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Abstract: With the rapid progression of industrialization, water pollution has emerged as
an increasingly critical issue, especially due to the release of organic dyes such as methy-
lene blue (MB), which poses serious threats to both the environment and human health.
Developing efficient photocatalysts to effectively degrade these pollutants is therefore
of paramount importance. In this work, titanium dioxide (TiO2) was modified with the
photosensitizer hemin and the hydroxyl-rich polymer polydopamine (PDA) to enhance its
photocatalytic degradation performance. Hemin and PDA function as photosensitizers,
extending the light absorption of TiO2 into the visible spectrum, reducing its bandgap en-
ergy, and effectively promoting separation of photogenerated electron–hole pairs through
conjugated structures. Additionally, the strong adhesion of PDA enabled the rapid transfer
and effective utilization of photogenerated electrons, while its abundant phenolic hydroxyls
increased MB adsorption on the photocatalyst’s surface. Experimental results demonstrated
a significant enhancement in photocatalytic activity, with the 1%PDA/3%hemin/TiO2 com-
posite achieving degradation rates of 91.79% under UV light and 71.53% under visible
light within 120 min, representing 2.22- and 2.05-fold increases compared to unmodified
TiO2, respectively. This research presents an effective modification approach and provides
important guidance for designing high-performance TiO2-based photocatalysts aimed at
environmental remediation.

Keywords: TiO2; photocatalytic degradation; hemin; PDA; methylene blue

1. Introduction
The swift growth of industrial activities has heavily polluted natural water sources

with organic dyes and heavy metals, creating serious risks to both human health and
ecosystems [1–5]. To address this pressing issue, various remediation methods, includ-
ing biodegradation and photocatalytic degradation, have been extensively studied [6–9].
Among these, photocatalytic degradation is considered the most effective due to its rapid
oxidation process, ease of reuse, and simple post-treatment requirements [10–13]. Titanium
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dioxide (TiO2) has emerged as a widely used photocatalyst because of its environmen-
tal friendliness, cost-effectiveness, and easy availability [14–16]. Beyond photocatalytic
degradation, TiO2 also exhibits promising potential in hydrogen generation, self-cleaning,
and sterilization applications [17,18]. Among its three crystalline forms including anatase,
rutile, and brookite, anatase TiO2 has attracted particular attention due to its high stability,
facile synthesis, and excellent photocatalytic activity [19–21]. The photocatalytic process of
TiO2 begins with light energy surpassing its bandgap, enabling electron transfer from the
valence band to the conduction band. This process leaves behind positively charged holes
in the valence band, which can react with water and oxygen to produce highly reactive
oxygen species (ROS) that degrade organic pollutants. However, anatase TiO2 has a wide
bandgap (approximately 3.2 eV) and is responsive only to ultraviolet (UV) light with a
wavelength of 387.5 nm. Since UV light accounts for merely 5% of the solar spectrum,
the practical application of TiO2 under natural sunlight is significantly restricted [22–24].
To overcome this limitation, numerous studies have focused on modifying TiO2, aiming
to expand its absorption range to the visible light region by adjusting its band structure,
introducing defects or doping heterogeneous elements, thereby improving the utilization of
sunlight and enhancing its photocatalytic performance [25–28]. One promising approach is
the use of organic photosensitizers, which can sensitize TiO2, making visible light activation
possible and aiding in the decomposition of various organic contaminants [29–33].

Apart from expanding the light absorption range, another effective strategy to improve
the photocatalytic activity of TiO2 is to ensure the rapid transfer and efficient consumption
of photogenerated electrons. To maximize efficiency, electrons must quickly migrate
to the photocatalyst surface for reactions with pollutants, and the photocatalyst should
strongly adsorb the target contaminants [34,35]. This strategy minimizes electron–hole
recombination while boosting energy utilization efficiency, ultimately improving the overall
photocatalytic performance. The combination of TiO2 with polymers has emerged as a
promising method to achieve these goals. Unlike inorganic compounds, polymers can form
covalent bonds, ionic bonds, and hydrogen bonds with photocatalysts, resulting in stronger
interfacial interactions [13,36,37]. These interactions facilitate rapid electron transfer across
the interface, enabling photogenerated electrons to reach the surface more efficiently, where
they can react with adsorbed pollutants.

Enhancing the photocatalytic performance of TiO2 can be efficiently achieved by mod-
ifying or doping it with a variety of organic or inorganic compounds. For example, Milad
Neshastehgar synthesized TiO2@Silane@SiO2 photocatalyst materials, which exhibited
improved absorption in the visible light region and efficient photocatalytic degradation
of methylene blue (MB) [38]. Similarly, Ricardo M. S. Sendão et al. developed carbon
dots-TiO2 composites, achieving a remarkable 367% increase in catalytic performance [39].
Substantial advancements have been achieved in enhancing the photocatalytic efficiency of
TiO2 via diverse modifications, particularly in enhancing its visible light absorption and
catalytic efficiency. However, further advancements are needed to optimize charge separa-
tion, strengthen interfacial interactions, and improve the adsorption of target pollutants,
especially under practical operating conditions.

In this study, titanium dioxide (TiO2) was modified by incorporating a photosensitizer,
hemin, and a hydroxyl-rich polymer, namely polydopamine (PDA), to enhance its photo-
catalytic degradation performance, particularly in the visible light region. Hemin can be
used as a photosensitizer and electron mediator, capturing visible light to enhance energy
transfer and facilitate the charge separation, which drives photocatalytic reactions. Mean-
while, PDA broadens TiO2’s light absorption range and facilitates faster electron transfer
to the surface, optimizing hole utilization. Additionally, the abundant phenolic hydroxyl
groups in PDA enhance the adsorption of methylene blue (MB), providing more reactive
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sites for photocatalytic degradation. By adjusting the mass fractions of PDA and hemin,
we optimized the performance of the photocatalyst, resulting in a significantly enhanced
degradation rate of MB under both ultraviolet and visible light for 1%PDA/3%hemin/TiO2.
Additionally, recycling experiments demonstrated the outstanding stability and reusability
of the synthesized composites, highlighting their potential for practical wastewater treat-
ment applications. This study highlights the potential of combining photosensitizers and
polymers to achieve synergistic enhancements in photocatalytic performance, providing
valuable insights for the development of high-performance TiO2-based photocatalysts.

2. Materials and Methods
2.1. Materials

Hemin was purchased from Jiuding Chemical (Shanghai) Science and Technology
Co., Ltd. (Shanghai, China). Other chemicals, including butyl titanate, methylene blue,
glacial acetic acid, sodium hydroxide, and deionized water, were obtained from Chengdu
Kelong Chemical Reagents Co., Ltd. (Chengdu, China). Absolute ethanol and dopamine hy-
drochloride were supplied by Shanghai Taitan Science and Technology Co., Ltd. (Shanghai,
China). All reagents were of analytical grade and used directly without further purification.
The chemical structures of hemin and dopamine hydrochloride are shown in Scheme 1.
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2.2. Preparation of Neat hemin/TiO2 Particles

To prepare TiO2 particles, 20 mL of butyl titanate was added to 70 mL of absolute
ethanol in a beaker. In a separate beaker, 8 mL of glacial acetic acid was mixed with a
solution of 70 mL of absolute ethanol and 20 mL of deionized water. The exception was that
3 wt% of hemin was dissolved in a mixture of absolute ethanol and deionized water before
being incorporated into the process. The glacial acetic acid solution was then gradually
added to the butyl titanate solution under continuous stirring. The resulting mixture was
stirred mechanically for 20 min and subsequently heated at 50 ◦C for another 20 min. A
gray gel was formed, which was collected and dried in an oven at 100 ◦C. Finally, the dried
gel was calcined at 260 ◦C for 2 h to obtain TiO2 powder.

2.3. Preparation of PDA/hemin/TiO2 Composites

To prepare PDA/TiO2, 1 g of TiO2 particles was dispersed in 50 mL of deionized
water using ultrasonic treatment for 30 min. The pH of the suspension was adjusted to 8.5
by adding a sodium hydroxide solution. Dopamine hydrochloride was then introduced
into the mixture in appropriate amounts, followed by vigorous stirring. The resulting
precipitates were collected by filtration and dried in a blast oven at 80 ◦C for 12 h to
obtain the powders. These powders were labeled as 0.1%PDA/TiO2, 0.5%PDA/TiO2,
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1%PDA/TiO2, 2%PDA/TiO2, and 3%PDA/TiO2, depending on the amount of dopamine
hydrochloride used. Note that, in our previous study, 3%hemin concentration achieved
the best balance between enhanced adsorption and avoiding agglomeration. Excess
hemin causes particle agglomeration, reducing surface area and performance. There-
fore, 3%hemin was selected as the optimal concentration for modification in this study [40].
PDA/3%hemin/TiO2 composite powder was prepared using the same method, with
the addition of 1% PDA and 3%hemin/TiO2. The as-prepared composite powders were
named as 0.1% PDA/3%hemin/TiO2, 0.5% PDA/3%hemin/TiO2, 1%PDA/3%hemin/TiO2,
2%PDA/3%hemin/TiO2, and 3%PDA/3%hemin/TiO2.

2.4. Characterization

The crystalline properties of the synthesized samples were analyzed using a high-
performance X-ray diffractometer (XRD, DX-2700, Dan Dong Haoyuan Instrument Co., Ltd.,
Dandong, China) with Cu Kα radiation. The XRD measurements were performed at 45 kV,
scanning at a speed of 0.01◦/s across a range of 10◦ to 80◦. Raman spectra were obtained
using an iHR320 spectrometer (HORIBA) with a 532 nm Argon-ion laser as the excitation
source. The surface morphology of the powders was examined via scanning electron
microscopy (SEM, Hitachi SU8010, Tokyo, Japan) at 10 kV under vacuum conditions, after
sputtering the samples with a thin layer of gold. UV–Vis diffuse reflectance spectra (DRS)
were recorded on a Lambda 1050 spectrophotometer (PerkinElmer, Waltham, MA, USA)
across the wavelength range of 200–800 nm, using BaSO4 as the reference material.

2.5. Photocatalytic Performance Tests

The photocatalytic degradation efficiency of the prepared samples was evaluated
using methylene blue (MB) as a model pollutant. In each test, 60 mL of MB solution and
200 mg of photocatalyst were added to a 100 mL beaker. The mixture was stirred in the dark
to establish adsorption equilibrium before exposure to light. During irradiation, 3–4 mL
of the suspension was withdrawn at regular intervals and centrifuged, and 1 mL of the
supernatant was analyzed to determine the MB concentration. The degradation efficiency
under both UV and visible light was tested using the same procedure.

UV irradiation experiments were conducted using a Jiancai ZW30S19W (Shenzhen
Anhongda Optoelectronics Technology Co., Ltd., Foshan, China) germicidal lamp (33 W)
emitting at a wavelength of 253.7 nm. The lamp, with dimensions of 894.6 mm in length and
19 mm in diameter, was positioned 10 cm above the sample to ensure uniform illumination.
For visible light irradiation, a Philips R7s (Philips Investment Co., Ltd., Shanghai, China)
tungsten iodide lamp (500 W) was employed, providing a peak wavelength near 799.5 nm,
with the same 10 cm distance maintained to the sample. The concentration of methylene
blue (MB) was monitored at 664 nm using UV-Vis spectrophotometry, and its adsorption
and degradation efficiencies were calculated based on the Lambert–Beer law, as shown in
Equation (1) [19,41].

A = lg
(

I0

I

)
= lg

(
1
T

)
= εbc (1)

where A is the absorbance, I0 is the initial light intensity, I is the transmitted light intensity,
T is the transmittance, ε is the molar absorption coefficient, b is the solution thickness,
and c is the MB concentration. Under fixed conditions, the solution concentration c is
directly proportional to its absorbance A. The degradation efficiency η was calculated using
Equation (2):

η =
c0 − c

c0
× 100% =

A0 − A
A0

100% (2)
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where c0 and c represent the initial and remaining MB concentration, respectively, and A0

and A denote the initial and resultant absorbance values, respectively.

3. Results
3.1. Crystallization Behavior of PDA/3%hemin/TiO2

The anatase phase of TiO2 is essential for high photocatalytic efficiency due to its
unique electronic structure, which enables efficient charge separation and significantly
enhances the generation of reactive oxygen species [42–44]. The XRD patterns of TiO2,
PDA/TiO2, and PDA/3%hemin/TiO2 composite powder are shown in Figure 1a. As
can be seen, all samples exhibit characteristic diffraction peaks of anatase TiO2 located at
2θ ≈ 25.3◦, corresponding to (101) plane, confirming the retention of the anatase phase
after modification. The peak intensity of PDA/TiO2 and PDA/3%hemin/TiO2 is slightly
reduced compared to pure TiO2, probably attributed to the fact the PDA cover the surface
of TiO2, thereby reducing the penetration of X-ray. Furthermore, results of the Raman
spectroscopy of the samples are presented in Figure 1b. As can be seen, the Raman spectra
of PDA/TiO2 and PDA/hemin/TiO2 closely resemble those of PDA within the range
of 500–2000 cm−1. Two characteristic bands of anatase TiO2 are observed at 154 cm−1

(Eg) and 196 cm−1 (Eg), while other low-intensity bands are overlapped by the strong
signal bands from PDA and hemin [21,45]. Notably, the bands at 687, 1279, and 1394 cm−1

observed in all samples are attributed to the C-H bonds, benzoquinone, and C=C bonds
within the benzene rings of PDA, respectively. Additionally, the broad multiple bands
in the 1500–4000 cm−1 range are associated with the absorption of hemin. These results
demonstrate the successful incorporation of PDA and hemin into TiO2 without disrupting
the anatase crystalline structure, which is consistent with the XRD results.

Polymers 2025, 17, x FOR PEER REVIEW 5 of 15 
 

 

𝜼 = 𝒄𝟎ି𝒄𝒄𝟎 × 𝟏𝟎𝟎% = 𝑨𝟎 − 𝑨𝑨𝟎 𝟏𝟎𝟎% (2)

where c0 and c represent the initial and remaining MB concentration, respectively, and A0 
and A denote the initial and resultant absorbance values, respectively. 

3. Results 
3.1. Crystallization Behavior of PDA/3% Hemin/TiO2 

The anatase phase of TiO2 is essential for high photocatalytic efficiency due to its 
unique electronic structure, which enables efficient charge separation and significantly 
enhances the generation of reactive oxygen species [42–44]. The XRD patterns of TiO2, 
PDA/TiO2, and PDA/3% hemin/TiO2 composite powder are shown in Figure 1a. As can be 
seen, all samples exhibit characteristic diffraction peaks of anatase TiO2 located at 2θ ≈ 
25.3°, corresponding to (101) plane, confirming the retention of the anatase phase after 
modification. The peak intensity of PDA/TiO2 and PDA/3% hemin/TiO2 is slightly reduced 
compared to pure TiO2, probably attributed to the fact the PDA cover the surface of TiO2, 
thereby reducing the penetration of X-ray. Furthermore, results of the Raman spectros-
copy of the samples are presented in Figure 1b. As can be seen, the Raman spectra of 
PDA/TiO2 and PDA/hemin/TiO2 closely resemble those of PDA within the range of 500–
2000 cm−1. Two characteristic bands of anatase TiO2 are observed at 154 cm−1 (Eg) and 196 
cm−1 (Eg), while other low-intensity bands are overlapped by the strong signal bands from 
PDA and hemin [21,45]. Notably, the bands at 687, 1279, and 1394 cm⁻¹ observed in all 
samples are attributed to the C-H bonds, benzoquinone, and C=C bonds within the ben-
zene rings of PDA, respectively. Additionally, the broad multiple bands in the 1500–4000 
cm⁻¹ range are associated with the absorption of hemin. These results demonstrate the 
successful incorporation of PDA and hemin into TiO2 without disrupting the anatase crys-
talline structure, which is consistent with the XRD results. 

 

Figure 1. (a) XRD patterns of TiO2, PDA/TiO2 and PDA/3% hemin/TiO2 powder samples. (b) Raman 
spectra of PDA, PDA/ TiO2 and PDA/3% hemin/TiO2 powder samples. 

3.2. Morphologies of PDA/3% Hemin/TiO2 

Figure 2 presents the digital images of TiO2 and its modified samples, illustrating the 
visible color change caused by PDA and hemin modifications. With the incorporation of 
PDA, PDA/TiO2 shows a yellow color which can be attributed to the benzoquinone and 
biphenyl conjugated structures in PDA, as shown in Scheme 2. The 3%hemin/TiO2 sample 
exhibits a dark gray color, due to the conjugated structure of hemin with a central Fe3+ ion, 
as shown in Scheme 1, significantly enhancing visible light absorption. Finally, the 
PDA/3%hemin/TiO2 composite powder shows a dark brown color due to the synergistic 

Figure 1. (a) XRD patterns of TiO2, PDA/TiO2 and PDA/3%hemin/TiO2 powder samples. (b) Raman
spectra of PDA, PDA/TiO2 and PDA/3%hemin/TiO2 powder samples.

3.2. Morphologies of PDA/3%hemin/TiO2

Figure 2 presents the digital images of TiO2 and its modified samples, illustrating
the visible color change caused by PDA and hemin modifications. With the incorporation
of PDA, PDA/TiO2 shows a yellow color which can be attributed to the benzoquinone
and biphenyl conjugated structures in PDA, as shown in Scheme 2. The 3%hemin/TiO2

sample exhibits a dark gray color, due to the conjugated structure of hemin with a cen-
tral Fe3+ ion, as shown in Scheme 1, significantly enhancing visible light absorption. Fi-
nally, the PDA/3%hemin/TiO2 composite powder shows a dark brown color due to the
synergistic effect of PDA and hemin, which together further improve the visible light
absorption capacity.



Polymers 2025, 17, 311 6 of 15

Polymers 2025, 17, x FOR PEER REVIEW 6 of 15 
 

 

effect of PDA and hemin, which together further improve the visible light absorption ca-
pacity. 

 

Figure 2. Digital photos of TiO2 (a), PDA/TiO2 (b), 3% hemin/TiO2 (c) and PDA/3%hemin/TiO2 (d). 

 

Scheme 2. The crosslinking reaction of PDA. 

Figure 3 shows the SEM images of surface morphologies of PDA/TiO2 and PDA/3% 
hemin/TiO2. In both samples, the particles exhibit an irregular shape with sizes in the mi-
crometer range, as shown in Figure 3a, b. In addition, the surface of PDA/TiO2 appears 
relatively smooth, reflecting the uniform coating of PDA. In contrast, the surface of 
PDA/3%hemin/TiO2 exhibits noticeably increased roughness. The enhanced surface 
roughness could provide additional active sites for photocatalytic reactions, improving 
overall photocatalytic efficiency. 

 

Figure 2. Digital photos of TiO2 (a), PDA/TiO2 (b), 3%hemin/TiO2 (c) and PDA/3%hemin/TiO2 (d).

Polymers 2025, 17, x FOR PEER REVIEW 6 of 15 
 

 

effect of PDA and hemin, which together further improve the visible light absorption ca-
pacity. 

 

Figure 2. Digital photos of TiO2 (a), PDA/TiO2 (b), 3% hemin/TiO2 (c) and PDA/3%hemin/TiO2 (d). 

 

Scheme 2. The crosslinking reaction of PDA. 

Figure 3 shows the SEM images of surface morphologies of PDA/TiO2 and PDA/3% 
hemin/TiO2. In both samples, the particles exhibit an irregular shape with sizes in the mi-
crometer range, as shown in Figure 3a, b. In addition, the surface of PDA/TiO2 appears 
relatively smooth, reflecting the uniform coating of PDA. In contrast, the surface of 
PDA/3%hemin/TiO2 exhibits noticeably increased roughness. The enhanced surface 
roughness could provide additional active sites for photocatalytic reactions, improving 
overall photocatalytic efficiency. 

 

Scheme 2. The crosslinking reaction of PDA.

Figure 3 shows the SEM images of surface morphologies of PDA/TiO2 and PDA/3%hemin/TiO2.
In both samples, the particles exhibit an irregular shape with sizes in the micrometer range,
as shown in Figure 3a,b. In addition, the surface of PDA/TiO2 appears relatively smooth,
reflecting the uniform coating of PDA. In contrast, the surface of PDA/3%hemin/TiO2

exhibits noticeably increased roughness. The enhanced surface roughness could provide
additional active sites for photocatalytic reactions, improving overall photocatalytic effi-
ciency.
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Figure 4 shows the EDS spectra of various composite powders, and their correspond-
ing mass fraction of the element is presented in Table 1. In pure TiO2, the C content is
21.5%, while in PDA/TiO2, the C content decreases to 18.45% and the O content increases
significantly to 45.09%, indicating the formation of an oxygen-rich shell layer by PDA on
the TiO2 surface. For 3%hemin/TiO2, the C content further decreases to 8.12% and the
Ti content increases to 47.52%, suggesting that hemin modification exposes more TiO2

surfaces. In PDA/3%hemin/TiO2, the C content rises to 12.25% and the O content reaches
49.79%, indicating an additional PDA coating on the surface of 3%hemin/TiO2, forming a
multilayer structure with TiO2 as the core and PDA and hemin as the shell. This structure
not only increases the proportion of oxygen-containing groups on the surface but also
enhances interfacial interactions, benefiting to the photocatalytic degradation properties.
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area, and the navy blue color curve at the bottom of the peak represents the background.

Table 1. The mass fraction of the element in the sample.

Element TiO2 PDA/TiO2 3%Hemin/TiO2 PDA/3%Hemin/TiO2

C 21.5 18.45 8.12 12.25
O 36.44 45.09 44.35 49.79
Ti 42.06 36.46 47.52 37.96

3.3. Ultraviolet–Visible Scattering and Bandgap Energy

As shown in Figure 5a, pristine TiO2 exhibits strong absorption only in the ultraviolet
region, with a sharp cutoff at wavelengths above 400 nm, indicating its inherent limitation
of absorbing solely UV light. This behavior is consistent with its wide bandgap energy
and restricts its practical application under visible light. Upon modification with PDA, the
light absorption of PDA/TiO2 significantly increases across the entire measured spectrum,
particularly in the visible light range. This enhancement is attributed to the presence of PDA,
which contains conjugated benzoquinone and biphenyl structures capable of extending the
absorption edge into the visible region, as reflected in its darker color. Further incorporation
of hemin into PDA/TiO2 leads to a substantial improvement in visible light absorption.
This enhancement is due to the conjugated structure of hemin and its central Fe3+, which
collectively act as a photosensitizer to broaden the spectral response. The synergistic effect
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of PDA and heme endows PDA/3% heme/TiO2 composite with the highest absorbance
among all the samples, which is beneficial to the generation of photogenerated electron–
hole pairs under visible light irradiation. Figure 5b shows the Tauc plots derived from
diffuse reflectance spectra (DRS) data, which were further used to calculate the bandgap
energy of the samples based on the Kubelka–Munk equation.

(αhv)2 = A
(
hv − Eg

)n (3)

where α represents the absorption coefficient, h is the Planck’s constant, v is the optical
frequency, A is the constant, and Eg is the bandgap energy. For TiO2, n = 4, which is
consistent with its indirect bandgap nature [33,46,47]. For pristine TiO2, the bandgap
energy was determined to be 2.82 eV, consistent with its ultraviolet light absorption. In
contrast, the incorporation of PDA and hemin significantly reduced the bandgap energy to
0.90 eV for PDA/TiO2 and 0.70 eV for PDA/3%hemin/TiO2, respectively. This remarkable
reduction in Eg indicates that the modified photocatalysts can absorb light with lower
energy, thereby extending their usability into the visible light range. Such a remarkable
decrease in bandgap energy can be attributed to the large conjugated structures in both PDA
and hemin. These structures effectively act as photosensitizers, absorbing lower-energy
light and transferring the excitation energy to the TiO2 matrix. This process enhances the
separation and mobility of photogenerated electron–hole pairs on the TiO2 surface, which
is crucial for improving the photocatalytic efficiency.
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3.4. The Adsorption of Pollutants and Photocatalytic Degradation Properties

The adsorption properties of PDA/TiO2 and PDA/3%hemin/TiO2 composite pow-
der were evaluated, and the results are presented in Figure 6. The introduction of PDA
significantly enhances the adsorption affinity for MB, with the adsorption rate reaching a
maximum of 84.85% at 2 wt% PDA/TiO2, as presented in Figure 6a. This value is notably
higher than those reported for most TiO2 modified with inorganic compounds, highlighting
the superior adsorption capability endowed by PDA. The enhanced adsorption is attributed
to the ionic interactions between the phenolic hydroxyl groups of PDA and the cationic
nitrogen species in MB, as illustrated in Scheme 3, facilitating the effective adsorption of
MB onto the PDA-modified TiO2 surface. For the PDA/3% heme/TiO2 composite powders,
as shown in Figure 6b, the adsorption behavior shows a slightly different trend. The sample
reaches the highest adsorption rate of 79.1% at 1% PDA. However, further increase in PDA
instead results in a slight decrease in adsorption. This decrease may be due to the reduced
stability of the PDA/3% heme/TiO2 particles in solution, where excess PDA promotes
particle aggregation and precipitation. In addition, as observed in the SEM images, the
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relatively smooth surface of PDA/3% heme/TiO2 may reduce the active sites available for
MB adsorption, thereby limiting the overall efficiency.
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Figure 7 illustrates the photocatalytic degradation properties of TiO2, PDA/TiO2 and
PDA/3%hemin/TiO2 under UV irradiation. As shown in Figure 7a, the photocatalytic
degradation rate of PDA/TiO2 initially increases with the amount of PDA, reaching a maxi-
mum value of 76.54% after 120 min for 1%PDA/TiO2. This enhancement can be attributed
to three synergistic factors: (1) PDA functions as a photosensitizer, effectively narrowing
the bandgap energy of the composites and enhancing their UV light absorption; (2) the
abundant hydroxyl groups in PDA exhibit strong affinity for MB, promoting its adsorption
onto the composite surface; and (3) PDA ensures excellent interfacial adhesion, facilitating
the efficient transfer of photogenerated electrons to the catalyst surface, thereby extending
the catalyst’s service life and enabling it to maintain high MB degradation activity over
multiple cycles [48–51]. However, excessive PDA loading leads to significant particle
aggregation, reducing the available surface area, and limits contact between MB molecules
and the catalyst, resulting in a notable decrease in photocatalytic activity. Specifically,
when the PDA content was increased to 3%, the rates decreased significantly to 33.27%
and 65.39%, respectively, which can well be attributed to the agglomeration of PDA. A
similar trend was observed in the PDA/3%hemin/TiO2 system, as shown in Figure 7b.
The photocatalytic degradation rate peaks at 91.79% for 1%PDA/3%hemin/TiO2 after
120 min, which is 2.22 times higher than that of pristine TiO2. Such superior performance
is attributed to the combined effects of PDA and hemin. Hemin acts as an additional
photosensitizer, introducing a large conjugated structure that enhances visible light absorp-
tion and further facilitates electron transfer. Additionally, hemin provides active sites that
complement the photocatalytic processes driven by PDA. However, similar to PDA/TiO2,
excessive PDA and hemin loading beyond the optimal 1% results in aggregation and
reduced photocatalytic efficiency.
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Figure 7. Photocatalytic degradation properties of TiO2, PDA/TiO2 (a) and PDA/3%hemin/TiO2 (b)
under UV irradiation.

The photocatalytic degradation performance of TiO2, PDA/TiO2, and PDA/3%hemin/
TiO2 under visible light irradiation is shown in Figure 8. As depicted in Figure 8a,
1%PDA/TiO2 achieves the highest photocatalytic degradation rate of 63.55% after 120 min,
which is 1.83 times higher than that of pristine TiO2. Similarly, as shown in Figure 8b,
1%PDA/3%hemin/TiO2 exhibits the highest degradation rate of 71.53%, representing a
2.05-fold improvement compared to neat TiO2. These results highlight the significant role of
PDA and hemin in enhancing the visible-light-driven photocatalytic performance of TiO2.
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under visible light.

As shown in Figure 9, the PDA/3%hemin/TiO2 composite powder demonstrates ex-
cellent MB degradation efficiency, achieving a degradation rate comparable to or exceeding
that of several TiO2-based photocatalysts reported in recent studies [38,52–55]. This high-
lights the significant potential of our composite in advancing photocatalytic performance
under visible light conditions.

The enhancement mechanisms are proposed in Figure 10. The introduction of PDA
and hemin brings phenolic hydroxyl groups and Fe3+ into the system, which act as active
sites during photocatalysis. When visible light energy is absorbed, the catalyst surface
generates photogenerated electron–hole pairs, initiating photocatalytic activity. The holes
oxidize the phenolic hydroxyl groups into phenoxy radicals, which further react with
hydroxyl ions in water to produce highly reactive hydroxyl radicals, initiating the rapid
degradation of MB [56,57]. On the other hand, the photogenerated electrons reduce Fe3+

to Fe2+, which facilitates the reduction of dissolved oxygen to form superoxide radicals.
These superoxide anion radicals also contribute to the effective degradation of MB. When
comparing the degradation rates of the composite photocatalysts under UV and visible
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light irradiation, it is evident that the photocatalytic degradation rates under visible light
are significantly lower than those under UV light. This discrepancy is primarily due to
the higher intensity and energy of UV light, which can be more effectively utilized by
photocatalysts compared to visible light. Additionally, the reduced degradation efficiency
under visible light may also be attributed to the limited portion of visible light that can
be absorbed and converted by the composite photocatalyst, despite the modifications
introduced by PDA and hemin.
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Figure 11 presents the photocatalytic cycle experiments of PDA/TiO2 and PDA/3%he-
min/TiO2 under both UV and visible light. The results highlight the excellent reusability
and stability of the composite photocatalysts over multiple cycles of MB degradation. As
can be seen, both PDA/TiO2 and PDA/3%hemin/TiO2 exhibit consistent photocatalytic
performance across four cycles under both UV and visible light irradiation. Notably, no
significant decrease in degradation efficiency is observed, indicating that the structural
integrity and catalytic functionality of the composites remain intact after repeated use. This
stability can be attributed to the strong interfacial adhesion between PDA, hemin, and TiO2,
which minimizes catalyst leaching and aggregation during the reaction. The preservation of
photocatalytic performance across cycles is a crucial characteristic for practical applications,
as it ensures that the catalysts can be reused multiple times without significant loss of
efficiency, offering both economic and environmental benefits. The stability demonstrated
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in these experiments further confirms the potential of PDA/TiO2 and PDA/3%hemin/TiO2

as robust photocatalysts for long-term environmental remediation, providing an effective
and sustainable solution for wastewater treatment.
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Figure 11. Photocatalytic cycle experiments of PDA/TiO2 under ultraviolet light (a) and visible
light (c), and PDA/3%hemin/TiO2 under ultraviolet light (b) and visible light (d).

4. Conclusions
To summarize, we successfully modified TiO2 using the photosensitizer hemin and

the hydroxyl-rich polymer PDA in this work. The modification did not alter the crystalline
form of TiO2, ensuring the retention of its anatase phase. SEM results confirmed successful
PDA coating on the TiO2 surface, as evidenced by the additional roughness introduced
for the PDA/3%hemin/TiO2 sample. The incorporation of hemin and PDA expanded
the light absorption range into the visible region and significantly reduced the bandgap
energy, with PDA/TiO2 and PDA/3%hemin/TiO2 exhibiting bandgap energies of 0.90 eV
and 0.70 eV, respectively. Moreover, the strong adhesion provided by PDA facilitated the
rapid transfer of photogenerated electrons to the catalyst surface, enhancing the utilization
of holes, while the phenolic hydroxyls in PDA increased the adsorption of methylene
blue, further improving photocatalytic efficiency. As a result, when TiO2 was modified
with 3%hemin and 1% PDA, the degradation rate of methylene blue under both UV and
visible light doubled, reaching a degradation rate of 91.79% under UV light. This work
provides a promising modification strategy and valuable insights for the development of
high-performance TiO2-based photocatalysts for environmental applications.
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