen 6 PLA + SJL + LO
Specimen 7 PLA + SJL + LO +MMT + ZnO
Specimen 8 PLA + SJL + LO +MMT + ZnO + MC
Specimen 9 PLA + SH
Specimen 10 PLA + SH + LO
Specimen 11 PLA + SH + LO + MMT + ZnO
Specimen 12 PLA + SH + LO + MMT + ZnO + MC
Specimen 14 PLA + SJL + LO +MMT + MC
Specimen 15 PLA + SH + LO + MMT + MC

Where: PLA—polylactide polymer, LO—linseed oil, MMT—montmorillonite nanoclay, ZnO—zinc oxide,
MC—milled cork.

After composite preparation, test specimens were prepared by cutting them to de-
sired size of 10 mm × 80 mm × 3 mm on the laser cutting machine Fabcore FC21-MK3,
FabCreator, Mierlo, Netherlands, for further analysis.

2.2.7. Composite Mechanical Properties

The tensile properties were determined according to the HRN EN ISO 527-5:2021 [55]
using a universal testing machine UTM 1445, Zwick, Ulm, Germany, with a force of 10 kN.
The test was conducted at room temperature with a testing speed of 3 mm/min. The gauge
length was 50 mm. The tensile tests were carried out in five repetitions for each sample, and
the average results and standard deviation were subsequently calculated. During the test,
force and elongation of the specimen, stress, strain, and Young’s modulus were measured.

The flexural properties testing was conducted in accordance with the standard HRN
EN ISO 14125:2005 [56] using a AGS-X Shimadzu, Tokyo, Japan, device with a maximum
force of 10 kN. The test was conducted at room temperature with a testing speed of
2 mm/min. The distance between the spans was L = 48 mm. The flexural test was
conducted on three specimens for each condition (mixtures of different components), as
well as on three specimens of pure PLA. The average results and standard deviations were
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calculated. During the test, force and elongation of the specimen, stress, strain, deflection,
and flexural modulus were measured.

Impact strength testing was conducted according to the standard HRN EN ISO 179-
1:2023 [57] using a Charpy pendulum, Karl Frank GmbH, Weinheim-Birkenau, Germany at
room temperature. The nominal pendulum value was 2 J, and the support span was 62 mm.
The same testing methodology was employed for impact strength assessment, utilizing five
specimens for each condition alongside five specimens of pure PLA, with averages and
standard deviation calculated afterward.

2.2.8. Composites Thermal Properties

Thermogravimetric analysis (TGA) was studied using a TGA/DSC3+, Mettler-Toledo,
Greifensee, Switzerland. The 10 mg amount of samples were put in ceramic pan of 60 µL
volume and heated from 25 ◦C to 600 ◦C at 10 ◦C/min heating rate in a nitrogen gas flow
(60 mL·min−1, purity 99.999%).

Differential scanning calorimetry (DSC) analysis was studied using a DSC 822e,
Mettler-Toledo, Greifensee, Switzerland, device with purged dry nitrogen gas flow
(40 mL·min−1, purity 99.999%), previously calibrated with indium and zinc. About 10 mg
of samples were encapsulated in standard aluminum pans with pierced lids. The following
thermal cycles were applied: (1) dynamic heating from 25 to 200 ◦C at 10 ◦C/min, (sam-
ples were held at this temperature for 3 min to erase the processing and thermal history),
(2) dynamic cooling from 200 to 0 ◦C at 10 ◦C/min and held at 20 ◦C for 3 min, (3) reheated
to 200 ◦C at 10 ◦C. The cooling was completed under liquid nitrogen. Glass transition
temperature (Tg), cold crystallization (Tcc), melting temperature (Tm), and crystallization
temperatures (Tc) were obtained from the endothermic and exothermic peaks in the heating
and cooling scans, respectively. Degree of crystallinity (χc) of composites was calculated
using Equation (3):

χc =

(
∆Hm − ∆Hcc

∆Hm
0 × wPLA

)
× 100 (3)

where ∆Hm is the enthalpy of melting (J·g−1) determined by the DSC measurement, ∆Hcc

is the cold crystallization enthalpy and ∆Hm
0 is the melting enthalpy value of the purely

crystalline PLA (%), wPLA (g) is the mass content of PLA. The value of melting enthalpy of
the pure PLA crystals is 93 J/g.

Microscale combustion calorimetry (MCC) was used to investigate the heat of com-
bustion of gases evolved during the controlled heating of the specimens. The analysis has
been conducted on MCC-2, Concept Equipment, West Sussex, UK, device. The heat release
rate (HRR) curves, as well as corresponding combustion data, were calculated based on
three replicate measurements according to ASTM D7309-21a (Method A) [58].

3. Results and Discussion
3.1. Fibers Physical Properties

The moisture content and regain of the SJL and SH fibers are presented in Figure 2. The
fibers were isolated from the plant stems a few months after the harvest period; therefore,
the moisture measurements were obtained at the same time for all the investigated fibers.
Within the period from isolation to moisture measurements, fibers were stored in sealed
and clean polyethylene bags in the normal indoor atmosphere.
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Fibers isolated from Sida hermaphrodita exhibit higher moisture content and moisture
regain values (8.03% and 10.09%, respectively) compared to SJL fibers (6.86% and 8.22%,
respectively). The difference between both moisture content and moisture regain mean
values is noticeable due to the fact that Fcritical is lower than Fstatistical, while the p-values are
lower than 0.05. Relatively low moisture content in SJL fibers is often considered acceptable
for many textile applications, especially for the storage, transportation, and processing of
isolated fibers. It is important to note that the optimal moisture content for natural fibers
can vary depending on the intended application and industry standards. Additionally,
the moisture content of fibers can change over time, depending on the environmental
conditions. Proper storage and handling are essential to maintaining the desired moisture
levels in natural fibers for various applications, especially for composite production [59–61].

Fiber density results are presented in Figure 3. Measured values are in accordance
with the density values of other bast natural fibers, i.e., flax fibers [52,62].
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The conditions in which plants are grown and harvested can influence fiber density.
Factors like soil quality, climate, and agricultural practices can affect the fiber’s overall
structure and, consequently, its density. Since natural fibers show great variability in their
properties, factors of fiber diameter, wall thickness, and internal structure can vary, leading
to differences in their density [63]. SH fibers show significantly lower density compared
to SJL fibers (1.55 g/cm3 and 1.59 g/cm3, respectively). Following the one-way ANOVA
analysis, a statistically noticeable difference in density was observed between these fibers
(p-value < 0.05). One of the key demands in composite materials design is their lightweight
combined with the retention of their strength. This is the reason why natural fibers are of
huge interest as reinforcing material for composites. Natural fiber’s addition to the polymer
matrix influences the formation of voids and the presence of higher air content while its
low density affects the density of composite material and makes it lightweight [64].

3.2. Fibers Mechanical Properties

Results of breaking tenacity, elongation, and fineness of individual fibers are presented
in Table 2.

Table 2. Mechanical properties of SJL and SH fibers.

Fiber Fineness
(dtex)

Strain
(%)

Tenacity
(cN/tex)

Strength
(MPa)

Young
Modulus
(cN/tex)

Young
Modulus

(GPa)

SJL 42.73 b ± 2.16 6.20 a ± 0.20 57.48 b ± 2.52 913.98 b ± 40.12 1083.93 b ± 50.33 17.24 b ± 0.80
SH 53.71 a ± 1.06 5.56 b ± 0.06 79.85 a ± 2.23 1240.38 a ± 34.57 1344.60 a ± 41.42 20.89 a ± 0.64

Results are presented as mean value within 95% confidence interval. The results were subjected to one-way
analysis of variance (ANOVA), and the differences between means were compared using t-test (LSD) at the
significance level p ≤ 0.05. Different letters indicate significant differences between mean values. Strength and
modulus values were converted to SI units based on the approximation to circular cross-section of natural fibers.

SH fibers show an increase in fiber tenacity and modulus of 38.92% and 24.05% compared
to SJL fibers, indicating their higher flexibility [65]. According to our results, SH fibers
are stiffer than SJL fibers and their value of Young modulus is in the same range as sisal
(9.4–22 GPa), ramie (24.5 GPa), or jute (26.5 GPa) [66]. Young’s moduli of both fibers are
relatively low in comparison to flax (15–54 GPa) and hemp (17–70 GPa) fibers [65,67]. Fibers’
mechanical properties such as Young’s moduli and strength are influenced by microfibril
angle, chemical composition, irregular cell geometry, secondary cell wall, fiber cross-sectional
area, and lumen size [66,68,69]. Bast fibers have a lumen, a central channel that is situated
in the middle of the fiber, which usually is not subtracted from the fiber cross-section. The
discrepancy of Young’s moduli results is affected by the size of the cross-sectional area.
Therefore, Kempe, A. et al. (2015) in their research based on Carica papaya L. bast fibers
concluded that calculated Young’s modulus and strength are lower than they are in reality [65].
The strength of SH fibers is 1240.38 MPa, which is considerably higher than the values
of other bast fibers: ramie (400–938 MPa), jute (400–800 MPa), kenaf (284–800 MPa), flax
(800–1500 MPa) and hemp (550–900 MPa) [70,71]. Therefore, this characteristic makes SH an
excellent candidate for reinforcement of biocomposite production.

3.3. Fiber Morphology

The morphology features of SJL and SH fibers are presented in Figure 4. The cross-
sectional area of the stem consists of similar layers in both plants: xylem, phloem, scle-
renchyma (bast fibers), and epidermis [3]. Bast fibers are located in the outer part of the
stem. The fibers called technical fibers are bundles of elementary fibers whose width ranges
from 10 to 20 µm (Figure 4: last micrograph in each row). Surface features within the
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longitudinal view of both tested fibers are rather similar although SH fibers show a more
uniform appearance in terms of surface irregularities. SEM analysis of the fiber surface
shows wrinkles, grooves, and kink bands, which are characteristic of bast fiber topography.
A cross-section of technical fibers presents irregular shapes of elementary fibers situated
within the bundle. SJL fibers show a thick secondary cell wall and small-sized lumen, while
SH fibers show considerably larger lumen. Rough surface and large lumen position SH
fibers in the category of fibers suitable for reinforcement in polymer composite materials
due to mechanical interlocking between fibers and polymer. Fiber type (category) is a
very important indicator of the fiber’s further performance. Bazli, L. et al. (2021) pointed
out that bast fibers have high flexural strength while leaf fibers show favorable impact
properties [72].
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3.4. Composites Mechanical Properties

The mechanical properties of composite materials were investigated with tensile,
flexural, and impact properties. These properties are influenced by the fiber’s tensile
strength and modulus, adhesion between the matrix and fibers, impact resistance, and
others [73,74]. The addition of fillers to NFRC significantly influences their mechanical
properties. Some of the key mechanisms by which fillers affect these properties are listed in
Table 3.
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Table 3. Possible mechanisms of filler interaction with polymer matrix for enhanced mechanical
properties.

Mechanical Properties Mechanism

Improved load transfer/efficient stress distribution Interfacial bonding between fillers and matrix

Increased stiffness and strength Additional reinforcement (fillers) restrict the mobility of
polymer chains

Enhanced toughness and Impact resistance

Presence of fillers creates a more tortuous path for cracks,
which requires more energy for the cracks to propagate and

absorbs or dissipates energy more effectively in order to
improve impact resistance

The overall effect of fillers on the mechanical properties of NFRC depends on several
factors, including the type, size, shape, and concentration of the fillers, as well as the
processing conditions and the nature of the matrix and fibers [75]. Therefore, in this paper,
the positive aspects of the filler on the mechanical properties were not fully confirmed due
to the low concentration of the filler.

Figure 5 presents the tensile stress–strain behavior of natural fiber-reinforced com-
posites compared to neat PLA (polymer matrix). It is noticeable that composites without
various fillers such as LO, MMT, ZnO, and MC break at a higher strain, beyond 6% (Spec-
imens 5 and 9). Composites reinforced with fibers modified with LO show the highest
strength values of 46.51 MPa for Specimen 6 and 54.37 MPa for Specimen 10.
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Neat PLA (Specimen 1) shows tensile strength and modulus of 44.35 MPa and 0.89 GPa,
respectively (Table 4). Its strain at break is 6.45%. The addition of linseed oil (Specimen 6 and
Specimen 10) improved tensile strength and modulus, which enhances stiffness, meaning
that the composite can bear more load while undergoing less deformation.

Other specimens show a decrease in Young’s modulus indicating that a combination
of LO and other fillers could induce a plasticizing effect and thus better flexibility of such
specimens [76]. According to Orue, A. et al. (2018), a combination of epoxidized vegetable
oils and fibers could improve the strain at break and tensile modulus by 70% and 30%,
respectively [77]. Composites with incorporated fillers such as MMT, ZnO, and MC show a
negative impact on the tensile strength of natural fiber-reinforced composites (Specimens 7,
8, 14, 11, 12, and 15). Introduction of 20 wt.% natural fibers (SJL and SH) to polymer
matrix without additional fillers influences better tensile properties. Composites reinforced
with SJL (Specimen 5) and SJL fibers modified with LO (Specimen 6) show an increase in
strength of 2.3% and 4.9%, respectively, compared to neat PLA. Composites reinforced with
SH (Specimen 9) and SH fibers modified with LO (Specimen 10) show a higher increase
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in strength of 14.36% and 27.33%, respectively, compared to neat PLA. Better results of
SH-reinforced composites are in line with their better tensile properties in comparison to
SJL fibers. Additionally, the lumen size of SH fibers is significantly larger than SJL fiber as
can be noticed in Figure 4. Yusoff, R. B. et al. (2016) in their research pointed out that the
size of the fiber lumen is very important since the penetration of the matrix into the lumen
could create better interlocking behavior regarding cohesion in the cell wall so loads could
be withstood and less fiber pull-out could be noticed [68].

Table 4. Tensile properties of tested biocomposites compared to neat PLA.

Specimen Tensile Strength
(MPa)

Strain at Break
(%)

Young Modulus
(GPa)

Specimen 1 44.35 ad ± 5.24 6.45 ab ± 3.16 0.89 bh ± 0.24

SJL

Specimen 5 45.37 a ± 4.40 6.72 a ± 2.23 0.88 c ± 0.13
Specimen 6 46.51 a ± 5.41 5.29 a ± 2.70 1.02 a ± 0.14
Specimen 7 19.80 c ± 9.34 4.16 a ± 1.32 0.67 e ± 0.23
Specimen 8 22.64 c ± 7.93 4.61 a ± 0.32 0.03 f ± 0.005

Specimen 14 35.56 b ± 4.81 4.11 a ± 0.76 0.81 d ± 0.40

SH

Specimen 9 50.72 e ± 15.18 6.40 b ± 2.22 0.86 i ± 0.54
Specimen 10 54.37 e ± 1.10 4.07 b ± 0.65 1.20 g ± 0.02
Specimen 11 24.30 g ± 4.61 4.71 b ± 0.34 0.04 j ± 0.007
Specimen 12 27.64 g ± 7.11 4.85 b ± 0.57 0.04 j ± 0.02
Specimen 15 33.27 f ± 4.11 5.82 b ± 0.23 0.03 k ± 0.02

Results are presented as mean value within 95% confidence interval. The results were subjected to one-way
analysis of variance (ANOVA), and the differences between means were compared using Tukey HSD–Kramer test
and Q test at the significance level p ≤ 0.05. Different letters indicate significant differences between mean values.

The flexural properties of investigated fiber-reinforced composite materials are pre-
sented in Table 5 and Figure 6.

Table 5. Flexural properties of tested biocomposites compared to neat PLA.

Specimen Flexural Strength
(MPa)

Flexural
Deformation

(%)

Flexural Modulus
(MPa)

Specimen 1 62.83 bc ± 11.98 2.87 ab ± 0.27 2346.07 ek ± 296.18

SJL

Specimen 5 64.34 bd ± 8.48 2.76 a ± 1.49 3554.09 b ± 608.31
Specimen 6 76.21 a ± 18.50 3.12 a ± 0.97 3471.38 c ± 434.74
Specimen 7 62.79 cd ± 13.21 2.07 a ± 0.22 3621.58 a ± 344.60
Specimen 8 55.71 e ± 18.09 2.54 a ± 0.37 3468.78 c ± 691.66

Specimen 14 68.87 b ± 8.40 2.74 a ± 0.49 3391.57 d ± 496.49

SH

Specimen 9 101.67 f ± 19.18 2.68 b ± 0.31 4104.94 j ± 485.61
Specimen 10 86.46 g ± 9.37 2.51 b ± 0.52 4524.71 h ± 718.93
Specimen 11 68.75 i ± 13.94 1.88 b ± 0.01 4994.36 g ± 953.89
Specimen 12 79.06 h ± 1.65 2.02 b ± 0.37 5026.73 f ± 540.21
Specimen 15 74.38 h ± 16.82 2.11 b ± 0.69 4462.08 i ± 671.74

Results are presented as mean value within 95% confidence interval. The results were subjected to one-way
analysis of variance (ANOVA), and the differences between means were compared using Tukey HSD–Kramer test
and Q test at the significance level p ≤ 0.05. Different letters indicate significant differences between mean values.
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The flexural strength and modulus of neat PLA were 62.83 MPa and 2.35 GPa, respec-
tively. Composites containing ZnO show decrement in flexural strength for composites
reinforced with SJL fibers (Specimens 7 and 8). Composites reinforced with SH fibers show
an increase in flexural strength and modulus for all SH-reinforced composites, but the
increase in flexural strength is less pronounced on specimens that contain ZnO. Figure 6
presents average values of measured stress–strain behavior where the modulus of elasticity
in bending (flexural modulus) is depicted by the slope of the stress–strain curve. SH-
reinforced composites exhibit a steeper linear slope of the stress–strain curves indicating
a higher modulus of elasticity. An increase in flexural modulus and therefore an increase
in material stiffness (resistance to bend) is observed for all of the tested specimens (SJL
and SH composites) compared to neat PLA, which is influenced by the addition of various
fillers [78].

During the analysis of flexural properties, the test specimen is exposed to compression
and tension stress. Therefore, stiffness is an important property since it protects the
composite system from deflecting [79,80]. Ochi, S. (2015) revealed the relationship between
flexural strength and modulus with fiber content since the flexural strength and modulus
increase linearly with the increase in fiber content. Composites with a volume fraction of
bamboo fibers of 70% show a noticeably higher flexural strength and modulus of 273 MPa
and 6.8 GPa, respectively [81]. In their research, Mazur, K. E. et al. (2022) concluded that
good results of flexural tests depend more on fiber orientation than on good fiber/matrix
adhesion. Flexural properties are better if the fibers are parallel within the matrix because,
in such a way, oriented fibers show better resistance to the applied load [82].

The impact properties of neat PLA and natural fiber-reinforced composites are pre-
sented in Figure 7. It can be noticed that neat PLA shows an impact strength of 16.68 kJ/m2

while the impact strength of other test specimens (natural fiber-reinforced composites func-
tionalized with various fillers) decreases. These results indicate the low energy required for
crack propagation, which could be influenced by weak interfacial bonding, the develop-
ment of voids inside the material, and the agglomeration of fillers [83,84]. Additionally, it
is important to emphasize that natural reinforcement is responsible for a higher variability
of results since the coefficient of variation for natural fiber properties could range from
10 to 40% [85]; therefore, their inclusion in composites influences the higher variability of
presented data.
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In the case of composites reinforced with SJL fibers, a lower decrease in impact
properties by 2–12% is observed, compared to composites reinforced with SH fibers by
15–35%. Test Specimens 14 and 15, in which ZnO filler is replaced with milled cork (MC),
exhibit better impact properties compared to other tested composites. Upon examining
Figure 7b, which illustrates the impact properties of composites reinforced with SH fibers,
we observe a significant variability in the mean values of samples containing ZnO filler.
Notably, if the values for Specimens 11 and 12 approach the upper limit, it can be concluded
that samples reinforced with SH fibers and ZnO fillers exhibit superior impact properties.
This is in line with the research conducted by [86] in which the authors confirmed the
negative impact of ZnO on mechanical properties, such as flexure and tensile strength,
and the positive impact on the impact strength. The presence of ZnO particles reduces
the active sites and consequently, the possible bonding between the matrix and the fibers
is reduced.

3.5. Composites Thermal Properties

The thermal properties of composite materials were investigated through thermo-
gravimetric analysis, differential scanning calorimetry, and microcombustion calorimetry.
A thermogravimetric analysis (TG and DTG graphs) of all tested specimens is presented
in Figures 8 and 9. Specimen 1 (neat PLA) started to decompose at 349.98 ◦C. The high-
est weight loss (approx. 98.28%) was observed at 370.08 ◦C, which is ascribed to the
degradation of polymeric chains [3,38,45,87].
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rate of thermal degradation was 332.41 °C. Natural fiber reinforcement influences the start 
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5 since the temperature where maximum degradation is achieved has been increased by 
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The TG values of SJL and SH fibers refer to two degradation stages. The first stage
(34 ◦C–103 ◦C) is linked to the adsorbed water loss, which is about 3.98% and 4.83% for SJL
and SH fibers, respectively. The second stage (320 ◦C–378 ◦C) is attributed to the loss of the
main structural constituents of the fibers (cellulose, hemicellulose, and lignin). Maximum
weight loss was approx. 60% and appeared at temperatures of 352.86 ◦C and 360.98 ◦C for
SJL and SH, respectively.

Composites reinforced with SJL natural fibers and without additives/fillers (Spec-
imen 5) show a lower temperature of degradation in comparison to the neat PLA. The
onset temperature of thermal degradation was 320.49 ◦C while the point of maximum rate
of thermal degradation was 332.41 ◦C. Natural fiber reinforcement influences the start of
thermal decomposition and shifts it to lower values [88]. The addition of linseed oil (i.e.,
Specimen 6) influences the improvement of thermal stability in comparison to Specimen 5
since the temperature where maximum degradation is achieved has been increased by
10.11%. Various fillers like MMT, ZnO, and MC were added to the composite material to
improve the overall properties of the material (mechanical, thermal, and antibacterial). It
can be observed that specimens with the ZnO filler show two degradation stages. The
onset of the first degradation stage was within a temperature range of 271 ◦C to 276 ◦C
while the point of maximum rate of thermal degradation was within a range of 298 ◦C to
300 ◦C and maximum weight loss was 84.68% for Specimen 7 (without MC) and 69.78% for
Specimen 8 (with MC). The onset of the second degradation stage was within a temperature
range of 345 ◦C to 353 ◦C while the point of the maximum rate of thermal degradation
was within the range of 359 ◦C to 362 ◦C. Maximum weight loss was 4.61% for Specimen 7
(without MC) and 16.59% for Specimen 8 (with MC). Milled cork (MC) mainly consists of
suberin, lignin, and cellulose [29]. Ghonjizade-Samani, F. et al. (2023) revealed that suberin,
which is a complex polyester commonly found in plant cell walls enhances the thermal
stability of cork [30]. Specimen 14 represents composite material without ZnO filler. Its
onset temperature was 340.39 ◦C while the point of maximum rate of thermal degradation
was 363.08 ◦C with a maximum weight loss of 90.38%.

Composites reinforced with SH natural fibers and without additives/fillers (Speci-
men 9) show a slightly higher temperature of degradation compared to SJL fiber-reinforced
composites. Its point of maximum rate of thermal degradation was at 358.10 ◦C and maxi-
mum weight loss was 89.45%. The addition of LO (Specimen 10) increases thermal stability
although the residue content after thermal analysis was slightly lower than in Specimen 9.
Specimens with ZnO show a wider temperature range (288 ◦C–303 ◦C) where the point
of maximum rate of thermal degradation appeared if we compared it with SJL-reinforced
composites. Specimen with milled cork (Specimen 12) shows insignificantly lower overall
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weight loss (approx. 86.85%) and a higher residue content of 6.61% than specimen without
milled cork (overall weight loss was approx. 87.06% and residue content was 5.57%). Speci-
men 15 is without ZnO filler, and its onset temperature of degradation was 355.05 ◦C while
the point of maximum rate of thermal degradation was 362.11 ◦C, which is insignificantly
lower than Specimen 14.

Based on the onset temperature during thermogravimetry analysis, safe working
temperature for composite processing is determined to be in the range of 220 ◦C to 250 ◦C.

DSC results are presented in Tables 6 and 7 and Figures 10–12 in order to determine
thermal transitions of fibers and composites such as glass transition temperature, crystal-
lization, and melting temperatures. Glass transition temperature (Tg) presents the point
where an amorphous component of polymer transforms from “glassy” to “rubbery” state.
It depends on the polymer type, curing process, and moisture content. Therefore, it can
serve to identify the changes in the composites upon the moisture uptake, post-curing,
plasticization, or even fiber–matrix debonding [89].

Table 6. DSC analysis of tested biocomposites reinforced with SJL fibers, compared to neat PLA.

Phase
Transition Parameters Specimen

1
Specimen

5
Specimen

6
Specimen

7
Specimen

8
Specimen

14 SJL

Glass
transition

Tg, on (◦C) 57.86 57.55 55.83 53.96 53.19 56.17 51.36
Tg, mp (◦C) 59.74 59.33 58.14 57.54 56.23 58.4 57.65

Cold
crystal-
lization

∆Hcc (Jg−1) 32.61 40.84 31.55 28.09 24.83 30.36 /
Tcc, on (◦C) 107.75 105.49 102.06 97.24 93.38 98.77 /
Tcc, p (◦C) 131.12 114.13 111.97 111.74 106.44 111.05 /
Tcc, f (◦C) 151.71 144.59 123.06 148.19 121.02 132.31 /

Melting

∆Hm (Jg−1) 34.66 41.76 35.39 31.66 31.03 31.27 /
Tm, on (◦C) 159.72 158.83 157.8 148.2 155.24 158.34 /
Tm, p (◦C) 166.35 168.65 168 166.61 164.93 168.31 /
Tm, f (◦C) 173.01 173.07 171.13 177.86 170.13 172.51 /

Xc (%) 2.20% 1.24% 5.90% 5.65% 9.95% 1.44% /

Table 7. DSC analysis of tested biocomposites reinforced with SH fibers, compared to neat PLA.

Phase
Transition Parameters Specimen

1
Specimen

9
Specimen

10
Specimen

11
Specimen

12
Specimen

15 SH

Glass
transition

Tg, on (◦C) 57.86 57.92 55.96 53.81 54.66 55.07 62.75
Tg, mp (◦C) 59.74 60.47 58.34 56.38 57.03 57.51 67.86

Cold
crystal-
lization

∆Hcc (Jg−1) 32.61 28.04 28.56 32.64 26.33 30.1 /
Tcc, on (◦C) 107.75 104.86 119.07 100.77 98.98 96.24 /
Tcc, p (◦C) 131.12 122.75 123.23 124.08 120.74 103.54 /
Tcc, f (◦C) 151.71 140.2 143.23 146.19 143.27 111.74 /

Melting

∆Hm (Jg−1) 34.66 31.84 29.66 33.3 35.79 32.45 /
Tm, on (◦C) 159.72 159.15 152.43 155.59 156.66 160.49 /
Tm, p (◦C) 166.35 169.24 168.39 164.55 164.37 167.66 /
Tm, f (◦C) 173.01 175.42 171.59 170.73 170.6 171.8 /

Xc (%) 2.20% 5.11% 1.69% 1.04% 15.18% 3.72% /

The glass transition temperature of composites reinforced with SJL is lower in compar-
ison to the neat PLA (Figure 10). Lignin present in the fibers acts as a plasticizer, which
lowers the glass transition [90]. Composites reinforced with SJL fibers functionalized with
all four additives exhibit the largest decrease in glass transition by 3.51 ◦C. Linseed oil
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contains unsaturated fatty acids, which can interact with the ester groups in PLA, and
influence the polymer’s molecular packing and chain dynamics. These interactions may
cause a reduction in glass transition [91]. ZnO acts as a physical crosslinking agent and
hinders the mobility of PLA chains [92]. Furthermore, MMT can also reduce the mobility
of the polymer chains. On the other hand, the intercalation or exfoliation of clay layers
in the PLA matrix can lead to increased molecular interactions, contributing to a higher
glass transition. Applied ZnO and MMT concentration and their interactions are low and,
therefore, do not have a significant influence on glass transition.
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Cold crystallization temperature is significantly lower in all composites compared
to neat PLA. The decrease occurred due to an increase in the chain mobility of PLA. The
crystallization process was accelerated due to the increase in segmental mobility of the PLA
chains by plasticization [77,93]. The melting temperature has not significantly changed.
However, a second melting peak at lower temperatures appeared and is more prominent in
some specimens, e.g., Specimens 5, 6, 9, and 10 (specimens without ZnO, MMT, and MC).
The presence of two melting peaks on thermograms of plasticized PLA, due to the formation
of crystallite with different sizes and perfection, is caused by lamellar rearrangements
during PLA crystallization [94]. The degree of PLA crystallization decreased with the
addition of SJL fibers indicating a dominant structure of the amorphous phase in SJL fibers.

The most prominent increase in polymer crystallinity is observed on Specimen 8
containing LO, MMT, ZnO, and cork, which indicates induced nucleation caused by the
addition of cork to PLA composite [95].

The addition of SH fibers in PLA (Figure 11) increases glass transition by 0.71 ◦C due
to higher Tg of neat SH fibers (Figure 12). The addition of LO, MMT, ZnO, and MC caused
a decrease in the glass transition below Tg of neat PLA, where the most significant decrease
was caused by the addition of oil. Cold crystallization temperature is lower in all SH-
reinforced composites compared to neat PLA. The melting temperature of SH composites
has not changed significantly, and this trend is similar to SJL-reinforced composites. The
degree of crystallization of PLA increased by 2.91% with the addition of SH fibers indicating
that the structure of SH fibers is more crystalline. The addition of plasticizer LO decreases
crystallinity by 3.42%, which is below the crystallinity of neat PLA. On the other hand,
Specimen 12 containing LO, MMT, ZnO, and MC exhibits a 15.18% degree of crystallinity
indicating a positive effect of larger crystals formation on the stiffness, durability, and
heat resistance of the natural fiber-reinforced polymer. The reason why there are large
differences in the degree of crystallinity of pure PLA and its composites is precisely due to
the increased density of nucleating sites provided by different types of fiber reinforcement
and various fillers [96]. According to Da Silva, S.P.M. et al. (2021) degree of crystallinity
values of cork/PLA biocomposites increased with the addition of cork indicating cork acts
as a heterogeneous nucleating agent which is in line with the DSC curve of Specimen 15
presented in Figure 11. The presence of a sharp cold crystallization peak in Specimen 15
that is shifted to a lower value (103.54 ◦C) corresponds to a more defined crystal structure
of PLA polymer stimulated by the presence of cork [97].



Polymers 2025, 17, 235 20 of 27

Figure 13 presents MCC curves of SJL-reinforced composites compared to neat PLA
(Specimen 1). It is noticeable that MMT-treated specimens (Specimens 7 and 8) exhibit
lower heat release values than other tested specimens pointing to lower flammability of
these specimens. This trend is noticed in SH-reinforced composites as well. The explanation
for this trend is the formation of a char layer on the composite surface, which causes a
barrier during the combustion. This barrier slows down the release of volatile gases and
reduces the overall heat release rate. Therefore, the heat release rate (W/g) of Specimens 7
and 8 is 30.25% and 37.13% lower, in comparison to neat PLA. After exposure to 700 ◦C,
only Specimens 7 and 8 have a noticeable yield of pyrolysis (2.00% for Specimen 7 and
6.67% for Specimen 8). This parameter is crucial because it indicates how much of the
original material has decomposed into volatile gases versus how much remains as solid
residue after the pyrolysis stage.
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4. Conclusions
This paper presents a comprehensive overview of circular biofiber and biocomposite

production, considering the zero waste concept. This concept utilizes waste from one
industry (agriculture) in another industry (textile) and then repurposes waste side streams
from textile production into the next industry (biofuels). Our idea to apply solid residues
after the fiber isolation process (approx. 40%) to produce solid or gas biofuels (briquettes,
pellets, biogas, and (bio)methane) has already been confirmed [98–100].

The results revealed that SH fibers isolated in the first step have more crystalline
areas in their structure than SJL fibers. Due to their higher crystallinity, SH fibers exhibit
38.92% higher tensile strength values than SJL fibers. The strength of the constituents
affects the final strength of the biocomposite, therefore composites reinforced with SH
fibers show better results regarding tensile strength compared to SJL composites. The
strength of the SH-reinforced composite has increased by 14.4% and only 2.3% for the
SJL composite, compared to neat PLA. The addition of vegetable drying oil improved the
interfacial properties between the fiber and the polymer. Therefore, the tensile strength is
increased by 4.9% for the SJL composite and up to 22.6% for the SH composite. Young’s
modulus, which indicates stiffness, is also the highest in composites with the addition of
vegetable oil.

The addition of ZnO fillers has a negative influence on the impact strength of both SJL-
and SH-reinforced composites, and this issue must be solved to enable composite usage
for a wider range of applications, from automotive parts to construction materials. All the
tested natural fiber-reinforced composites exhibit good resistance to bending making them
an attractive option in industries that demand materials with good bending resistance,
while also prioritizing environmental impact and cost-efficiency.
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The best results of thermal stability have been observed on SH composites with MMT
nanoclay, which exhibits the lowest heat release rate and clearly confirms their lower
flammability and therefore, the possibility of application for flame retardant purposes.

It is important to stress that revitalization of the Spanish broom and Virginia mallow
fiber production is highly desirable due to the ecological and economic benefits of its
application for biocomposite materials. Namely, approximately 30% of the fibers used in
the European auto industry are produced in EU member states, while 70% are imported
from Eastern Europe and Asia. The composite material will be more sustainable if the raw
materials used in its production are locally available.

5. Future Perspectives
The European Commission introduced a new Circular Economy Action Plan in 2020,

which strongly aligns with the objectives of the European Green Deal: to enhance the
development of cleaner and more competitive Europe. Transition to a circular economy
requires changes across the entire value chain, including efficient resource management,
ecodesign of sustainable products, new business and market models, innovative ways to
turn waste into resources, and shifts in consumer behavior. This transformation involves a
complete overhaul of the current economic model through innovation. Significant effort
should be directed towards waste separation and its usage for new purposes.

The development of natural fiber-reinforced polymer composites is one of the pos-
sible ways to respond to all the requirements set by the European Green Deal for a more
sustainable future. Parameters that influence the performance and properties of NFRCs
are categorized into fiber-related, matrix-related, and external factors (curing process,
manufacturing techniques, and environmental factors).

Fiber-related factors commonly include strength, length, content, and orientation.
In this study, bast fibers of Sida hermaphrodita and Spartium junceum were used. Our
results confirmed that it is worth revitalizing the local production of both plants. SH
plant can be an exceptional renewable resource for biofibers and biofuel production and
therefore, it is of great interest to increase its biomass yield. One possibility is introduced
by Nabel, M. et al. (2018) who have suggested intercropping Sida hermaphrodita with
legumes [15]. For this reason, our future research will be expanded to the simultaneous
cultivation of Sida hermaphrodita and Spartium junceum.

Polymer matrix-related factors commonly include the type (thermoset or thermoplas-
tic), ease of handling, and viscosity. In our future research, the polymer matrix will be
revised since the poor wettability of PLA fibers resulted in the creation of voids inside the
composites. Kempe, A. et al. (2015) indicated that the ratio of the breaking strain of the
fibers to the breaking strain of the matrix should be at least 1:3 to obtain adequate matrix
reinforcement [65]. The results presented in this paper do not correspond with this range,
therefore, future research will be directed towards the modification of PLA polymer to
increase its flexibility and ductility.

For enhancement of fiber/matrix interfacial properties and therefore enhancement
of NFRCs mechanical and thermal properties, further chemical modifications in a more
environmentally friendly manner such as milder alkali treatment, citric acid treatment,
enzymatic treatment, and bio-based crosslinking will be performed.

Considering the significant loss in tensile and flexural strength of NFRC modified
with ZnO, other solutions for antimicrobial functionalization will be investigated. The
1 wt.% amount of ZnO applied in this work is below the optimal concentration for efficient
enhancement of mechanical and thermal properties of composite material. According to
Thipperudrappa, S. et al. (2020) the optimal ZnO concentration is 2 wt.% [86]. An increase
in weight/volume fractions of fillers (to more than 1 wt.%) and an increase in fiber content
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(up to 50–70% volume fraction of fibers) is necessary for satisfactory results, which is in
line with the conclusions of other scientists [68,73].

To be able to fully close the loop of circular biocomposite production, the reuse of
extracted alkaline solution for a new cycle must be performed [101]. Another solution is
its evaporation and further usage of solid residue, rich in lignin, as an additive in pellet
production. The applied cascade approach and zero waste concept contribute to waste
minimization and make a significant contribution towards the achievement of the goals set
by the European Green Deal.
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hermaphrodita) residue from enzymatic fiber isolation. In Proceedings of the 59th Croatian & 19th International Symposium
on Agriculture, Dubrovnik, Croatia, 11–16 February 2024; Carović-Stanko, K., Kljak, K., Eds.; University of Zagreb Faculty of
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Ojačane Vlaknima. ISO: Geneva, Switzerland, 2021.
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