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Abstract:

 We are motivated to compute delicate chemical vapor deposition (CVD) processes. Such processes are used to deposit thin films of metallic or ceramic materials, such as SiC or a mixture of SiC and TiC. For practical simulations and for studying the characteristics in the deposition area, we have to deal with delicate multiscale models. We propose a multiscale model based on two different software packages. The large scales are simulated with computational fluid dynamics (CFD) software based on the transportreaction model (or macroscopic model), and the small scales are simulated with ordinary differential equations (ODE) software based on the reactive precursor gas model (or microscopic model). Our contribution is to upscale the correlation of the underlying microscale species to the macroscopic model and reformulate the fast reaction model. We obtain a computable model and apply a standard CFD software code without losing the information of the fast processes. For the multiscale model, we present numerical results of a real-life deposition process.




Keywords:


numerical methods; CVD processes; regression method; iteration process; optimization; computable models




Classification: MSC:


35K25; 35K20; 74S10; 70G65








1. Introduction

In recent years, chemical vapor deposition (CVD) processes have received important applications to metal plates. Metallic or ceramic materials, such as SiC or a mixture of SiC and TiC, can be deposited in thin layers to substitute for expensive full metal plates. Our contributions are to apply such delicate multiscale models for simulating the CVD processes and reduce such models with respect to upscaling ideas to less complex and computable models (see [1]). We report the simulation results of a chemical vapor deposition (CVD) process. Such processes are applied to deposit thin films onto metallic or ceramic materials (see [2]). In the last few years, there has been much investigation of the optimization of such deposition processes. An example are thin films based on low temperature and low pressure processes with a mixture of standard applications to SiC and TiC (see [3]). We concentrate on deposing SiC films, which are important, but delicate to model and optimize with regard to obtaining a homogeneous deposition rate. Such homogeneous layers are important to achieve a stable nanolayer. We present a mixed model for the transport and kinetic processes of the CVD process with Tetramethylsilane as the precursor gas in a low temperature and low pressure plasma. We take into account the multiscale model of a large spatialtime-scale for the transport model and a small time-scale for the kinetic model of the CVD process. The plasma is modeled by an underlying quasi-equilibrium and neutral gas, which retards the precursor molecules in the kinetic model.

We use two software packages:


	The macroscopic model (a transportreaction model with systems of coupled partial and ordinary differential equations) is simulated by UG/RNT (see [4]).


	The microscopic model (a kinetic model with ordinary differential equations) is simulated by MATLAB (see [5]).




The present paper is organized as follows. In Section 1 and Section 2, we present the physical and mathematical model. Next, we simplify and reduce the original model to another model. In Section 3, we present the analytical and numerical methods that will be applied and the analysis of the coupled model equations. The numerical experiments are given in Section 4. In the conclusion, which is given in Section 5, we summarize our results.



2. Mathematical Model

In the following, the models are for the simulation of transport problems in the CVD apparatus. One can consider two scales:


	Macro-scale of transport and reactions of the continuous species (scale of the apparatus);


	Micro-scale of transport and reactions of the discrete particles (kinetic processes or scale of the atoms).




Here, we discuss the macro-scale and analytically embed the microscale of the reaction processes. We will discuss the following multiscale model:


	Reactiondiffusion equations (see [6] (far-field problems));


	Reaction equations that are embedded in the macroscale (see [7] (kinetic problems)).




We consider macroscopic problems based on small Knudsen numbers, [image: there is no content]. The Knudsen number (Kn) is the ratio of the mean free path λ to the typical domain size, L. As kinetic problems, we only consider the macroscopic chemical reaction between the clusters of species (see [7]). For a first overview of the apparatus, the full geometry (far-field) of the CVD apparatus is shown in Figure 1. A detailed graph with the dimensions of the apparatus is presented in Section 4.2.

Figure 1. Far field of the parallel chemical vapor deposition (CVD) apparatus.



[image: Polymers 05 00142 g001 1024]







We consider the interesting deposition areas (near-field) in the apparatus, shown in Figure 2.

Figure 2. Near-field of the deposition area.
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2.1. Macroscopic Model for the Transport and Reaction Part

When gas transport is physically more complex due to combined flows in three dimensions, the fundamental equations of fluid dynamics become the starting point of the analysis. For our models with small Knudsen numbers, we can assume a continuum flow. The fluid equations can be treated with a NavierStokes or especially with a convectiondiffusion equation. Three basic equations, describing the conservation of mass, momentum and energy, are sufficient to describe the gas transport in the reactors (see [2]).


	Continuitythe conservation of mass requires the net rate of mass accumulation in a region to be equal to the difference between the inflow and outflow rates.


	NavierStokesmomentum conservation requires the net rate of momentum accumulation in a region to be equal to the difference between the in- and out-rate of the momentum, plus the sum of the forces acting on the system.


	Energythe rate of accumulation of internal and kinetic energy in a region is equal to the net rate of internal and kinetic energy by convection, plus the net rate of heat flow by conduction, minus the rate of work done by the fluid.




We will concentrate on the conservation of mass and assume that energy and momentum are conserved (see [6,8]). Therefore, the continuum flow can be described as a convectiondiffusion equation:


(ϕ+(1−ϕ)ρRi)∂tci+∇·(vci−De(i)∇ci)=−λi(ϕ+(1−ϕ)ρRi)ci+∑k=k(i)λk(ϕ+(1−ϕ)ρRk)ck+Q˜i



(1)




where we have the following parameters:


ϕ:effective porosity (-);ci:concentration of the ith species, e.g., Si, Ti, C phase(mol/mm3),v:velocity in the underlying plasma atmosphere(mm/s),De(i):element specific diffusion-dispersion tensor(mm2/s),λi:decay constant of the ith species(1/s),Q˜i:source term of the ith species[mol/(mm3s)],k(i):indices of the predecessors reactants of the ith species(−),Ri:retardation factor due to plasma for theith species(mm3/mol),ρ:Density of the plasma in the apparatus(mol/mm3),








where [image: there is no content] and M denote the number of species.
The effective porosity is denoted by [image: there is no content] and signifies the ratio of air to plasma in the apparatus environment. It says how much ionized plasma is filled with respect to the neutral gas (air). The transport term is indicated by the velocity v that presents the direction and the absolute value of the plasma flux in the apparatus. The velocity field is divergence-free. The kinetic constant of the ith species is denoted by λi. Hence, k(i) signifies the predecessor reactant species of the ith species, i.e., i consists of the results of the k-th species. The initial value is ci0, and we assume a Dirichlet boundary condition ci1(x, t) that is sufficiently smooth.



2.2. Microscopic Model for the Reaction Part

The kinetic processes involve reactions with different precursor gases. Such chemical reactions are derived in the work of Zhang and Huettinger (see [9]; for the available data, see [10]). In the following, we present the underlying reaction equations in the microscopic scales. These will later be embedded in equations at a macroscopic scale. The precursor of SiC is Tetramethylsilane, and we have the following reaction mechanism:



[image: there is no content]



(2)






[image: there is no content]



(3)






[image: there is no content]



(4)






[image: there is no content]



(5)






2·Si(CH3)3→Si(CH3)4+Si¨(CH3)2



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






Si¨(CH3)2→·Si¨CH3+·CH3



(9)




The last reaction produces the deposition of the SiC.



2.3. Upscaling the Microscopic Model and Coupling to the Macroscopic Model

In the following, the upscaling of the microscopic model is done with respect to embedding the fast scales into the next coarser scales (see also Figure 3). The fast microscale reactions of the full reaction Equations (2)–(9) can be reduced with respect to embedding the intermediate reactions of (4)–(7). We then obtain the following reduced equation system:

Figure 3. Upscaling of the Microscopic model.
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[image: there is no content]



(10)






[image: there is no content]



(11)






Si¨(CH3)2→·Si¨CH3+·CH3



(12)




where we assume the transformation of Equation (8) with a fast reaction of H and given as:


HSi(CH3)3→Si¨(CH3)2+CH4⇒Si¨(CH3)2→·Si¨CH3+·CH3



(13)




Further, the reduced reaction Equations (10)–(12) can be upscaled by assuming a fast reaction of the [image: there is no content] species. We obtain the upscaled reaction equation:



2[image: there is no content]→SiC+CH4+Si+[image: there is no content]



(14)




This Equation (14) can be applied to the macroscopic model (1). Therefore, we obtain an efficient computable model, where we can apply the macroscopic time steps.

The last reaction produces the deposition of the SiC.






3. Analytical Methods and Numerical Methods

This section treats the underlying analytical methods and numerical methods to solve the multiscale models for the transportreaction Equation (2).


3.1. Multiscale Expansion (Embedding the Fast Scales)

We consider the multiscale equation



[image: there is no content]



(15)






[image: there is no content]



(16)




where


[image: there is no content]



(17)




where [image: there is no content], λij,k∈IR+ with [image: there is no content] and [image: there is no content] for all [image: there is no content], [image: there is no content].
Further, m is the number of reactants or species. If we omit the fast term [image: there is no content], there is an analytical solution [image: there is no content], which is accurate on the slow scale with the [image: there is no content] time-scale, but has [image: there is no content] errors on the fast time-scale [image: there is no content].

To analyze the behavior on both scales, we have to extend the time scales:



[image: there is no content]



(18)




where I∈IN+ and [image: there is no content] is the slow time variable (see also [11]). We obtain equations ordered with respect to different scales. Physically, the multiscale solutions [image: there is no content][image: there is no content] are higher resolutions of the different fine scales (multiscales). While [image: there is no content] only resolves the scale [image: there is no content], we obtain a resolution of finer scales with the higher orders: [image: there is no content] resolves [image: there is no content], [image: there is no content] resolves [image: there is no content], and so on.
Substituting (18) into (15) yields:



∂[image: there is no content]∂t+Λ1[image: there is no content]+1ϵ∂[image: there is no content]∂t+Λ1[image: there is no content]+∂[image: there is no content]∂τ−Λ2[image: there is no content]+…≈0



(19)




where [image: there is no content] with [image: there is no content].
We thus obtain a system of equations that is valid to as high an order as possible when [image: there is no content]. The leading order equation given by [image: there is no content] terms is:



∂[image: there is no content]∂t=−Λ1[image: there is no content]



(20)




The next order equation given by the [image: there is no content] terms is:



∂[image: there is no content]∂t=−Λ1[image: there is no content]+Λ2[image: there is no content]−∂[image: there is no content]∂τ



(21)




For the fast scale-dependent derivative, we can assume for the quasi-stationary in the fast scale derivative:


∂[image: there is no content]∂τ≈0



(22)




and we obtain:


∂[image: there is no content]∂t=−Λ1[image: there is no content]+Λ2[image: there is no content]



(23)




Such a multiscale equation can be solved analytically and can be embedded into the macroscopic transportreaction equations.



3.2. Analytical Solution of the Multiscale Reaction Equation

The multiscale reaction equation is an ordinary differential equation:



∂tRici=−λiRici+λi−1Ri−1ci−1



(24)




where [image: there is no content], and we put [image: there is no content]. The decay factors are [image: there is no content], and the retardation factors are [image: there is no content]. The initial conditions are [image: there is no content] and [image: there is no content] for [image: there is no content].
We can solve these equations (cf. [12]):



ci=c01R1Ri[image: there is no content]∑j=1i[image: there is no content]exp(−λjt)



(25)




where [image: there is no content]. The solutions are defined for the case [image: there is no content] with [image: there is no content] and [image: there is no content]. The factors [image: there is no content] and [image: there is no content] are given by:


[image: there is no content]=∏j=1i−1λj,[image: there is no content]=∏j=1[image: there is no content]i1λk−λj



(26)




For equal reaction factors, we have derived the solution in ([13]). In the next subsection, we introduce the discretization of the diffusion-dispersion equation.



3.3. Numerical Methods for the TransportReaction Equation

For the numerical methods, we use finite volume methods for the space discretization (see [14,15]), and for the time discretization, we apply first order explicit or implicit Euler methods and second order CrankNikolson (CN) methods. For accurate results, we choose the second order CN method and accept the longer computational times, which are then needed. For fast and less accurate results, we can apply the cheaper explicit or implicit Euler methods. To embed the multiscale reaction equations, we use Godunov’s method for the multidimensional finite volume methods (see cf. [16]), and we could use one-dimensional analytical solutions of the convectionreaction equations.



3.4. Multiscale Embedding of the Reaction Parts into the Convection Part

To couple the upscaled microscopic reaction equation (23) with the macroscopic transport part, we apply Godunov’s method for discretization (cf. [16]). The formulation with the analytical solutions of the convection equations is extended to convectionreaction equations, while the multiscale expanded reaction equations can be used. We reduce the multi-dimensional equation to one-dimensional equations and solve each equation exactly. The one-dimensional solution is multiplied by the underlying volume, and we get the mass-formulation. The one-dimensional mass is embedded into the multi-dimensional mass formulation, and we obtain the discretization of the multi-dimensional equation.

The algorithm is as follows:



∂tcl+∇·vlcl=−λlcl+λl−1cl−1withl=1,…,m








The velocity vector v is divided by [image: there is no content]. The initial conditions are given by [image: there is no content] , or cl0=0forl=2,…,m and the boundary conditions are trivial [image: there is no content] for [image: there is no content].
We first calculate the maximal time-step for cell j and concentration i with the use of the total outflow fluxes:



τi,j=VjRiνj,νj=∑k∈out(j)vjk








We get the restricted time-step with the local time-steps of cells and their components:


τn≤min[image: there is no content]j=1,…,Iτi,j








The velocity of the discrete equation is given by:


vi,j=1τi,j








We calculate the analytical solution of the mass (cf. [13]) and we get:


mi,jk,outn=mi,out(a,b,τn,v1,j,…,vi,j,R1,…,Ri,λ1,…,λi),mi,j,restn=mi,jnf(τn,v1,j,…,vi,j,R1,…,Ri,λ1,…,λi)








where [image: there is no content] , [image: there is no content] and [image: there is no content]. Furthermore, [image: there is no content] is the concentration at the inflow boundary of cell j, and [image: there is no content] is the concentration at its outflow boundary.
The discretization with the embedded analytical mass is:



mi,jn+1−mi,restn=−∑k∈out(j)[image: there is no content][image: there is no content]+∑l∈in(j)vljνlmi,lj,out








where [image: there is no content] is the re-transformation for the total mass [image: there is no content] of the partial mass [image: there is no content]. In the next time-step, the mass is given by mi,jn+1=Vjci,jn+1, and in the old time-step, it is the rest mass for the concentration i. The proof is provided in ([13]).
In the next section, we derive an analytical solution for the benchmark problem (cf. [17,18]).



3.5. Discretization of the Source Terms

The source terms are part of the convectiondiffusion equations and are given as follows:



∂tci(x,t)+v·∇ci−∇D∇ci=qi(x,t)



(27)




where [image: there is no content], v is the velocity, D is the diffusion tensor, and the qi(x, t) are the source functions, which can be pointwise, linear in the domain.
The point sources are:



qi(t)=[image: there is no content]Tt≤T,0t>T,,with∫Tqi(t)dt=[image: there is no content]



(28)




where [image: there is no content] is the concentration of species i at the source point [image: there is no content] over the whole time interval.
The line and area sources are:



qi(x,t)=[image: there is no content]T|Ωsource,i|,t≤Tandx∈Ωsource,i0,t>T,with∫Ωsource,i∫Tqi(x,t)dtdx=[image: there is no content]



(29)




where [image: there is no content] is the source concentration of species i at the line or area of the source over the whole time interval.
For the finite volume discretization, we have to compute:



∫[image: there is no content]qi(x,t)dx=∫[image: there is no content]n·(vci−D∇ci)dγ



(30)




where [image: there is no content] is the boundary of the finite-volume cell [image: there is no content], which is a source area. We have ∪j[image: there is no content]=Ωsource,i, where [image: there is no content], where [image: there is no content] is the set of the finite-volume cells that includes the area of the source. The right-hand side of Equation (30) is also called the flux of the sources [19].
In the next subsection, we introduce the discretization of the diffusion-dispersion equation.



3.6. Discretization of the DiffusionDispersion Equation

We discretize the diffusiondispersion equation with implicit time discretization and the finite volume method for the equation:



∂tRc−∇·(D∇c)=0



(31)




where [image: there is no content] with [image: there is no content] and [image: there is no content]. The diffusiondispersion tensor [image: there is no content] is given by the Scheidegger approach ([20]). The velocity is v. The retardation factor is R > 0:0. The boundary values are denoted by n · D ∇c(x, t) = 0, where x ∈ Γ is the boundary Γ = ∂Ω, [21]. The initial conditions are given by c(x, 0) = c0(x).
We integrate (31) over space and time and obtain:



∫[image: there is no content]∫tntn+1∂tR(c)dtdx=∫[image: there is no content]∫tntn+1∇·(D∇c)dtdx



(32)




The time integration is done by the backwards Euler method, and the diffusion-dispersion term is lumped ([13]):



∫[image: there is no content](R(cn+1)−R(cn))dx=τn∫[image: there is no content]∇·(D∇cn+1)dx



(33)




Equation (33) is discretized over the space using Green’s formula.



∫[image: there is no content](R(cn+1)−R(cn))dx=τn∫[image: there is no content]Dn·∇cn+1dγ



(34)




where [image: there is no content] is the boundary of the finite-volume cell [image: there is no content]. We use the approximation in space ([13]).
The spatial integration for Equation (34) is done using the mid-point rule over the finite boundaries and is:



VjR(cjn+1)−VjR(cjn)=τn∑e∈Λj∑k∈Λje|[image: there is no content]|njke·Djke∇cjke,n+1



(35)




where [image: there is no content] is the length of the boundary element [image: there is no content]. The gradients are calculated with the piecewise finite-element function [image: there is no content] (see [22]), and we obtain:


∇cjke,n+1=∑l∈Λecln+1∇[image: there is no content](xjke)



(36)




With the difference notation, we get for the neighboring point j and l ([23]) and get the discretized equation:



VjR(cjn+1)−VjR(cjn)=τn∑e∈Λj∑l∈Λe∖{j}∑k∈Λje|[image: there is no content]|njke·Djke∇[image: there is no content](xjke)(cjn+1−cln+1)



(37)




where [image: there is no content].
In the next section, we discuss the numerical experiments.




4. Numerical Experiments

In the following, we present the numerical experiments of the microscale and macroscale simulations. An overview of the methods is given in Figure 4, where we present the different simulation methods applied for the microscale and macroscale simulations. The microscale simulation of the reaction equations gives the overview of the microscopic behavior with respect to the underlying temperature. The macroscale simulations of the transportreaction equations are compared with physical experiments. Here, we only applied upscaled simpler reaction parts, which embed the temperature characteristics in the macroscale equations. We could apply the physical results of the deposition rates and approximate our model equations with respect to the reaction and retardation parameters.

Figure 4. Simulation methods for the microscopic and macroscopic model.



[image: Polymers 05 00142 g004 1024]








4.1. Microscopic Experiment

We apply the full reaction equation (see also [10]) for the full kinetic equations of Tetramethylsilane (TMS) precursor (see Equations (2)–(9)). Based on the assumption of a fast reaction of the H species, we can apply the mesoscopic model equation, given as (see also Subsection 2.3):



[image: there is no content]



(38)






[image: there is no content]



(39)






[image: there is no content]



(40)




We assume the following velocity laws:


[image: there is no content]



(41)






[image: there is no content]



(42)






[image: there is no content]



(43)






[image: there is no content]



(44)




where the temperature dependent reaction constant k is given by [image: there is no content] = 2×1014×exp[−283kJmol−1/([image: there is no content])] with R = 8.314472 Jmol−1K−1. The derivation of the temperature dependent reaction constant k is discussed in the experimental work of [24,25]. The constants can be found in the NIST (National Institute of Standards and Technology) kinetics database ([26]).
In Figure 5, we show the differences between the different reaction temperatures, i.e., T = 573 K, 773 K, and 973 K, where we used the initial condition [Si(CH3)4]0 = 1 mol−1.

Figure 5. Decay of Si(CH3)4 (-), [image: there is no content] ([image: there is no content]), [image: there is no content] ([image: there is no content]), formation of [image: there is no content] ([image: there is no content]) and the summary of all concentrations (- -) at the temperatures 573 K (a), 773 K (b) and 973 K (c).



[image: Polymers 05 00142 g005 1024]







Remark 1 The upscaled microscopic model shows the important influence of different temperatures. We obtain a slow reaction process at low temperatures and a fast reaction process at high temperatures. For the applied CVD process, an optimal temperature between 700 K and 900 K is appropriate. For such temperature regions, we see the dominance of the slow reaction rates: Such investigations allow application of our underlying multiscale reaction equation (24) for slow scales. Therefore, we can compute the macroscopic influence on the transport simulations, while we can upscale the microscopic scales to a simplified reaction process (see Subsection 2.3).



4.2. Test Experiment with SiC Deposition (Near-Field)

For all the experiments, we have the following parameters of the model, the discretization and the solver methods (Table 1).

Table 1. Physical and mathematical parameters.


	Physical parameter
	Mathematical parameter





	Temperature, pressure, power
	velocity, diffusion, reaction



	T , p , W
	V , D , λ










In Figure 6, the underlying geometry of the apparatus is shown. The inflow of the precursor gases are at the left and right of the top of the apparatus, while the outflows are at the left and right bottom. The measured point [image: there is no content] is in the middle of the deposition area at which the deposition rates could be measured.

Figure 6. The geometry of the apparatus with the measurement points (we apply [image: there is no content] as unit in the geometry).



[image: Polymers 05 00142 g006 1024]








4.2.1. Parameters of the Model Equations

In the following, all the parameters of the model equation (2) are given in Table 2. Here, we have the physical experiments and approximate to the temperature parameters of T = 400, 600, 800 K. For the physical experiment, we have the following parameters (see Table 3).

Table 2. Model Parameters.






	density
	[image: there is no content]



	mobile porosity
	[image: there is no content]



	diffusion
	[image: there is no content]



	longitudinal dispersion
	[image: there is no content]



	transversal dispersion
	[image: there is no content]



	retardation factor
	[image: there is no content] (Henry rate)



	velocity field
	[image: there is no content]



	decay rate of the species of 1st EX
	[image: there is no content]



	decay rate of the species of 2nd EX
	[image: there is no content],[image: there is no content]



	decay rate of the species of 3rd EX
	[image: there is no content],[image: there is no content]



	Geometry (2d domain)
	[image: there is no content].



	Boundary
	Neumann boundary at



	
	top, left and right boundaries.



	
	outflow boundary



	
	at the bottom boundary








Table 3. Approximated deposition rates and comparison to physical experiments.


	W
	T
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	Physical ratio (Si:C)
	Numerical ratio (Si:C)





	100
	700
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.569
	0.568



	300
	700
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.744
	0.740



	900
	700
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.919
	0.9



	100
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.617
	0.6103



	500
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.757
	0.745



	500
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.704
	0.691



	900
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	1.010
	1.017



	900
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	1.0
	1.0



	100
	400
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	0.342
	0.342












The discretization and solver method are the following:


	For the spatial discretization method, we apply finite volume methods of the second order with the parameters in Table 4.

Table 4. Spatial discretization parameters.






	spatial step size
	[image: there is no content]



	refined levels
	6



	limiter
	slope limiter



	test functions
	linear test function



	
	reconstructed with neighbor gradients









	For the time discretization method, we used the CrankNicolson method (second order) with the parameters in Table 5.

Table 5. Time discretization parameters.






	Initial time-step
	Δtinit=5107



	controlled time-step
	Δtmax=1.298107,Δtmin=1.158107



	Number of time-steps
	[image: there is no content]



	Time-step control
	time steps are controlled with



	
	the Courant number [image: there is no content]









	The discretized equations are solved with the following methods, see the description in Table 6.

Table 6. Solver methods and their parameters.






	Solver
	BiCGstab (Bi-conjugate gradient method)



	Preconditioner
	geometric multigrid method



	Smoother
	GaussSeidel method as smoothers for



	
	the multigrid method



	Basic level
	0



	Initial grid
	uniform grid with 2 elements



	Maximum Level
	6



	Finest grid
	uniform grid with 8192 elements









	The initialization of sources of the equations are solved with the following parameters in Table 7.

Table 7. Parameters of the source concentration.






	81 point sources of SiC at the position
	[image: there is no content]



	Line source of H at the position
	[image: there is no content]



	Amount of the permanent source concentration
	[image: there is no content] = 0.4, 0.7, 0.8, 0.85, 0.84, 0.82, 0.8,



	
	0.6, 0.4, 0.2, 0.0., [image: there is no content]



	Number of time steps
	200





















4.2.2. Numerical Results of the Model Equations

The numerical experiments now to be discussed are approximations to the SiC experiments. The underlying software tool is [image: there is no content], which was developed to solve discretized partial differential equations (see [4]). We use the tool to solve transportreaction equations. For the SiC, we obtain a different setup for the physical experiment, including the Bias voltage of the electric field, which is simulated as a retardation to the species. For the multiscale reaction equations, we can simplify the reaction process with respect to the slow scales. We consider an upscaled kinetic process, given by:



2[image: there is no content]→SiC+CH4+Si+[image: there is no content]



(45)




In the following numerical experiment, we concentrate on the near-field computations of the deposition area (see Figure 2). We apply the transport-reaction parts (see Equation (1)) and the upscaled reaction (see Equation (45)).
We deal with the following parameters. Here we assume a constant velocity field and start with the species [image: there is no content] and H, which are given as point and line sources (see Table 8). We add some more H concentration to stabilize the scheme. We take here the concentration of [image: there is no content] as a point source, and the concentration of H is a line source. Further, we are interested in the relation between SiC and Si concentrations at the end of the deposition process. In Figure 7 and Figure 8, we present the concentration SiC, Si and [image: there is no content] after 100 and 200 time-steps. In the initialization, the amount of the [image: there is no content] and Si species is not balanced; also, the amount of the [image: there is no content] species are too high. In such a situation, we would have a wrong deposition rate. In the later situation (see Figure 8), after 200 time steps, we see that the situation is balanced with respect to the SiC and Si concentrations. Here, fast reactions of [image: there is no content] and H have been passed, and we only have smooth transportreaction process. Now, the deposition of the layer is homogeneous and our rate is nearly [image: there is no content]. In Figure 9, we show the results after the long deposition period of 200 time-steps. Here, the deposition rates are done with a 81 point sources experiment. Such a large amount of sources helps to homogenize the deposition in a large deposition region. We see a nearly constant deposition of the species SiC, while we dust small concentrations to the deposition area.

Figure 7. Experiment with moving point sources: SiC experiment after 100 time-steps, where a high concentration is red, a low concentration is blue (left figure: SiC concentration; middle figure: Si concentration; right figure: H concentration).



[image: Polymers 05 00142 g007 1024]





Figure 8. Experiment with moving point sources: SiC experiment after 200 time-steps, where a high concentration is red, a low concentration is blue (left figure: SiC concentration; middle figure: Si concentration; right figure: H concentration).



[image: Polymers 05 00142 g008 1024]





Figure 9. Deposition rates for the 81 point sources experiment (x-axis: time in [image: there is no content] s, y-axis: concentration in [image: there is no content]).



[image: Polymers 05 00142 g009 1024]





Table 8. Rate of the concentration.


	Rate at the end of the deposition at the deposited layer:





	([image: there is no content])source,max:SiCtarget,max



	[image: there is no content]
















Remark 2 The numerical experiments in the near-field can be approximations of the real-life physical experiments. Both experiments show the influence of temperature, while for low temperatures, we can assume we are dealing with slow time-scale reaction equations. In such regimes, we obtain the best results with multiple sources and long-time depositions. We apply further different experimental situations, and the best deposition result is obtained with low temperature and high power assumptions. At least homogeneous concentrations below the deposition area can be achieved with a large amount of sources. The near-field simulations obtain an optimum at the low temperature of 400 °C and a high plasma power of about 900 W. Such results are also obtained in our physical studies (see [27]).





5. Conclusions

We have presented a multiscale model for chemical vapor deposition processes. While for higher temperature regions, fast reaction rates are important, we embed such characteristics with multiscale expansions in our underlying transportreaction equations. In the real-life experiments, we see that only the slow reaction rates are important, because of the necessary low temperature regime to obtain an optimal homogeneous deposition. Approximations for the real-life experiments are made for a realistic apparatus with transport reactions.

The embedding of the multiscale reaction equations allows discretizing with a fast finite volume method and applying our underlying software code to the complex material functions of the model. We present models for the stoichiometry for SiC depositions and present their experiments. In the future, near- and far-field simulations will be able to derive the optimal parameter settings and be able to forecast the results of real-life experiments. Such simulations will then help to reduce the number of physical experiments that need to be carried out and give direction to future expensive physical experiments. In our future work, we will concentrate on further implementations of multiscale methods to higher temperature regimes.
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