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Abstract: Antimicrobial polymeric coatings rely not only on their surface functionalities
but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the
addition of NPs into a polymeric matrix. NPs that have been used include metal-based
NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and
silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings,
they will release metal ions with the combined effect of having bacteriostatic/bactericidal
properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced
films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc
oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV
irradiation, these NPs show photocatalytic properties that lead to the production of reactive
oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon
materials were successfully developed over the past decade, they and their derivatives from
graphite/nanotubes, and composite sheets have been receiving more attention because they
share an extremely large surface area, excellent mechanical strength, etc. These NPs not only
show the ability to cause oxidative stress but also have the ability to release antimicrobial
chemicals under control, resulting in long-lasting antibacterial action. The effectiveness
and life spans of the antifouling performance of a variety of polymeric materials have been
improved by adding nano-sized particles to those coatings.

Keywords: nanofillers; antimicrobial coatings; nanoparticles; antibacterial coatings;
healthcare; packaging

1. Introduction
It is crucial to apply antimicrobial polymeric coatings to the surfaces of equipment

and devices that do not have an interaction between food and the environment. The
objective of this antimicrobial packaging is to preserve food quality, ensure safety, and
increase shelf life [1]. Varied methods of creating biodegradable and secure antimicrobial
packaging have been explored. These include the use of polymers harboring antimicrobial
activity within their structure and the addition of selected antimicrobials. Antimicrobial
polymeric coatings offer another major benefit: they provide durable defense, suited to
situations where it is difficult to wash and sanitize material on a routine basis [2]. Some
antimicrobial NPs have effects against fungi as well as bacteria; that is to say, they restrain
or kill fungal species. Nanotechnology in polymer enhancement improves product shelf
life, antibacterials added, and the advantage of sniffing out the incipient changes leading to
decay. Thus, with nanotechnology packaging, extended product shelf life in addition to the
presence of antibacterial agents and degradation symptoms can all be anticipated [3,4].
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The phrase “nanotechnology” was coined by Richard Feynman in 1959 [5]. Due to
their higher aspect ratio and larger surface area, nanocomposites—which contain at least
one phase with nanometer-scale dimensions—offer better characteristics [6]. Nanocom-
posite films can improve functional qualities by adding NPs to the polymer matrix. NPs
can act as both reinforcement for the films and active substances [7]. The entire behavior
of these NPs depends on their uniform dispersion inside the polymer matrix. Abrasion
resistance, corrosion and chemical resistance, wear resistance, optical performance, antire-
flection, flame retardancy, electrical properties, mechanical properties, barrier properties,
permeability, and antibacterial and antifungal ability are just a few of the properties that
can be improved by adding nanomaterials to polymer matrices [8–10]. Silver is used in
consumer antimicrobial goods in the building, textile, cosmetic, appliance, health, and
environmental industries. Numerous items that contain AgNPs have received approval
from the U.S. Food and Drug Administration (FDA) [11]. The FDA has approved the
commercial release of several gold nanoparticle-based diagnostic tools, and testing of other
formulations is still ongoing [12].

NPs play a crucial role in enhancing the antimicrobial properties of polymeric coatings
through mechanisms such as ion release, reactive oxygen species (ROS) generation, physical
disruption, and surface modification.

Nanoproducts can be made from metal NPs, metal oxide NPs, carbon-based nano-
materials, and organic micro and nanomaterials. All these differences among and within
different classes of nanoparticles affect their suitability for specific antimicrobial applica-
tions. In addition, in this review, the effect of nanoparticle characteristics, such as size, bricks
content, and shape, on the overall antibacterial efficiency of coatings has been analyzed.
New coating materials and their applications in construction, textiles, food packaging, and
healthcare were highlighted in this review. The review concludes with a discussion of the
problems now facing this field of study, its prospects for the future, and possible future
directions.

2. Types of Nanoparticles
There are four types of NPs: clay, organic, inorganic, and carbon-based NPs [7]. Table 1

comprehensively compares various NPs, detailing their key properties, antimicrobial
mechanisms, synthesis methods, applications, advantages, and limitations.

Table 1. Summary table of different types of NPs.

Type of
Nanoparticle Key Properties Antimicrobial

Mechanisms
Synthesis
Methods

Examples of
Applications Advantages Limitations References

Chitosan NPs
(CNPs)

Biodegradable,
non-toxic

Electrostatic
interactions,

nutrient
binding

Ionic gelation,
emulsion

crosslinking

Food
packaging,

wound
dressings

Biocompatibility,
natural

antimicrobial

Limited stability
in specific

environments
[13]

Silver NPs
(AgNPs)

High surface
area, ion
release,

conductivity

Membrane
disruption,

enzyme
inhibition

Chemical
reduction,

green synthesis

Medical
devices,
wound

dressings,
textiles

Broad-spectrum
activity, low

concentrations

Potential
cytotoxicity,

high cost
[14–16]

Copper NPs
(CuNPs)

Conductive,
catalytic

Membrane
damage,

oxidative stress

Chemical
reduction,
thermal

decomposition

Antimicrobial
coatings,

paints, fabrics

Cost-effective,
strong

antibacterial
properties

Oxidation and
stability issues [17–19]

Zinc Oxide
NPs

(ZnO-NPs)

Photocatalytic,
UV protection

ROS
generation,
membrane

damage

Sol–gel,
hydrothermal,
vapor-phase

Sunscreens,
coatings, food

packaging

Effective under
UV, low toxicity

Limited activity
in the dark,
aggregation

[20–22]
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Table 1. Cont.

Type of
Nanoparticle Key Properties Antimicrobial

Mechanisms
Synthesis
Methods

Examples of
Applications Advantages Limitations References

Titanium
Dioxide NPs
(TiO2-NPs)

Photocatalytic,
UV-protective

ROS
generation,

photocatalysis

Sol–gel,
hydrothermal,
precipitation

Coatings,
self-cleaning

surfaces

Effective under
UV light, stable

Limited activity
without UV,

potential
photocatalytic

toxicity

[23,24]

Silica NPs
(SiO2-NPs)

High surface
area, function-

alizable

Physical
barrier, ROS
generation

Stöber
method,
sol–gel

Coatings,
composites,
biomedical

applications

Chemical
versatility, ease

of
functionalization

Limited direct
antimicrobial
activity often
requires func-
tionalization

[25]

Copper Oxide
NPs

(CuO-NPs)

Photocatalytic,
high stability

ROS
generation,
membrane

damage

Sol–gel,
precipitation,

thermal
decomposition

Paints,
coatings,
textiles

Strong
antimicrobial

properties,
cost-effective

Potential
toxicity, dark
brown color

limiting esthetic
applications

[26]

Graphene
Oxide (GO)

Large surface
area, high

conductivity

Physical
disruption,

oxidative stress

Hummers
method,
thermal

exfoliation

Water
treatment,
coatings,

electronics

High efficiency,
stability

Potential
environmental

impact, cost
[27,28]

Carbon
Nanotubes

(CNTs)

High strength,
electrical

properties

Physical
damage to cell

walls, ROS
generation

Arc discharge,
chemical vapor

deposition

Biosensors,
filtration
systems

High mechanical
properties,

effective at low
concentrations

High cost,
potential
toxicity

[29–31]

2.1. Clay and Organic NPs

In sheets or cylindrical nanotubes, natural clays like montmorillonite and halloysite
are frequently employed as nanoclays [32]. They have minerals that are fine-grained and
have high mechanical characteristics. Due to their biocompatibility, biodegradability, and
distinctive mechanical properties, biopolymer nanofibrils like cellulose, collagen, and
chitin are also frequently used [33,34]. Nanocrystalline cellulose, also known as cellulose
nanocrystals, nano-fibrillated cellulose, and bacterial nanocellulose are the three main types
of nanocellulose [35,36]. Due to their substantial surface area, biocompatibility, lack of
toxicity, and capacity for forming films, chitosan and chitin NPs are desirable NPs. Chitosan
NPs, however, encounter stability and solubility issues that structural alterations and
optimization can resolve [37–39]. These organic NPs encapsulate hydrophobic medicines
in various biopolymer films.

2.2. Inorganic NPs

There are two types of inorganic NPs: metal-based and metal oxide-based.

2.2.1. Metal-Based NPs

CuNPs possess antimicrobial properties due to their ability to release copper ions,
which have a high redox potential capable of damaging microbial cell components. These
NPs can be utilized for antimicrobial activity [40,41].

AgNPs are widely used for potent antimicrobial applications. Typically synthesized
through chemical reduction or green synthesis methods, AgNPs release silver ions that
interact with microbial cell membranes, causing structural damage and disrupting vital
enzymatic functions [16]. They are commonly incorporated into medical device coatings to
prevent biofilm formation and in textiles for durable antimicrobial treatments [15]. A study
by Rai et al. demonstrated their effective use in wound dressings, significantly reducing
infection rates [14]. AgNPs have garnered attention in wound healing applications due to
their favorable physicochemical and biological properties [42]. They are also used in food
packaging and medical applications [43–45].
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Selenium NPs offer reduced toxicity compared to elemental selenium. They can
serve as a drug delivery platform, targeting specific destinations within the body [46–48].
Gold NPs (AuNPs) have been used in various applications, including treating gum dis-
orders, dental caries, tissue engineering, dental implantology, and cancer diagnostics.
These applications are possible due to the unique nanostructures, high surface area, and
biocompatibility of AuNPs [49].

2.2.2. Metal Oxide NPs

Metal oxide NPs [50], including ZnO [51–54], TiO2 [55–57], silica [58,59], aluminum
oxide [60,61], iron oxide [62], and copper oxide [63], are incorporated into polymer films as
active NPs. Fe3O4 NPs exhibited strong antibacterial activity against Gram-positive and
Gram-negative bacteria [64]. These metal-based NPs demonstrate diverse properties and
find applications in antimicrobial activity, wound healing, drug delivery, and diagnostics.
TiO2 and ZnO NPs exhibit photocatalytic antibacterial properties. When exposed to UV
light, they generate reactive oxygen species (ROS) that have antibacterial effects [7].

NPs of CuO not only have antimicrobial, antibacterial, and antioxidant activity but also
serve as a UV blocker [65]. Indeed, metal oxide NPs offer a variety of applications, including
being able to enhance polymer film characteristics and add antibacterial, microbial enemy-
smashing functions and UV light-blocking capability. These metal oxide NPs are utilized in
polymer films to improve their properties and provide additional functionalities such as
antibacterial and UV-blocking effects.

ZnO NPs are known for their photocatalytic properties, which facilitate the generation
of ROS under UV light, leading to microbial inactivation through oxidative stress. These are
synthesized via methods like sol–gel, hydrothermal, and vapor-phase techniques. ZnO-NPs
are used in coatings for medical instruments and food packaging to enhance antimicrobial
protection [21,22]. For instance, Raghupathi et al. highlighted their efficacy in antimicrobial
coatings for surgical masks, providing enhanced protection against pathogens [20].

2.3. Carbon NPs

The distinctive characteristics of carbon dots (CDs), including their low cost, high
water solubility, bioactivity, minimal danger, and light absorption, have made them a
viable nanomaterial for antimicrobial food packaging [66]. CDs break down and condense
genomic DNA through cytoplasmic leakage, the disintegration of cell structures, and
generating ROS [67]. Alas et al. [68] used solvent casting to embed CDs in PVA, resulting in
flexible films with potent fluorescence and UV-blocking properties. Together with notable
antibacterial activity against both Gram-positive and Gram-negative bacteria, enhanced
thermal characteristics and modest antioxidant and metal-chelating properties were all
displayed by the CD/PVA films.

Ezati et al. [69] synthesized pectin/gelatin-based bioactive food packaging films using
sulfur-functionalized turmeric-derived CDs. The CD-added coatings enhanced mechanical
qualities, water vapor permeability, and hydrophobicity while offering strong UV protection
without noticeably changing transparency. Sulfur functionalized turmeric-derived -CD-
containing films showed strong antibacterial activity against L. monocytogenes and E. coli,
indicating their suitability for active food packaging to improve food safety and prolong
shelf life.

In order to enhance the preservation quality and suppress microbes in freshly chopped
cucumber, Fan et al. [70] added CDs derived from kelp to a chitosan coating solution
at different CD concentrations (0%, 1.5%, 3%, and 4.5%). The findings demonstrated
that CD/CH coatings improved the inhibitory zones against E. coli and S. aureus as CD
concentrations increased. During storage, the cucumbers with the 4.5% CDs/CH coating
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had less water mobility, lessened weight loss, less firmness loss, and less ascorbic acid and
flavor degradation.

Graphene-based materials, including graphene and graphene oxide (GO), have gained
attention for their excellent mechanical properties, substantial electron mobility, and larger
surface area than carbon-based nanomaterials [71,72]. GO is a promising nanoparticle due
to its reduced tendency to agglomerate [73]. Monolayer graphene’s remarkable properties,
such as its high Young’s modulus (~1000 GPa), high fracture strength (~125 GPa), excellent
electrical and thermal conductivity (~100 S/cm and ~5000 W/mK, respectively), rapid
charge carrier mobility (~200,000 cm2/Vs), and large specific surface area (theoretically
calculated value, 2630 m2/g), are due to its distinctive structure and geometry [71]. GO
exhibits antimicrobial activity primarily through physical disruption of microbial mem-
branes and oxidative stress [28]. Synthesized using methods like the Hummers method
and thermal exfoliation, GO has applications in water treatment and electronic coatings.
Its large surface area and high conductivity make it suitable for diverse antimicrobial
applications [74]. Research by Akhavan and Ghaderi demonstrated its effectiveness in
antimicrobial coatings for water purification systems [27].

3. NPs with Antifungal Activity
AgNPs, ZnO NPs, and CuO NPs have been shown to be antifungal [75,76]. These

NPs can attack the fungal cell wall, disrupt its activities, and by generating reactive oxygen
species are similarly able to thwart bacteria. Studies have shown that NPs like AgNPs
can inhibit fungal species such as Candida and Aspergillus by disrupting their cell mem-
branes and metabolic pathways. Antifungal activity of (acrylamide/chitosan)-AgNPs
hydrogel nanocomposites showed efficient microbial inhibition activity against C. albi-
cans [77]. Pinchuk et al. [78] used a microwave-assisted hydrothermal process to create
hydroxyapatite doped with silver and silicate-substituted hydroxyapatite doped with Ag-
NPs. The antifungal activity of HAp doped with 1 mol% Ag+ ions and Si-HAp doped with
1 mol% Ag+ ions nanosized powders was shown to be stronger against reference strains of
C. albicans, C. kruzei, and C. tropicalis.

Adding antifungal NPs to coatings helps to keep the product from growing mold.
This can be especially important in food packaging, where the quality of the products must
be maintained for longer periods [79,80]. It was found that the antifungal activity of these
coatings was beneficial to preserving the quality of the goods packaged and increased their
safety for consumption.

Microwave solvothermal synthesis (MSS) was used to create ZnO-Ag nanoparticles in
weight percentages of 1% and 2.5% [81]. When examined utilizing minimum inhibitory
concentration (MIC) analysis, the antifungal activity of 1% Ag nanoparticles and the
PMMA-2.5% (ZnO-1% Ag) nanocomposite against Candida albicans was demonstrated.
Haiouani [82] used extracts from Thymus capitatus and cloves to synthesize hexagonal
ZnO NPs. The ZnO NPs’ antibacterial and antioxidant qualities were greatly enhanced
by the application of both extracts. With a 35 mm inhibitory zone at the same dose, they
demonstrated strong antifungal efficacy against Candida albicans.

Using a microdilution approach, the antifungal activity of silver and gold nanoparticles
made from P. harmala leaf extracts against C. albicon, A. niger, and Penicillium notatum is
examined [83]. The produced gold nanoparticle of P. harmala leaf extracts showed a zone of
inhibition of 31, 26, and 28 mm, respectively. Likewise, the zones of inhibition for silver
nanoparticles were 26, 30, and 36 mm, respectively. Using Feijoa sellowiana, Fazli et al. [84]
examined the antifungal effectiveness of toothpaste for kids that contains biosynthesized
silver nanoparticles (AgNPs). The antifungal efficacy of the toothpaste containing AgNPs
against Candida albicans was significantly higher (p < 0.014).
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Moreover, incorporating antifungal NPs helps maintain the coatings’ structural and
functional integrity by preventing fungal-induced degradation.

4. Techniques for Incorporating NPs into Polymeric Coatings
Researchers use various techniques and technologies adapted from the chemical and

pharmaceutical industries to produce encapsulated ingredients. The applications of NPs in
a biopolymer matrix are shown in Figure 1. Cheap inorganic materials improve the qualities
of composites and polymers. Polymer-assisted manufacturing is an efficient method for
creating NPs, which uses forces to keep NPs stable. Making nanocomposites involves
dispersion in a polymeric matrix utilizing techniques like melt intercalation and sol–gel
technology [85].
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4.1. Solvent-Assisted Deposition of Polymer Coatings
4.1.1. Solvent Casting

The solvent casting method is a widely used method for the preparation of films
containing nanocomposite scaffolds. It has several benefits including low cost and less
preparation time. This method works on the principle that the polymer gets dissolved in
the solvent that contains finely distributed salt particles; then the solution is placed into
a predefined 3D mold. After the evaporation of the solvent, a matrix with uniformly de-
posited salt particles is formed. The matrix is then dipped in water so that salt particles are
leached out creating uniform pores in which the desired NPs or cells can be filled [86]. This
technique works well for making coatings and thin films. Only polymers that are soluble
in volatile solvents can be used with this approach. Tissue scaffolds, medication delivery
systems, protective coatings, and other applications are among its many uses [87–90].

4.1.2. Spray Drying

Spray drying is another technique that involves atomizing a polymer solution con-
taining dispersed NPs into tiny droplets [91]. These droplets dry into a fine powder with
evenly distributed NPs embedded in the polymer matrix in a heated chamber. There are
two parts to this method: spraying and drying [92]. Since this approach requires exposure
to high temperatures for a shorter period than flash drying, it is also employed for drying
from solutions or suspensions containing thermosensitive material [93]. The method is
suitable for temperature-sensitive materials due to rapid drying. The method has several
applications including in the food industry and drug delivery system. The method is
limited to low-viscosity polymer solutions. A popular technique for creating a range of
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regulated particle sizes in food and cosmetics applications as well as pharmaceuticals is
spray drying. Agglomerated powders with cohesive properties, such as flowable particles,
reconstitution behavior, bulk density, and mechanical stability, can be produced by combin-
ing formulation and spray-drying conditions. It is a method for creating nanolipid powders
that is both scalable and profitable. The stability, encapsulation effectiveness, shape, and
particle size of nanolipid powders are all significantly impacted by this technique [94–96].

4.2. In Situ Polymerization
4.2.1. Bulk Polymerization

The process that uses solution polymerization is called bulk polymerization. To obtain
tiny particles, the resultant bulk polymer is mechanically ground after polymerization.
To acquire the desired particle size, severing is conducted. The monomer undergoes
internal bulk polymerization. Additives like initiator and transfer agents (RAFT agents)
work as catalysts for the process when heat or light is applied. The molecular weight
distribution of the polymer produced by this process can be readily altered by using a
chain transfer agent, despite the fact that the polymer’s molecular mass distribution is
typically not uniform. This method is commonly used for producing thermosetting resins,
fiber-reinforced composites, and high-performance materials, where high particle content
and uniform distribution are essential [97].

4.2.2. Solvent-Assisted Polymerization

Solution polymerization is a technique in which monomers use a solvent as a heat
sink. The selected solvent must avoid chain transfer reactions that may limit the growth of
the polymer. The monomer, initiator, and resulting polymer should all be soluble in the
selected solvent or solvent blend. In this technique, after the evaporation of the solvent
composite is produced [98]. The method has reduced the risk of uncontrolled reactions.
The method is commonly used to make adhesives and coatings [99,100]. However, the
method is limited due to its environmental concerns regarding solvent usage.

4.2.3. Emulsion Polymerization

Another technique to produce monodisperse polymer particles in a heterogeneous
medium is emulsion polymerization. This uses an emulsion of the monomer that is
generally dissolved in water in conjunction with an initiator that dissolves in water. The
polymerization of the emulsion results in a polymer matrix with irregular particles [101].
Due to its water-based dispersion, the technology is environmentally safe and scalable for
industrial use. Because of its controllable particle size, it has been utilized to produce latex
paints and adhesives [102]. The concentration of the emulsifier must be precisely controlled
for the process to work.

4.3. Spinning Processes
4.3.1. Melt Spinning

The most affordable spinning technique is melt spinning since it does not require
evaporating any solvent. This process is applied to easily melted polymers. A chamber is
filled with a viscous polymer melt that is applied through a spinneret with several holes.
After this, the surface of the fibers is then exposed to a blast of cold gas or air. The dispersed
particles or NPs become lodged in the polymer matrix, helping to preserve their even
distribution along the fiber’s length. This method has the ability to produce high-strength,
high-performance fibers [103]. For thermoplastic polymers, the technique is economical.
It is employed in the production of industrial fibers and textiles [104,105]. Because the
required NPs are melt-spun with the polymer, the process is more effective.



Polymers 2025, 17, 247 8 of 33

4.3.2. Electrospinning

Electrospinning is another method for 2D or 3D nanostructures. The principle of this
method includes charge polymeric solutions, containing metallic precursors or ceramic
particles with a high voltage, and the charged solution is drawn by an electric field from a
nozzle onto a collector to form desirable structures. This method can be applied to produce
composite materials used in sensors, tissue engineering, filtration, and energy storage ap-
plications [106]. It is a flexible, extensively researched, and often used method for creating
nanofibers with unique properties like a high surface area-to-volume ratio, high porosity,
adjustable characteristics, and an economical manufacturing procedure. Combining sev-
eral polymers with distinct functions in the solution phase is the most effective method
of creating nanofibers. The applied voltage, polymer flow rate, solution concentration,
molecular weight of the polymer, relative humidity, needle diameter, and tip-to-collector
distance were among the processing and polymer solution spinning parameters that af-
fected the morphology of electrospun fiber mats [107,108]. This method has applications in
the biomedical industry also [109].

4.3.3. Centrifugal Spinning

Centrifugal spinning is a productive method for creating nanofibers. Using this tech-
nique, the liquid raw material is shot out of the spinning head, and the jet stretches before
landing on the collector to create solidified nanofibers when the centrifugal force exceeds
the substance’s surface tension. This method’s ability to regulate the fiber’s diameter and
properties through spinning parameters is a significant advantage [110]. Polymers that
cannot be spun by electrospinning can be spun by centrifugal spinning [111]. It is an
inexpensive, simple-to-implement configuration with a minimal number of production pro-
cesses. When it comes to charge-absent polymers, centrifugal spinning eliminates the need
for a direct electric field, which would otherwise restrict options. Centrifugal spinning’s
capacity for industrial scale-up and high production rate may be its greatest advantage
over competing technologies [112].

4.4. Pad–Dry–Cure Method: Enhancing Nanoparticle Integration into Textiles

Textile substrates are filled with NPs using the pad–dry–cure process, which improves
a number of qualities as a result, including conductivity and antibacterial activity. Using
this method, iron and zinc oxide NPs have been successfully incorporated into cotton
textiles and fibers, producing functionalized textiles with antibacterial and magnetic qual-
ities [113–116]. Although the technique increases surface functionality, it is restricted to
particular substrate materials and necessitates close process control. This method has
several applications in textile industries [117].

4.5. Exfoliation–Adsorption: Creating Ordered Nanocomposite Structures

The exfoliation–adsorption method includes dispersing single layers of stacked particle
materials in a polymer solution. This method decreases the gas diffusion rates in polymeric
coatings. This technique is especially helpful for forming multi-layered structures that
greatly improve the gas barrier qualities of coatings [118,119]. The process is complicated
and demands exact control over exfoliation and adsorption, but the benefits include the
creation of highly ordered structures and improved barrier qualities.

5. Antimicrobial Mechanisms of Nanomaterials
Nanomaterials have emerged as promising antimicrobial agents due to their unique

physicochemical properties at the nanoscale. This section discusses the diverse antimicro-
bial mechanisms exhibited by various nanomaterials. NPs offer a variety of antibacterial
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activity mechanisms, including physical impairment, photocatalytic effects, oxidative stress,
lipid extraction, wrapping isolation, and synergistic effects when combined with other
antibacterial materials [120]. Several antimicrobial mechanisms are shown in Figure 2
by carbon nanomaterials. These nanomaterials leverage different mechanisms to combat
bacterial cells, as described in the following subsections.
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5.1. Reactive Oxygen Species (ROS) Generation

Reactive oxygen species (ROS) production is one of nanomaterials’ primary antibacte-
rial mechanisms. Some nanomaterials, such as AgNPs and ZnO NPs, can produce ROS
when they come into contact with bacterial cells [122,123]. These organisms cause oxidative
stress in the bacterial cells, which harms the lipids, proteins, and nucleic acids that make
up the cells [124]. AgNPs’ positive surface charge makes it easier for them to attach to
negatively charged bacterial cell walls, which in turn causes the formation of ROS and
stops microbial development [125,126]. In addition to producing ROS, ZnO NPs also
involved hydroxyl and singlet oxygen radicals, which enhanced their antifungal action
against Candida albicans [127,128]. Different mechanisms of antimicrobial activity of ZnO
are shown in Figure 3 [129]. The formation of ROS by nanomaterials can be influenced by
the size and surface characteristics of NPs; smaller NPs often produce more ROS [130,131].
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5.2. Ions Release

When certain metal-based nanomaterials come into contact with bacterial cells, they
can release metal ions, which show antibacterial properties [132]. These ions have the ability
to directly interact with the functional groups of nucleic acids and proteins, changing their
structure and interfering with important biological functions. By releasing silver and
palladium ions, respectively, silver nanowires and palladium nanolayers demonstrate
antibacterial capabilities [133].

5.3. Cellular Penetration and Membrane Disruption of NPs

By changing the cell membrane’s permeability and integrity, nanomaterials can physi-
cally penetrate bacterial cells using this method, as actually carried out [134]. NPs, bound
to the cell surface, change the negative charge of the cell wall and cause depolarization;
such ruptures are often achieved in this way. Thus, the cell wall becomes porous, allowing
the NPs to enter and destroy its integrity.

Cell death may result from this, along with cell wall collapse and component leak-
ing [135].

5.4. Nano-Knife Mechanism of Graphene-Based Materials

The “nano-knife” mechanism is a special antibacterial mechanism displayed by
graphene-based materials (GMs), such as graphene oxide and graphene nanosheets [136,137].
These substances have sharp nanoscale edges that can pierce and damage bacterial cell
membranes like real blades would. The cytoplasmic contents of bacterial cells, such as
DNA or RNA, may spill out when GMs engage with the cells because of their sharp edges’
ease of puncturing and slicing through the membrane. Cell death results from this physical
damage to the cell membrane. The angle and orientation of the GMs affect this mechanism’s
effectiveness; perpendicular edges penetrate the cell membrane more readily than parallel
ones [136,137].

6. Effects of NPs on Coating Properties
The integrity of polymer films in packaging applications depends on their mechanical

characteristics, such as tensile strength and elongation at break [138]. The addition of
NPs can considerably affect polymer films’ mechanical characteristics. Due to their small
size and high specific surface area, NPs impact the film matrix’s interfacial strength and
dispersion [7].

The surface roughness of polymers can be considerably changed by adding nano-
particles. The addition of the functionalized SiO2 particles promotes additional hydropho-
bization of the surface and also produces a robust dual-size rough surface [139]. Nano-
materials can significantly increase the surface roughness and reactive surface area of
polymeric coatings, creating physical barriers that impede microbial adhesion. The high
surface area-to-volume ratio of NPs introduces nanoscale irregularities that disrupt the
surface architecture required for stable microbial attachment, thereby preventing biofilm
formation [140]. The increased roughness and high reactivity of the surface also enhance
the efficacy of antimicrobial action, making these coatings more effective in environments
where cleanliness and sterility are critical. AgNPs can increase hydrophilicity when added
to polyvinyl alcohol (PVA) films [141]; on the other hand, depending on how they are
functionalized and dispersed, other NPs, such as carbon nanotubes, may increase hy-
drophobicity [142]. The kind and quantity of NPs added to polymers can modify their
surface energy. Hydrophilic bacteria can adhere more readily to surfaces with higher
surface energy, whereas surfaces with lower surface energy can prevent such adherence.
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Under some circumstances, TiO2 NPs can raise the surface energy, increasing the surface’s
susceptibility to bacterial adhesion [143].

The concentration of NPs added has a significant influence on the mechanical prop-
erties of nanocomposites. However, many studies have shown that an addition of only
5% by weight of particles for nanocomposites is already enough to make the properties
of a polymer do better [144,145]. It has also been shown by several researchers that al-
though an increasing concentration of nanoparticles will enhance the modulus and tensile
load-bearing force of the nanocomposites, this is at the expense of their fracture elongation
rate [146]. Thus, the highly rigid NPs and their affinity for the polymer at the interface,
or strong interfacial interactions, are responsible for improving the nanocomposites’ me-
chanical and thermal properties. This results in a highly rigid nanocomposite material with
improved mechanical and thermal properties [1].

Through mechanisms like stress transmission and creating covalent and hydro-
gen bonds with the polymer matrix, NPs can improve the tensile strength of polymer
films [147,148]. Additionally, they can fill the open gaps between polymer chains, strength-
ening the matrix’s intermolecular attraction forces. It has been demonstrated that various
NPs, including cellulose nanocrystals, nanoclays, and graphene oxide, increase the tensile
strength of biopolymer films. However, with the addition of nanoparticles, such as in the
case of biopolymer film elongation breaking, the flexibility of these films will decrease [149].
Yet, because the formation of agglomerates, unevenly distributed ingredients, and loss of
mechanical properties are all possible once the NP amount has been reached to exceed
that level, the perfect concentration of them is important [150]. Moreover, the mechanical
properties of the resulting nanocomposite films are strongly determined by the type of
nanoparticle and the used biopolymer. Hydrogen bonding, interfacial interactions, and the
size and form of NPs have significant impacts.

A crucial functional characteristic of polymer films is water resistance, measured using
various criteria, including water solubility, swelling intensity, water content, and water
vapor permeability. It has been noted that polymer films lose some water solubility when
NPs are added. The particles’ ratio of dimensions and crystalline areas is responsible
for this decline. NPs with larger dimensions and crystalline areas tend to decrease the
water solubility of the films [151,152]. The type of NPs used also influences the solubility
of the film. NPs with very low solubility compared to the polymer chains can decrease
the hydrophilicity of the polymer matrix, resulting in a decrease in solubility [153]. The
use of NPs may reduce the water content of polymer films. The interaction between the
functional groups of the biopolymer chain and the NPs is considered the cause of this
phenomenon. As a result of the interaction between polymer chains and NPs, the matrix’s
accessible spaces may be reduced, which could lower the water content [151]. By reducing
water solubility and decreasing water content, the addition of NPs can enhance the water
resistance of polymer films. These properties are crucial for applications where water
resistance is desired, such as food packaging, coating materials, and barrier films.

Water vapor permeability is a critical property for films used in packaging, especially
for food products where moisture control is essential. The addition of NPs to polymer films
can affect their water vapor barrier properties. NPs, particularly impermeable ones, can
hinder water vapor diffusion through film by impeding the mobility of polymer chains and
creating a tortuous path [154].

However, the presence of NPs can decrease the permeability of water vapor which
provides a good opportunity for using them as materials that only need very short cure
times. Nevertheless, it is important to add that surpassing the critical concentration of NPs
may allow water vapor to permeate nanocomposite films. Films can have poor barrier
properties as they reach high levels of nanoparticle loading. Therefore, before a significant



Polymers 2025, 17, 247 12 of 33

negative effect on water vapor permeability occurs, the critical concentration refers to the
point when the benefits of introducing NPs and reducing their permeability are more than
canceled out. Therefore, carefully engineering and controlling the concentration of NPs
is a necessary requirement in order to achieve the barrier properties for water vapor that
are desired in nanocomposite films. In addition to modifying the physical and chemical
characteristics of the particle, modulating its concentration is also critical for realizing
performance-enhancing barrier materials without compromising performance.

By preventing the growth of bacteria, NPs boost the antimicrobial activity of polymer-
based films, which is crucial for guaranteeing food safety and extended storage stability.
NPs can exhibit bactericidal (killing) or bacteriostatic (inhibiting growth) effects on mi-
croorganisms, depending on their type and interaction with bacterial cells. Gram-negative
bacteria are generally more sensitive to NPs than Gram-positive bacteria due to differences
in their cell wall structure [7]. The specific interaction between NPs and bacterial cells can
vary depending on the characteristics of the NPs and the target microorganisms. Research
findings indicate that polymers coated with composites of NPs can sustain their antibac-
terial effectiveness for prolonged periods of time. ZnO NPs may show selective toxicity,
making them more effective against some bacterial strains than others; however, AgNPs
are very efficient against a wide range of bacteria and fungi [155–157].

Nanomaterials not only inhibit initial microbial adhesion but also disrupt the structure
of biofilms if microorganisms manage to adhere. The physical roughness and chemical
reactivity of nanomaterial-enhanced coatings prevent stable biofilm formation, which is
typically resistant to conventional cleaning and antimicrobial treatments [158]. For instance,
GO physically disrupts microbial cell membranes, while the reactive species generated by
TiO2 NPs and ZnO NPs can penetrate and kill microorganisms within biofilms, weakening
their structure and making them easier to remove [28]. Size and shape, surface and
interior properties of ZnO NPs can enhance the properties of the coatings in biofilm-related
infections as shown in Figure 4 [159].
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The physiological properties of NPs play a crucial role in their antimicrobial activity.
In antimicrobial activity, the size of NPs is a key factor, and the smaller they are, the
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better [160]. Smaller NPs have their own benefits. When they invade the microbial cells,
they can penetrate better. The result is that more ROS reach these cells more easily. Because
the dissolution rate is higher and they provide a larger surface-to-volume ratio—all of
these point toward their increased antimicrobial activities. However, there have been
cases in which larger NPs likewise have been successful as agents for killing bacteria
and other germs [161]. By appropriately adjusting their size, concentration, and other
physicochemical properties, desired antimicrobial activities can be achieved.

The shape of NPs also influences antimicrobial activity, with different shapes causing
variable cellular damage. For example, cuboidal-shaped NPs showed more antibacterial
activity than nanocubes and rods exhibited [162]. The roughness of NPs has been less
studied but has been found to affect bacterial protein adsorption and adhesion [163]. The
charge of NPs is another critical factor, with cationic NPs showing enhanced antimicrobial
activity due to their electrostatic attraction to negatively charged bacterial cell walls and
increased ROS production [164].

Using a simple one-pot method, Kang et al. [51] created cellulose nanocrystal/zinc
oxide (CNC/ZnO) nanohybrids with reinforcing and antibacterial capabilities. With increas-
ing CNC/ZnO nanoparticle concentration up to 10 weight percent, the Young’s modulus
and tensile strength of nanocomposite films gradually improved. The 10% CNC/ZnO
composites had E. coli and S. aureus inhibition rates above 88.8%. Yakdoumi et al. [164]
found that, in comparison to pure PLA, the Young’s modulus of PLA/TiO2-PDA-MWCNTs
and PLA/PDA-MWCNTs was enhanced by 161% and 113%, respectively, while the hard-
ness was increased by 815% and 79%, respectively. Additionally, modified MWCNTs
nanocomposite films showed higher antibacterial and antifungal activities than pure PLA.

In order to create nano-biocomposite films, Dairi et al. [44] combined plasticized cellu-
lose acetate/triethyl citrate (CA/TEC) with gelatin-modified montmorillonite nanoparticle,
AgNPs, and thymol (Th). The addition of clay slightly raised the glass transition tempera-
ture of CA. The only other factor that improved CA’s thermal stability was the addition
of clay. While adding more of both chemicals to films reduced their optical clarity, they
significantly improved their UV barrier properties. While Th started an antagonistic ef-
fect, the clay enhanced the tensile strength and oxygen barrier characteristics. With the
help of potato peel, Min et al. [165] created CDs, which significantly improved the gelatin
film’s water vapor permeability (by 28%) and hydrophobicity (by 9% and 13%) without
significantly altering its mechanical qualities.

The introduction of nanomaterials can alter the hydrophobic or hydrophilic nature
of the coating surface, impacting microbial adhesion. Nanomaterials that increase hy-
drophobicity can create surfaces that repel water and certain microorganisms that prefer
hydrophilic environments [166]. Conversely, hydrophilic surfaces can form a hydration
layer that prevents close contact between the surface and microorganisms, thereby reduc-
ing adhesion [167]. Positively charged surfaces can attract negatively charged microbial
cell walls, leading to cell rupture and death, while negatively charged surfaces can repel
similarly charged microbial cells, reducing adhesion.

Tammina and Rhim [168] incorporated nitrogen-doped CDs, derived from polyethy-
lene glycol, into a functional film made of carboxymethylcellulose (CMC) and agar. Adding
CDs, especially nitrogen-doped CDs, to CMC/agar-based films led to decreased mechan-
ical strength and hydrophobicity on the film surface. However, the water vapor barrier
properties remained the same, while the film exhibited enhanced UV blocking, antioxidant,
and antibacterial properties. Hosseinzadeh et al. [73] functionalized magnetic GO with
crystalline nanocellulose and zwitterionic polymers to improve the properties of mem-
branes. This functionalization resulted in membranes with a more hydrophilic surface and
lower roughness. The composite nanofiltration membrane, after modification, showed
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enhanced pure water flux, flux recovery ratio, and anti-fouling capability. The pure water
flux increased significantly at 2 bar pressure, from 61.18 LMH (liters per square meter hour)
in the original membrane to 123.3 LMH in the nanocomposite membrane. A major strength
of these studies is their demonstration of the potential being offered in functional films for
nanomaterials to modify their properties. Nitrogen-doped CDs in CMC/agar-based films
increased particular properties such as UVA and UVB resistance, anti-oxidation, and an-
tibacterial capabilities. Meanwhile nanocellulose-functionalized magnetic GO films formed
membranes and zwitterionic polymerizations with low antifouling rates, and higher water
flux than the original film. These findings are expected to open up a wealth of possibil-
ities for nanocomposite films, including applications in areas such as packaging, water
treatment, and membrane technology.

Koshy et al. [45] used soy protein isolate films embedded with AgNP to bind carbon
dots and chitin nanowhiskers. It was found that the combination of CNW and AgNP
considerably enhanced the mechanical strength and thermal stability of soy protein isolate
film and lowered the moisture content. Waterborne epoxy coatings can be made more
resistant to corrosion and fouling by adding effective NPs such as graphene oxide, amino-
silane functionalized ZnO quantum dots, and their nanohybrids (F-GO@ZnO QDs) [169].
The findings show that the steel substrates’ highest barrier and corrosion resistance could be
achieved using the uniformly dispersed F-GO@ZnO QDs in the coating’s fracture surface.
The nanocomposite coatings, on the other hand, have higher water contact angles and more
vital substrate adherence.

The hydrogels made by Cui et al. [170] using lignin nanoparticles as reinforcement
revealed excellent mechanical properties, including exceptional durability, long-term adhe-
siveness, and quick and effective self-healing. With good compression strength of 810 kPa
and elasticity (stretching to 13 times its initial length), NPs substantially enhanced the
hydrogels. The presence of metal ions, lignin, and Ag NPs gave the composite hydrogel
exceptional conductivity, ultraviolet-blocking capabilities, and significant antibacterial
activity. A green, high-performance soybean meal-based glue with an improved residual
ratio of 85.8% and a decreased moisture absorption of 16.5% was created by Cao et al. [171]
using a bioinspired mineral–organic hybridization method. Hydroxyapatite and the tannic
acid complex also reduced heat transfer and snuffed out oxygen-free radicals, improving
the adhesives’ ability to withstand flames.

7. Applications of Nanoparticle-Enhanced Coatings
NPs have several applications in sectors including healthcare, biomedical, textile, food

technology, etc. as shown in Figure 5.
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7.1. Healthcare Sector

ZnO is utilized in dentistry as a temporary filling material and as part of dental pastes.
Additionally, ZnO is an excellent medium in sun creams since it absorbs UV rays, is gentle
on the skin, and is quickly absorbed [172]. The application of ZnO as an antibacterial
ingredient in paints, mouthwashes, and surface coatings to inhibit biofilm establishment
has also been researched [155].

Due to their nano size, AuNPs have a higher surface area and can readily interact
with both inorganic and organic molecules. Because of this trait, they are possible agents
(anticaries) for avoiding tooth decay. According to Yi et al. [173], AuNPs also have strong
surface specificity and biocompatibility, making them suitable for application as osteogenic
agents in bone regeneration, as shown in Figure 6. On titanium implant surfaces, chitosan
gold NPs (Ch-AuNPs-PPARc) have been tested for their capacity to reduce inflamma-
tion and encourage osteoblast growth. According to Bhattarai et al. [174], these coated
implants function as gene-activated materials that improve biocompatibility by boosting
gene transfection and enabling protein and cell adhesion. Dental adhesives’ flexural and
tensile strength have also been proven to be improved by the inclusion of gold nanoparticle
particles [175].
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Graphene-based chitosan fibers can be employed directly in wound healing since
they are antimicrobial [72]. Due to their low toxic qualities, NaAlg/GO hydrogel fibers,
generated from their equivalent fibers, have future uses in wound-dressing materials [176].
Graphene-based materials, such as GO and G, have shown potential in various biomedical
applications, including wound healing, tissue engineering, and drug delivery [73]. These
materials possess unique properties that make them suitable for such applications, such
as excellent mechanical properties, large surface area, and biocompatibility. Hydrogels
crosslinked with silver (Ag) and graphene (G) mixtures have been investigated for their
potential in wound healing. In one study, hydrogels were crosslinked with Ag/G mixtures
using acrylic acid and N, N0-methylene bisacrylamide [177].

High swelling capacity, antimicrobial abilities, biocompatibility, and improved me-
chanical properties are all desired properties in a hydrogel possessing this Ag: G ratio
of 5:1. These properties are crucial for promoting faster wound healing and providing
an environment conducive to tissue regeneration. Hydrogels made from carbon-based
materials that incorporate graphene offer some advanced possibilities. The hydrogels can,
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therefore, acquire antimicrobial properties, better strength (toughness), and biocompati-
bility by adding silver and a small amount of graphene; all of these factors are vital for
effective wound healing.

PU/siloxane/GO networks demonstrated excellent antimicrobial effects and enhanced
wound-healing processes [178]. G-based nanocomposites in tissue engineering promoted
biocompatibility, mechanical stability, and favorable properties for bone regeneration; by
combining GO with chitosan, a 3D scaffold was created, which displayed excellent biocom-
patibility, enhanced mechanical characteristics, pore formation, and bioactivity [179].

Numerous biotechnological applications, including antibacterial paint and coating for
use in biomedical/hospital, domestic, and aerospace settings, can benefit from the regulated
release of Ag+ from polymer/metal nanocomposites [180]. Additionally, compared to
any constituent phase, the biopolymer chitosan/coated Ag nanocomposite showed more
excellent antibacterial activity against two strains of S. aureus [181]. Nanocomposite films
based on chitosan/poly(vinyl pyrrolidone) (PVP)/nanocellulose exhibited compatibility,
low cytotoxicity, and desirable properties for wound dressings [182]. Chitosan films
containing 5% chlorhexidine (CLX) on a montmorillonite (MMT) matrix showed non-
cytotoxicity, suggesting localized and prolonged CLX release for wound dressings [183].
Flexible nanocomposite carboxymethyl cellulose (CMC) hydrogel films with graphene
quantum dots and the anticancer drug doxorubicin demonstrated pH-sensitivity, prolonged
drug release, and low toxicity against blood cancer cells [184]. Chitosan films with SeNPs
produced electrically conductive cardiac patches, offering antioxidant activity, and potential
for cardiac tissue engineering [185].

In the Mg-Zn (MZ) alloy matrix, graphene nanoplatelets (GNPs) and carbon nanotubes
(CNTs) nanosystems were synthesized by Liu et al. [186] as reinforcements. The study
shows that MZ/GNPs + CNT composites can be used as a new generation of implants
and treatment materials for bone infections, including S. aureus and E. coli growth. PMMA
nanocomposites were synthesized using hydroxyapatite nanofibers and magnesium phos-
phate nanosheets. These materials possess not only mechanical characteristics but also
bioactivity, and cytocompatibility that are superior to traditional bone cement composites.
They could introduce a new paradigm in designing future bone cement composites due to
their superior bioactivity, mechanical characteristics, and cytocompatibility [187].

7.2. Food Packaging Industry

The development of anti-microbial food packaging materials with NPs brings addi-
tional benefits like mechanical properties, thermal stability, and the ability of materials to
keep pollutants, gasses, and moisture out. In particular, the packaging with embedded
NPs can even restrict many kinds of microbial growth into finished food products. This
prolongs their shelf life. By adding NPs to a biodegradable composite film, it becomes
possible to adjust packaging materials for good stretchability and fresh-keeping properties
while featuring other desirable qualities [188].

Due to their outstanding tensile strength and antibacterial qualities, graphene-based
materials, such as GO, show potential for food packaging applications [73]. Films used
for packaging are made lighter and more durable by adding graphene [189]. The environ-
mentally friendly process of creating chitosan/GO nanocomposites results in materials
with strong mechanical and barrier properties that prevent bacterial development while
retaining qualities needed for food packaging [190,191]. Polylactic acid (PLA)-based antimi-
crobial polymeric films with clove essential oil and GO show increased flexibility, oxygen
permeability, and antibacterial activity against S. aureus and E. coli [167]. Nanocomposite
hydrogels with improved thermostability, tensile strength, modulus, and antibacterial
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activity against various bacteria and fungi are made when mixed with chitosan hydrogel
and iron oxide-coated GO [192].

AgNPs were successfully added to an HPMC matrix to improve the material’s mechan-
ical, barrier, and antibacterial properties in food packaging [193]. The migration of silver in
a PLA/silver-based nano clay composite for food packaging was examined in a different
study, and it was found to be below permissible limits established by the European Food
Safety Agency (EFSA). The antibacterial activity of this composite supports its potential
use in food packaging to increase food quality and safety [194].

Shahabi et al. [195] studied the effect of halloysite nanotubes in soy protein iso-
lated/basil seed gum film activated with propolis. Following the encapsulation of propolis,
the antibacterial properties of the film were considerably improved. The developed films
demonstrated practical efficiency for use in food packaging systems. In order to create
high-performance and multifunctional CMC-based intelligent, active films, Tang et al. [196]
effectively synthesized cobalt-based metal–organic framework (Co-MOF) nanosheets with
ammonia-sensitive and antibacterial activities. Successfully developed CMC/Co-MOF
nanocomposite films have a wide range of potential uses in intelligent, active packaging.

In order to create multipurpose food packaging materials, Hu et al. [53] synthesized
biodegradable polyvinyl alcohol/starch (PVA/ST) films compatible with rod-like ZnO
NPs. The produced PVA/ST/ZnO films were tested to stop microbiological contamination
and increase the shelf life of freshly cut carrot slices. These findings suggested that the
highly transparent and multifunctional PVA/ST/ZnO nanocomposite films had a wide
range of potential applications in active food packaging. The R-cellulose/metallic NP
hybrids demonstrated intense antibacterial activity against E. coli and L. monocytogenes.
They were synthesized by Shankar et al. [197] as antimicrobial hybrid nanomaterials
of Ag, CuO, or ZnO NPs during the regeneration of cellulose from cotton linter and
microcrystalline cellulose.

High antioxidants (DPPH 12.7% and ABTS 67%) and robust antibacterial action against
damaged cells were demonstrated by nitrogen-doped carbon dots. E. coli and L. monocyto-
genes are anticipated to be incorporated into food packaging films to develop sustainable
multifunctional food packaging materials [168]. To meet the rising need for food safety,
Feng et al. [198] synthesized intelligent, active packaging films with ammonia-sensitive
performance to retain and monitor the freshness of meat meals. In order to create sodium
alginate (SA)-based films, cobalt-based metal–organic framework (Co-MOF) NPs with
ammonia-sensitive and antibacterial properties were first created. The PBST/MgO/Ag
nanocomposite films created by Zhang et al. [199] showed better antibacterial proper-
ties against Salmonella paratyphi B, E. coli, and S. aureus than poly(butylene succinate-co-
terephthalate) coatings. Experiments on cherry tomatoes demonstrated how well the films
may be preserved.

When used in a Fenugreek gum matrix, sodium Mt. halloysite NPs are effective as an
antibacterial in food packaging. They demonstrate antimicrobial activity against bacteria
such as L. monocytogenes, S. aureus, B. cereus, and E. coli. Additionally, they improve the
packaging materials’ tensile strength and oxygen barrier qualities, resulting in improved
food safety and quality [200]. Orange peel extract and Cloisite 30B are added to whey pro-
tein isolate–gelatin films to improve their tensile strength, flexibility, and optical qualities.
These movies specifically display excellent antibacterial efficacy against Gram-negative
bacteria like E. coli. They contribute to the safety and preservation of food by being suited
for long-term usage as antibacterial food packaging materials [201].

Liu et al. [186] synthesized graphene nanoplatelets (GNPs) and carbon nanotubes
(CNTs) and incorporated them into the Mg-Zn (MZ) alloy matrix as reinforcements.
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The original aim was to study how the incorporation of GNPs + CNTs affected the
infiltration and growth of bacteria—particularly S. aureus and E. coli. These remarkable
composites developed MZ/GNPs + CNTS and managed to reduce the infiltration and
growth of S. aureus and E. coli. These coatings can be used for an implant in the bone and
related treatments. Overall, the study supports the potential use of MZ/GNPs + CNT
composites as practical materials for implants and the treatment of bone infections due to
their ability to reduce bacterial infiltration and growth.

7.3. Textile Industry

ZnO nanostructures have gained much popularity as UV-resistant textile coatings.
They are beneficial for preventing unwanted stains on clothing because of their self-cleaning
and water-repellent properties. ZnO NPs have been produced utilizing various techniques,
including hydrothermal growth on cotton fabrics coated with SiO2 or deposition on cotton
and wool fabrics, to create UV-protective textiles [202].

The textile industry has developed uses for graphene–polymeric nanocomposites, with
advantages like enhanced antibacterial activity, mechanical strength, conductivity, flame
resistance, UV protection, and gas barrier qualities. Both Gram-positive and Gram-negative
bacteria have been significantly inhibited by fabrics containing GO or reduced graphene
oxide (rGO) [203]. With GO or rGO, cotton and cotton/nylon textiles showed high rates of
bacterial inhibition [204]. When synthetic fabrics like polyester were treated with rGO/Ag
nanocomposites or GO/PVA, bacterial growth was effectively inhibited [205].

A coating of alkoxy silanes, fluoropolymer, silane quaternary ammonium salt, and
silica NPs was applied to silk fabric using a potato dextrose agar medium. The coating’s
superhydrophobic properties further boosted the strong antibacterial properties of the
coated silk fabric. This can be utilized to make multipurpose coatings for the textile
sector [206]. A 100% antibacterial activity against E. coli was obtained when AgNP and
an AgNP/reduced graphene oxide nanocomposite were used on polyviscose cloth. The
antibacterial activity dropped to 90% after 12 regular washing cycles. The coating showed
rinse–reuse properties, making it suitable for medical textiles that must be used again and
washed [207].

Even at low ZnO concentrations, applying hybrid ZnO/Chitosan NPs on cotton fabric
demonstrated increased antibacterial activity against both S. aureus and E. coli.

The bactericidal action was perennial after repeated washings, all showing its long-
term effectiveness. Moreover, chitosan-based coatings have increased biocompatibility
which makes them ideal for the use in textile industry. Poly(diallyldimethylammonium
chloride)/Poly(methacrylic acid-capped silver NPs) on nylon and silk fibers can deliver
significantly reduced levels of S. aureus bacteria. On silk fiber, antibacterial activity was re-
duced by 80%. And on nylon fiber, its antimicrobial activity was reduced by 50%. Potential
uses for this coating include the creation of antibacterial fabrics and water sanitation [208].

7.4. Other Applications

Studies have been reported on using flexible, wearable, and self-powered photoelec-
tronic devices in communication, wearable electronics, healthcare, infrastructure monitor-
ing, alternative energy sources, and fire monitoring. Due to their non-toxic nature and
advantageous physical and chemical properties, tungstate groups coupled with biopoly-
mers, particularly chitosan, provide hope in this field. Different substrates can incorporate
these materials, including metal, glass, silicon, sapphire, flexible plastics, and polymers.
In order to build flexible optical sensors, a study used nanostructured barium tungstate
(BaWO4) particles as NPs in a chitosan biopolymer matrix [209]. The synthesis is shown in
Figure 7. No harmful solvents or surfactants were utilized during the drying process at
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room temperature, which produced the NPs by the co-precipitation method. The resulting
sensors demonstrated potential for numerous uses.
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The innovative, highly antifouling composite membranes were created using the
phase inversion procedure by mixing the antibacterial copper oxide (CuO) and strong
hydrophilic GO with poly (vinylidene fluoride) (PVDF). Notably, the membrane shows an
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effective antibacterial capability. The composite membranes showed remarkable antifouling
performance thanks to the hydrophilic and antibacterial membrane surface. They exhibit
enormous promise for wastewater treatment [210]. An elastomeric nanocomposite with
antibacterial and antifungal properties has been created. It comprises a rubber blend matrix
and Nanobent® ZR2 (a modified bentonite clay nanoparticle). They are sought-after in
biomedical engineering, medicine, and the food sector due to their strong antibacterial and
antifungal properties [65].

A fluorinated silica-coated hydroxylated multi-walled carbon nanotubes nanocom-
posite (F-MWCNTs-OH@SiO2) was disseminated in PAZ/N-PMI resin to manufacture the
composite coating samples. The antibacterial rate of the composite coating was found to be
>99.98% against S. aureus and E. coli. The mechanism of antimicrobial and anticorrosive
activity is shown in Figure 8. This study offers various potential applications for creating
superior maritime anti-corrosion and antifouling organic coatings [211].
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Figure 8. Schematic diagram of the antibacterial and anticorrosive mechanism of composite coating
(with permission) [211].

ZnO and multi-walled carbon nanotube (MWCNT) were used as dual NPs in a
polyethersulfone (PES) membrane that Pang et al. assessed for performance and antifouling
qualities. The membrane exhibits effective antifouling capabilities, lower relative flux
reduction (RFR), and notable antibacterial characteristics. The research’s practical uses
are primarily in river water recovery [212]. Ismail et al. created a brand-new quaternized
polydopamine-anchored reduced graphene oxide (QSiPD-rGO) nanohybrid. The hybrid
membranes demonstrated exceptional antibacterial activity (against E. coli) and excellent
fouling resistance. This has significant applications in wastewater treatment [53].

8. Challenges and Future Perspectives
8.1. Challenges

The broad range of physical and chemical properties of NPs in polymeric coatings ne-
cessitates standard test methods and better characterization. Standard evaluation methods
are required for better characterization and antibacterial efficacy, toxicity, and mechanical
properties. NPs in food technology must be assessed for toxicity to ensure safety. The
evaluation methods such as in vitro and in vivo studies, genotoxicity tests, and hemocom-
patibility tests are required to check the toxicity of the NPs in use. Oxygen and moisture
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permeability tests should be conducted to check the barrier properties. Thermal analysis
should be carried out to test the stability under high temperature and food storage condi-
tions. Leaching tests and abrasion resistance tests should be performed to test the stability
of these NPs in the textile industry.

Because of the complicated impacts of NP synthesis procedures, NP agglomeration,
NP confounding of routine microbiology assays, and interaction of NPs with cells and
media elements, determining NP toxicity and dosage for actively developing bacteria
is extremely difficult. According to Kadiyala et al. [213,214], individual NP mass can be
computed using the density of the NP material and the volume of the NP shape. A standard
model of NP toxicity toward bacterial cells might be created by disclosing the number of
beginning cells employed, the number of possible particles and NP aggregates exposed to
these cells, and the exposure duration. Since many NPs may combine or agglomerate and
are likely to produce protein coronas in the growth media, it can be difficult to report the
precise amount of NPs in contact with bacterial cells. These NPs’ solubility varies with time
and is a significant factor in their toxicity. Additionally, when evaluating the antibacterial
mechanism and dose-response of NPs, a number of aspects should be taken into account.
Variations in the amount of cell death or inhibition, the types of bacterial species used,
the initial number of cells exposed to NP, and the techniques used to prepare NPs and
their suspensions can cast doubt on the literature’s findings that the investigated NPs are
effective antibacterial agents. To check whether NPs are effective or not in accordance
with a standard toxicity evaluation, ongoing testing is required. In order to provide better
substitutes for antibiotics and disinfectants in biomedical applications, more research needs
to be carried out to better understand how NP works against bacteria.

The usage of nanotechnology in polymeric coatings has raised concerns from both
consumers and regulators. High production costs, strict safety regulations, and fears about
damage to human health and the environment are part of what stands in the way of
NP-enhanced coatings. Because nanocomposites often combine with tests, both oxidize
and get contaminated, though nanoparticle handling and processing continue to create
challenges. Because NPs often combine, oxidize, and become contaminated, handling
and processing nanocomposites still offers challenges. The adverse effects and biological
responses to NPs vary depending on their physical and chemical properties, as well as
experimental conditions.

When applied to coatings and nanomaterials, characterization techniques also have
significant limitations and difficulties. Because coatings have complex compositions, it
can occasionally be challenging to accurately identify the functional group by FTIR and
explain the overlapping peaks. Because of interference, volatile solvents can produce noise
and complex spectra. Environmental factors that affect coating stability and can produce
varying FTIR results for each batch are also taken into consideration [215,216]. Complexity
in the coatings even leads to poor diffraction patterns in XRD analysis. Rough surfaces
and non-uniform coatings can give poor diffraction data/patterns. The surface can reduce
the accuracy, scatter the peaks, and make it difficult to identify the data. Some NPs may
exhibit low crystallinity, which can give weak diffraction patterns that may hinder the
detection of crystalline phrases. Multilayer coatings contain additives, metal ions, NPs,
solvents, etc. which can give a complex background with noise [217–219]. In TEM and
SEM analysis, the use of a high-energy electron beam can distort the structure resulting in
alteration in the functionality of the NPs. Beam cam elevates the temperature, and causes
thermal degradation of the materials, especially in poorly conducting samples. Atomic
displacement can damage the crystalline structures of the NPS with low molecular weight.
This analysis can even cause sputtering which can result in loss of material and defect
formation. Sputtering can also interfere with the surface morphology as it targets the
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surface atoms. The coatings that are non-conducting can accumulate charge due to electron
beams which can result in poor imaging and analysis [220].

Improved characterization using standardized testing techniques is necessary to ascer-
tain the ultimate destiny of NPs and their potential detrimental or inflammatory impacts
on organisms. As a result, more reactive oxygen species are able to more readily enter
these cells. They appear to have stronger antibacterial properties because of their greater
surface-to-volume ratio and faster rate of breakdown. With the rapid development of
nanotechnology, it is important to consider any adverse effects associated with discharge
into the environment. It must be determined whether AuNPs will enter the bloodstream
through skin, inhalation, or ingestion after humans come into contact with them.

8.2. Problems Associated with the Usage of Nanoparticles

NPs pose a brand-new toxicological problem. The production of reactive oxygen
species, protein misfolding, membrane disruption, and direct physical harm are some of
the hypothesized mechanisms of toxicological damage that have been discovered. Nanopar-
ticles have the ability to directly or indirectly impact membrane stability, which can result
in cell death [221]. The toxic effect of ZnO and CuO nanoparticles and their factors are
shown in Figure 9.
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Li et al. [222] used the Comet, Pig, and Mouse Micronucleus assays to assess the
mutagenicity and clastogenicity of AgNPs with varying sizes and coatings. According to
the study, AgNPs made it to the testing tissues (liver for the Comet assay and bone marrow
for the mouse and Pig-a assays). AgNPs coated with silicon and PVP both caused oxidative
DNA damage in the liver of mice. After oral treatment, rats exposed to anatase TiO2 NPs
demonstrated that the particles might cause DNA double-strand breaks in bone marrow
cells [223].

The deposition of ultrafine particles in the human nose/oral region was measured by
Cheng et al. [224], who discovered that nasal deposition rose as human age decreased. It
was found that the outcomes matched predictions of turbulent diffusion deposition. In
adult human tracheobronchial airways, Cohen et al. [225] studied the deposition of 40 nm
particles and found that it was higher than what was predicted theoretically for laminar
flow. In some areas, deposition was twice as high as anticipated. It has been shown that
ultrafine nickel and cobalt can increase inflammation brought on by free radicals [226].
Studies showed that ultrafine particles of copper oxide and zinc oxide from coal combustors
and smelters had an impact on the lungs [227]. The action was amplified by the sulfur
oxide coating on the particles.

Choi et al. [228] showed that while the non-modified cadmium telluride quantum
dots caused lipid peroxidation in the cells, the toxicity of quantum dots was decreased



Polymers 2025, 17, 247 23 of 33

following surface modification with N-acetylcysteine. This affects biomedical applications
including medication delivery, imaging molecules, and even genes [229]. The presence
of the stabilizer CTAB, which even had a significant cytotoxic effect after washing, may
have contributed to the cytotoxicity of gold nanorods. According to Niidome et al. [230],
PEG-modified gold nanorods that had excess CTAB removed did not exhibit cytotoxicity.

The textile industry also faces some challenges when it comes to the use of NPs.
The stability of the nanomaterials existing in the textile depends on its fabric binding,
and the influences on the fabric in the processes including manufacturing, utilization,
and disposal/recycling, which could harm the textile material or the bonding between
the fibers and nanomaterials. This could happen due to mechanical stress, abrasion,
temperature changes, high temperatures, detergents, solvents, water, body fluids, and
ultraviolet radiation [231].

8.3. Future Perspectives

Subsequent developments in polymeric coatings will be focused on preventing
nanoparticle aggregation through the use of advanced stabilizing methods. NPs can
be maintained well-dispersed inside the polymer matrix through the application of disper-
sants, surface functionalization, and core–shell structure formation. To counteract contami-
nation and oxidation, future polymeric coatings will incorporate methods to increase the
stability of embedded NPs. One of the main goals for future polymeric coatings will be
developing safe and biocompatible compositions. Improvements in surface chemistry and
nanoparticle design will help to maintain high antibacterial activity while lowering cyto-
toxicity. Cytotoxicity will be reduced through advances in nanoparticle design and surface
chemistry, while high antibacterial activity is preserved. At present, the future of poly-
meric coatings is in issues relating to biodegradability, sustainable development, etc. New
types of environmentally friendly coatings can be produced by combining biodegradable
polymers with biogenic or natural NPs.

The successful realization of NP-enhanced polymeric coatings will hinge on the set-
ting up of a clear regulatory environment and sorting out problems relating to market
integration. Setting up safety standards in ministry—company cooperation will greatly
expedite approval and commercialization. Future studies may well concentrate on novel
coating technologies. These will be seen not only in smart coatings that react to environ-
mental states, for instance, but self-healing coatings which can repair themselves after being
damaged. NPs in the atomic and molecular planes offer a promising approach to disease
prevention and more advanced biological uses. At present, state-of-the-art technologies
can be combined with NPs to produce dynamic, flexible protection coatings that give birth
to a great many types of new applications across every industry.

9. Conclusions
Nanoparticle-doped antimicrobial and antifungal polymeric coatings have a wide

range of applications in healthcare, food packaging, textiles, and water treatment to address
microbial contamination and enhance durability. NPs enhance the functionality of these
polymeric coatings in terms of mechanical strength, thermal stability, and barrier properties,
in addition to their potent antimicrobial activity. Coatings doped with NPs follow different
mechanisms of action that include reactive oxygen species (ROS) generation, ion release,
physical disruption of microbial membranes, and biofilm inhibition. NPs such as Ag, Au,
Cu, CuO, ZnO, and carbene-based materials provide functionalities including UV resistance,
corrosion resistance, self-cleaning, and hydrophobic or hydrophilic surface modifications.

However, these NP-based polymeric coatings possess several challenges as well. Bet-
ter characterization and uniform test procedures are required due to the wide variety of
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NPs’ physical and chemical characteristics in polymeric coatings. For improved character-
ization and antibacterial activity, toxicity, and mechanical qualities, standard evaluation
techniques are needed. Problems with NP-enhanced coatings include high production
costs, stringent safety requirements, and environmental and human health. When applied
to coatings and nanomaterials, characterization techniques also have significant limitations
and difficulties. Future research should be focused on more eco-friendly solutions and
innovations, like self-healing and biodegradable materials, to enhance the functionality
of these coatings. Improved characterization is needed to determine the final fate of NPs
and their possible harmful or inflammatory effects on organisms, and standardized testing
methods are required.
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