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Abstract: The interactions and conformational characteristics of confined molten polypropylene
(PP) chains between ferric oxide (Fe2O3) substrates were investigated by molecular dynamics (MD)
simulations. A comparative analysis of the adsorbed amount shows strong adsorption of the chains
on the high-energy surface of Fe2O3. Local structures formed in the polymer film were studied
utilizing density profiles, orientation of bonds, and end-to-end distance of chains. At interfacial
regions, the backbone carbon-carbon bonds of the chains preferably orient in the direction parallel
to the surface while the carbon-carbon bonds with the side groups show a slight tendency to orient
normal to the surface. Based on the conformation tensor data, the chains are compressed in the
normal direction to the substrates in the interfacial regions while they tend to flatten in parallel
planes with respect to the surfaces. The orientation of the bonds as well as the overall flattening of
the chains in planes parallel to the solid surfaces are almost identical to that of the unconfined PP
chains. Also, the local pressure tensor is anisotropic closer to the solid surfaces of Fe2O3 indicating
the influence of the confinement on the buildup imbalance of normal and tangential pressures.
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1. Introduction

Mixtures of polymers and metallic particles have numerous applications; for instance, in catalytic
and sensing applications [1–4], and manufacturing techniques [5–7]. One interesting manufacturing
application is metal injection molding (MIM) or, in more general terms, Shaping, Debinding,
and Sintering (SDS) technology of metals. SDS technology consists of (i) preparing a highly-filled
mixture of polymers with metallic particles; (ii) shaping this composite by extrusion, injection molding
or 3D printing; (iii) removing the polymers; and finally (iv) sintering the metallic particles to obtain
a solid metallic part [8]. The behavior of polymers close to a metallic interface can differ drastically
from its bulk behavior. Since these systems typically have a high interface density, the behavior
of the materials at the nanoscale strongly affects the properties of the system at the macroscale [9].
One instance is during the shaping and debinding steps when the interactions between polymers
and metals are crucial to obtain a solid part with the required quality and properties. The polymeric
binder should have sufficient affinity to the metallic particles to prevent their agglomeration during
the shaping process as well as to prevent excessive distortion of the geometry during the debinding
process [10].

Considering the complexity of interfacial systems, one has to resort to computer simulations
in many cases in order to study their behavior at different length scales. Computational methods
such as atomistic molecular dynamics (MD) [11], Monte Carlo (MC) [12], and dissipative particle
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dynamics (DPD) [13,14] have attracted a lot of attention in this field. Here, we briefly review some
important simulation studies performed on interfacial systems. A number of papers have been devoted
to characterize the interfacial properties of small molecules such as water with either their vapor or
solid surfaces. The surface tension of equilibrated liquid-vapor water was simulated using MD at
temperatures from 316 to 573 K [15]. This system was later revisited by Shi et al. [16] utilizing the
particle-particle particle-mesh method. More recently, Fernandes et al. [17] and Negreiros et al. [18]
utilized MD simulations to study the properties of water on iron and iron oxide surfaces, respectively.
Other materials investigated via MD simulations include iron surfaces in the presence of ionic
liquids [19] and solid-liquid metals [20].

Due to their practical importance, more complex materials such as polymers have also
been simulated to study their interaction with different substrates. In 1991, Mansfield et al. [21]
performed MC and MD simulations to study the adhesion of atactic polypropylene (PP) to
graphite. Matsuda et al. [22] performed MD simulations of n-alkane melts at temperatures of 300 K
and 400 K confined by either neutral or attractive generic crystalline surfaces. The work of
Dauolas et al. [12] presented an atomistic modelling approach to simulate the interface between
a thin film of polyethylene (PE) melt supported by a semi-infinite graphite substrate. Afterwards,
Harmandaris et al. [23] extended their work to study the local dynamics and chain mobility of a thin
film of molten PE at 450 K adsorbed on the crystalline phase of graphite. Larsen et al. [24] performed
MD simulations combined with DPD to predict the homogeneity of iron-nickel metal powder in
a mixture of PP, paraffin wax, and stearic acid. In order to study the cross-linked structure of
epoxy near an alumina surface, Kacar et al. [25] developed interfacial MD models which were then
coarse-grained into DPD models. Anastassiou and Mavrantzas [26] performed MD simulations
for poly(n-butyl acrylate) and poly(n-butyl acrylate-co-acrylic acid) on α-quartz, α-ferric oxide,
and α-ferrite. Liu et al. [27] studied via MD the interfacial region of surface modified cadmium sulfide
in contact with mercaptopropyltrimethoxysilane. MD simulations were carried out by Ta et al. [28]
to observe the structural properties and adsorption energies of alkanes on highly relaxed iron and
its oxide surfaces. Abraham et al. [29] presented a MD scheme to study the time evolution of gold
clusters sputter-deposited on a planar surface of polystyrene. A number of studies as well as remaining
challenges related to atomistic, coarse-grained, and multiscale simulations of interfacial systems of
polymers and biomolecules with substrates such as silicates, glasses and oxides have been summarized
in the literature reviews of Johnston and Harmandaris [9] and Heinz [30].

Two important materials in MIM are PP and ferritic alloys such as steel. PP with high molecular
weight is generally used as the backbone in the binder system. Ferritic alloy particles tend to form
a ferric oxide (Fe2O3) layer on their outermost surface as a result of the air oxidation occurring at most
temperatures even if chromium is present, such as in stainless steel [31]. The composite materials
used in MIM are highly-filled systems with a minimum of 50 vol % metallic particles. For these
reasons in this paper we investigate the interfacial properties of molten PP chains confined between
two Fe2O3 substrates incorporating atomistic MD simulations. The work performed here is unique
since, to our knowledge, there are no MD simulations directly dealing with molten PP at 458 K
confined by high-energy Fe2O3 surfaces. Moreover, we have adopted an optimized atomistic force
field, the INTERFACE force field, particularly parametrized for the organic-inorganic interfaces by
Heinz et al. [32]. This force field has proven effective to study a number of interfacial systems including
metals [33]. Consequently, the interactions between low-energy PP and high-energy Fe2O3 is modelled
based on a solid theoretical reference making it suitable for structural analyses.

2. Models and Methods

2.1. Molecular Model

The system was composed of atactic PP chains confined between two Fe2O3 substrates. Each PP
chain consisted of 50 monomers designed with a head-to-tail orientation. Considering that the number
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of monomers in a realistic PP chain is significantly more than 50, one should expect differences
between the simulation results and the real systems. Throughout the paper, we attempt to address
such differences. A total number of 10 chains was considered in the simulations. This number of
chains was found to be sufficient to produce a fully-developed symmetrical local density profile in
the film thickness with a mass density equal to the unconfined polymer systems in the middle of the
film. Fe2O3 was chosen in this study due to its industrial and practical significance in the SDS process,
as explained before. Each Fe2O3 substrate was composed of 750 atoms ordered in a face-centered cubic
(fcc) crystalline structure [34]. The crystal was re-produced in an orthogonal cell with dimensions
Lx = Ly ≈ 27.4 Å and Lz ≈ 9.61 Å. An all-atom description was used for the materials which made it
possible to acquire quantitative predictions of the relevant properties of the confined system.

The molecular model was based on the INTERFACE force field developed by Heinz et al. [32,33].
This thoroughly parametrized interfacial force field is specifically optimized for organic-inorganic
interactions using experimental material properties such as density and surface energies as target
properties to fit the Lennard-Jones (LJ) atomic radii and well depth. INTERFACE is a fixed-charge
force field [35] which is built upon the common harmonic force fields in materials science such as
PCFF [36], CHARMM [37], and COMPASS [38]. The successful applications of this force field to a range
of materials including clay minerals [39], fcc metals [33], polymers [27,32], and biomolecules [30]
motivated its use in the current system.

The main contributions to the total potential energy of the system in INTERFACE arise from
nonbonded interactions, bond stretching, bond-angle bending, dihedral torsions, and improper
interactions. INTERFACE utilizes Class II definitions to describe these contributions. The force field
also contains energy contributions from the extra terms in Class II including bond-bond interactions,
bond-angle interactions, angle-angle interactions, angle-angle torsions, end- and middle-bond torsions,
and angle torsions [32]. The main achievement of the INTERFACE was the modification of the
nonbonded parameters for the 9-6 LJ potential [33] ELJ(r) of the form

ELJ(r) = ε

[
2
( r0

r

)9
− 3

( r0

r

)6
]

for r ≤ rc, (1)

where ε is the equilibrium nonbonded energy, and r0 is the equilibrium nonbonded distance between
two atoms of the same type. In this equation, rc is the cutoff distance which was set to 12 Å in
all simulations. Heinz et al. [33] showed that the modified potentials are capable of providing
more accurate predictions for the super cell parameters of a number of metals in comparison with
conventional potentials. The same improvement was also observed when the surface tensions of
metal-water systems were calculated and compared with the experimental values [33].

A Coulomb potential was also included in the model as

EC(r) =
qiqj

4πε0r
, (2)

in order to describe electrostatic interactions associated with partial atomic charges q. The partial
charges for PP atoms were calculated utilizing the Gasteiger method [40] of partial equalization of
orbital electronegativity. The atomic charges of atoms in Fe2O3 crystals were set to 1.2 and−0.8 (in units
of e−) for Fe and O atoms, respectively. These values were based on the work of Batista et al. [41] who
developed a self-consistent charge-embedding methodology for ab-initio quantum chemical modelling
of Fe2O3 crystals with various sizes. The electrostatic interactions were included in the simulations
using the particle–particle particle–mesh (PPPM) method with a real space cutoff of 12 Å.

The INTERFACE force field is well described in the paper of Heinz et al. [32] and its parameters
are available for public use. Consequently, we do not delve further into its details and refer the
interested reader to the cited publication and its supplementary information.
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2.2. Simulations Methodology

Detailed atomistic MD simulations were performed with model PP/Fe2O3 samples in a xyz
Cartesian coordinate system using the molecular model described in the previous section. All of
the simulations were carried out with the LAMMPS (Sandia National Laboratories, Livermore, CA,
USA) [42] (large-scale atomic/molecular massively parallel simulator) code package. In order to
build the confined films, an orthogonal amorphous cell of PP chains was initially developed based
on the method of Theodorou and Sutter [43,44] with dimensions of Lx = Ly ≈ 27.3 Å and Lz ≈ 66.5 Å.
This system consists only of polymer macromolecules and is used to run relaxation simulations before
simulating the confined system. Therefore, it can be considered as a bulk simulation. The simulation
box was subject to periodic boundary conditions in all three space directions. We used a specific
simulation protocol to achieve the equilibrated polymer configurations which includes heating and
cooling stages, see Figure 1. The relaxation process started with an initial energy minimization of the
cell. Afterwards, a dynamic simulation in the NPT ensemble was performed at 298 K and 1 atm for
0.5 ns (stage I in Figure 1). Next, the system was heated up in a NVT ensemble from 298 to 600 K in
5 ns (stage II in Figure 1). Then, the system was allowed to relax at 600 K and 1 atm for 2 ns in a NPT
ensemble (stage III in Figure 1). Afterwards, the temperature was reduced to 458 K with a cooling
ramp in 2 ns in a NVT ensemble (stage IV in Figure 1). Next, the system was relaxed for another
2 ns in a NPT ensemble at 458 K and 1 atm (stage V in Figure 1). Finally, an energy minimization
was performed with the Polak-Ribiere version of the CG algorithm [45]. The purpose of relaxation
at high temperatures was to accelerate the molecular relaxation processes, and avoid trapping in
high-energy minima [45]. It should be noted that the density of the system reached a steady value of
0.737 ± 0.009 g·cm−3 in the final stage of relaxation. This value is in good accordance with the typical
experimental values for PP at 458 K and 1 atm.
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the bulk. A snapshot of the simulated confined system is shown in Figure 2. It should be noted that 
the average value of the radius of gyration of polymer chains was calculated to be 14.16 ± 0.08 Å 
during the final stage of the relaxation cycle. A comparison of this value with the thickness of the film 
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developed density profile across the thickness of the film. Such a well-developed density profile has 

Figure 1. The temperature (circles) and volume (squares) of the system during the relaxation process
as a function of time. Each stage of the process is numbered and separated with vertical dashed lines.

The equilibrated PP configurations from the relaxation process were then sandwiched between the
Fe2O3 substrates along the z direction. This procedure inevitably changes the density of the confined
polymer film from that of the bulk simulations. To compensate for this problem, the confined system
was allowed to thoroughly relax prior to data collection. The relaxation procedure is described in detail
later in this section. After this relaxation procedure, the film had the dimensions of Lx = Ly ≈ 27.4 Å
and Lz ≈ 64.7 Å. It was noted that this relaxation step was effective since the density profile of the
confined polymers showed comparable values in the middle region of the film to that of the unconfined
bulk simulation. This behavior is also a manifestation of the fact that the total number of polymer
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chains with 50 monomers used here can successfully reproduce a large enough thickness so that the
middle region of the film is structurally the same as the unconfined polymers in the bulk. A snapshot
of the simulated confined system is shown in Figure 2. It should be noted that the average value of the
radius of gyration of polymer chains was calculated to be 14.16 ± 0.08 Å during the final stage of the
relaxation cycle. A comparison of this value with the thickness of the film provides insight into how
confined the chains are. The thickness of the film is almost 4.6 times the average radius of gyration of
the chains. This difference was found adequate to have a fully-developed density profile across the
thickness of the film. Such a well-developed density profile has been shown by other authors to be
a valuable tool for coarse-graining atomistic models [25,46]. The coarse-graining allows incorporating
simpler forms of potential energy and consequently perform simulations on longer time scales [47].
Therefore, the degree of confinement in this study provides us with the possibility of a multiscale
simulation of highly-filled composites. This issue shall be addressed in a future publication.
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Figure 2. Schematic representation of the simulated confined systems. In the figure, only the backbone
carbon atoms of the chains are shown to preserve clarity. The two ending carbon atoms of each PP
chain are plotted in slightly larger circles filled with red color. The substrates are shown in black circles
filled with gray color at the bottom and top of the simulation box.

In order to perform the interfacial simulations, an energy minimization was initially performed
on the polymer chains of the confined system. Afterwards, thermal equilibration was achieved by
performing dynamic simulations in NPT ensemble at 458 K and 1 atm for 10 ns. This step allowed
for the adjustment of the density of the polymer bulk after the sandwiching procedure by allowing
the system to reach a steady volume under the desired thermodynamic conditions. Next, the system
was simulated in a NVT ensemble at 458 K for another 10 ns to ensure stable interfacial structures
are developed for the calculations. Finally, the data collection step included a dynamic simulation
run in a NVT ensemble at 458 K for 20 ns during which the desired structural and thermodynamic
properties were averaged over time as well as all PP configurations. The use of the NVT ensemble in
the data collection step allowed us to have a constant degree of confinement by keeping the volume
constant. Moreover, the fundamental concepts of such interfacial systems are mainly developed in
the NVT ensemble [44,48]. The NVT ensemble has also been widely used in a variety of interfacial
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simulations to investigate the thermodynamic properties [16,18,22,28,49]. During all simulation steps,
the simulation box was subject to periodic boundary conditions in all three space directions.

In all simulations performed in the NPT statistical ensemble, a Nosé-Hoover thermostat-barostat [50,51]
was employed to control temperature and pressure with corresponding relaxation times of 100 and
1000 fs, respectively. For the simulations in NVT ensemble, a Nosé thermostat was used with
a relaxation time of 100 fs. The equations of motion were integrated using the velocity–Verlet
algorithm [52,53] with a time step of 1 fs.

3. Results and Discussion

3.1. Local Density Profile

The local density profile of PP chains in the film thickness was analyzed by dividing the simulation
box in the z direction into bins separated by planes parallel to the substrates’ surfaces each of width
equal to 0.1 Å. The average of the local density profile was then computed within each bin over all
chain configurations. Figure 3 displays the mass density profile, ρ, across the film thickness. Due to
the symmetry of the density profiles with respect to the film midplane, one can conclude that the
number of polymer configurations embedded in the film thickness was sufficient to provide adequate
predictions of the relevant properties studied here [26]. Near the substrates, the density profile shows
a profound peak at a distance equal to ~4 Å away from the solid surface. This distance is approximately
equal to the sum of the van der Waals radii of polymer and substrate atoms. Moving away into the bulk
of the film, a minimum appears roughly at 7 Å away from the solid surface, representing the thickness
of the adsorbed layer of PP macromolecules on the substrate. A second adsorption peak, much less
pronounced than the first peak, appears roughly at 10 Å with a corresponding minimum at ~12.5 Å,
representing the second polymer layer adjacent to the solid surfaces. At distances beyond 20 Å away
from the solid surface, the density attains values equal to the unconstrained polymer bulk density
calculated in the relaxation simulations. This suggests that in this region the structure of PP chains are
almost identical to those in unconfined simulations. For polyethylene chains with various numbers of
backbone carbon atoms (from 40 up to 250) adsorbed on a graphite substrate at 450 K, the thickness of
the interfacial region was also calculated to be 20 Å which is in agreement with the present work [12].
In a separate report, Mansfield and Theodorou [54] calculated an interfacial thickness of 10 Å for PP
with 76 monomers in each chain on graphite at 233 K. The authors point to the fact that this thickness
is significantly smaller than the overall chain dimensions. Based on these works, one can draw the
conclusion that the thermal motions play a critical role in the determination of the interfacial thickness
as opposed to the chain dimensions [48]. However, the adsorbed chains still contribute to the overall
density profile depending on their length, as will be discussed later. Moreover, the chain dimensions
influence the bulk density value in the middle of the film to some extent [12].

The formation of the adsorbed PP layer on the substrates in this confined system is simultaneously
affected by energy minimization and space-filling considerations. The very attractive interactions
(electrostatic and van der Waals) developed between PP atoms and atoms of the two oxides result in
well-ordered atomic structures next to the solid substrates. These structures are manifested by the
sharp peaks in the local density profile. For less favorable interactions, these peaks would be reduced
significantly. Such observations have been shown before for the interfacial systems of acrylic chains
on α-quartz, α-Fe2O3, and α-ferrite where the strong adsorption of acrylic chains on α-quartz and
α-Fe2O3 was evidenced by the higher intensities of the local mass density peaks compared with the less
pronounced peaks for α-ferrite [26]. These peaks are, on the other hand, influenced by the available
space on the surfaces. The maximum packing of atoms on the surfaces is strongly controlled by the
steric hindrances from surrounding atoms. The peaks in the local density profile have consequently
a maximum value above which no more adsorption of atoms is possible due to the shortage of free
space. As will be discussed later, this notion gives rise to some irregularities in the local conformation
of chains and bonds as well.
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Finally, it is important to note the well-equilibrated polymer chains in this confined configuration
as evidenced by the smooth density profile in the middle of the film. This behavior is a result of
the high temperatures used in the relaxation procedure and the simulations as opposed to the noisy
density profiles in low-temperature simulations reported in a previous work [26].Polymers 2016, 8, 361 7 of 19 
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An interesting analysis of such a confined system is to characterize the extension of interfacial
chains into the bulk of the film. In order to investigate such effects, we calculated the local contribution
of polymer segments from the adsorbed polymer layer on the substrates to the total mass density
profile. The results are demonstrated in Figure 4a. One can observe that the polymer chains in
the adsorbed layer (the interfacial chains) contribute to the density, and consequently influence the
structure of the film to a larger extent, approximately up to 25 Å into the bulk of the film. This means
that any polymer chain with at least one atom located at the interfacial region with the substrate
(within 7 Å away from the solid surface) is limited within a layer of 25 Å width inside the film
next to the surface. This adsorbed segment density profile at distances larger than the limits of the
interfacial region is due to the presence of the long dangling tails. It is obvious from this result that the
length of the chains determines the depth by which an adsorbed layer affects the local density profile.
Considering that the chains used in our simulations are significantly smaller than in reality, one should
expect a much larger influencing range for the adsorbed chains in practice.

The formation of adsorbed monolayers on substrates has been reported before for n-alkane
molecules [22,28,55]. However, a difference between their work and the work reported here is that
they deal with monolayers of short chains next to a substrate, while we deal with a bulk phase of
long chains. In our case, the balance between adsorption energy, cohesive energy, and conformational
entropy is struck at a much less uniform distribution of conformations. This point was also stated
in the work of Mansfield and Theodorou [54]. Consequently, the definition of adsorption in terms
of monolayers is not possible since the adsorbed atoms do not form a uniform layer on the surface.
This issue was also illustrated in the works of Anastassiou et al. [26]. and Daoulas et al. [12].

Following Scheutjens and Fleer [56,57], the adsorbed amount, Γ, was approximated by integrating
the local density profile of the first adsorbed layer to be equal to ~147 ng·cm−2. In a previous study,
Daoulas et al. [12] performed MD and MC simulations of PE chains with various numbers of carbon
atoms in their backbone adsorbed on a graphite substrate. Their estimation for the adsorbed amount
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of the PE chains with 100 backbone carbon atoms (the same as PP chains used in this study) was
approximately in the order of ~110 ng·cm−2. This difference in the adsorbed amounts could be
ascribed to different surface energies of the graphite and Fe2O3 substrates. One should note that the
polymer model employed here is all-atomistic while in the work of Daoulas et al. [12] a united-atom
approach was utilized to represent methylene and methyl groups. Therefore, a more precise balance
between energetic and entropic interactions of polymer conformations should be achieved in our
models. On one hand, the steric hindrance of the pendant methyl groups on PP goes against the
formation of compact adsorbed structures at the interface. On the other hand, the higher adsorption
energy of the hydrophilic Fe2O3 surface promotes the adsorption process. This conflict controls the
number of adsorbed atoms on the surface of Fe2O3. The accumulated number of hydrogen and carbon
atoms from the surface of the lower substrate was calculated from the number density profiles of the
corresponding atoms. Figure 4b shows the evaluated accumulated number profiles. The number of
adsorbed hydrogen and carbon atoms in the interfacial region of the lower substrate is approximately
356 and 172, respectively. These values sum up to an adsorbed amount of ~106 ng·cm−2, which is
more than 70% of the total amount. Consequently, the balance between the steric hindrance of side
groups of PP and the adsorption energy of Fe2O3 surface is strongly in favor of interfacial adsorption.
Therefore, the length of the chains could become the determining factor in the adsorbed amount only
when the surface energy of the substrate is not dominant. Still, the significance of the chain size should
not be ignored in the adsorbed amount of polymer, the structure formation of the adsorbed layer as
well as the bulk of the film.
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Figure 4. (a) Local contributions to the total mass density profile (open circles) from segments of the
first polymer layer adjacent to the substrates (red continuous line); (b) The accumulated number of
hydrogen and carbon atoms across the film thickness calculated from the number density profiles of the
corresponding atoms. The results are calculated for the confined PP/Fe2O3 system at 458 K and 1 atm.

3.2. Conformational Characteristics of the Confined Film

The presence of solid substrates induces local re-arrangements in the polymer film particularly at
the interface. In order to provide insight into such characteristics of the film, the average second-rank
bond order parameter P2 was calculated according to

P2 =
3
2
〈cosθ〉 − 1

2
, (3)

where θ is the angle formed between the bonds and the z coordinates axis. This parameter varies
between three limits of −0.5, 0.0, and 1.0 which correspond to perfectly parallel, random, and perfectly
normal orientation states relative to the solid surface, respectively. The order parameter for C–C
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bonds either in the backbone or with the side group of PP chains is shown in Figure 5. In these
calculations, the film thickness was divided into bins each with 4 Å width and the bonds were assigned
to bins according to the distance of their midpoints from the bins. For C–C bonds of the backbone,
a parallel alignment is observed in the interfacial regions. In these regions, a slight tendency towards
normal orientation with respect to the solid surface is observed for the C–C bonds with the side chains
according to the data. This behavior is strongly influenced by the instantaneous local perturbations
due to the small length of this type of C–C bonds [26]. For both C–C bond types, the local orientation
parameter oscillates around zero in the bulk of the film further away from the substrates, and thus
manifests random orientation states dominant in those regions. Similar trends have been reported
before for atactic PP with an interface with a graphite substrate [54], PE confined between graphite
substrates [12], and acrylic adhesives between either α-quartz or α-Fe2O3 substrates [26].

The local orientation of C–C bonds is significantly influenced by the available space on the solid
substrates. In the interfacial system of poly(n-butyl acrylate)/α-Fe2O3, the order parameter for the
backbone C–C bonds shows a more pronounced parallel orientation in the interfacial region (P2 values
closer to −0.5) than our simulations [26]. In the cited work, the dimensions of the solid surface are
reported to be Lx = 68.9 Å and Ly = 70.5 Å while in our case they are Lx = Ly ≈ 27.3 Å. Therefore, there is
almost six times more available surface for the polymer chains in the poly(n-butyl acrylate)/α-Fe2O3

system. In this system, the calculated interfacial energy is ~1654 mJ·m−2 while in our system it is
calculated to be ~1180 mJ·m−2 (the calculation is given in detail in the next section). Thus, one might
ascribe the differences in the values of the order parameters to energy considerations. In order to show
the importance of the available space rather than the energy considerations, we took the system of PP
chains adsorbed on a graphite substrate as a valuable example [54]. In this system, the interfacial energy
was simulated to be ~116 mJ·m−2 with the corresponding dimensions of the substrate to be Lx = 24.6 Å
and Ly ≈ 25.6 Å [54]. In this work, the order parameters in the interfacial region were calculated to
be very close to the values of our system. As a result of these arguments, the available space rather
than the energy considerations is shown to be the determining factor in the local conformation of the
adsorbed chains in the interfacial region.
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Figure 5. Local order parameter (P2) for C–C bonds in (a) backbone and (b) with side chains as
a function of distance from the surface of the substrate. The results are calculated for the confined
PP/Fe2O3 system at 458 K and 1 atm.

The orientation state of the bonds could simply vary at different length scales due to the fact
that the orientation process on the small length scale of a C–C bond is instantaneously perturbed by
thermal fluctuations. Therefore, the order parameter was evaluated on slightly larger length scales
than a single C–C bond so that the influence of such perturbations was studied. This was achieved
by replacing every two or three C–C bonds along the backbone with a single hypothetical cord and
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evaluating P2 for these cords instead of individual bonds as a function of distance from the surface
of the substrate. The results are compared with single C–C bonds in Figure 6. While all orientation
profiles display random chain orientation in the bulk of the film, the preferred parallel ordering in
the interfacial regions becomes more pronounced only slightly on increasing the length of the cords.
Therefore, the orientation state of the bonds is not significantly influenced by increasing the length scale
in the limited range of a few C–C bonds. Thus, the local perturbations are expected to be immensely
suppressed due to the strong tendency of the surfaces to adsorb atoms. This issue was verified before
by the analysis of the adsorbed amount. The data is also an indication that the local ordering along the
chains at the interfaces is persistent at scales up to three C–C bonds. It should be declared that these
results cannot help disclose local ordering on larger scales.Polymers 2016, 8, 361 10 of 19 
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bonds of the backbone (squares), cords connecting two C–C bonds (circles), and cords connecting three
C–C bonds (triangles). The results are calculated for the confined PP/Fe2O3 system at 458 K and 1 atm.

The anisotropy of the oriented structure can be analyzed based on the symmetric Saupe
matrix [12], S, as

Sab =
3
2
〈lalb〉 −

1
2
δab, (4)

where lis with i = a, b are the direction cosines relating backbone C–C bonds to the box Cartesian
coordinate frame. If the polymer film is characterized by the uniaxial anisotropy in bond ordering
along the z direction in our confined systems, all off-diagonal components of the Saupe matrix should
go to zero while the main diagonal components should satisfy the condition Sxx= Syy = − 1

2 Szz.
This condition was checked in the simulations performed here and the results are reported in Figure 7.
The uniaxial ordering character in the z direction is satisfied within the statistical accuracy of the
simulation data. This observation denotes that the orientation of the backbone C–C bonds in the
z direction (normal to the solid surfaces) is systematic and of high significance while their orientation
state in the xy-plane is not. Similar to this work, a uniaxially-ordered configuration was also predicted
in the interfacial polyethylene melts at 450 K on a graphite substrate using Monte Carlo simulations [12].
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The overall alignment of a chain, either parallel or perpendicular to the solid surface, was estimated
benefitting from the conformation tensor, C0. This tensor can be regarded as a global descriptor of
the overall polymer melt configuration. It is defined as the second moment tensor of the end-to-end
distance vector of a polymer chain R reduced by one third of its unperturbed mean-square end-to-end
distance

〈
R2

0
〉

averaged over all chain configurations, as

C0 = 3〈 RR
〈R2

0〉
〉. (5)

For an unperturbed chain, C0 reduces to the unit tensor. However, any distortion in the chain
configuration as a result of the confinement should impose deviations in C0 from its isotropic value.
In this case, the three main diagonal components of the conformation tensor, i.e., C0

xx, C0
yy, and C0

zz,
can provide a measure of orientation and extension of the chains along the three axes of the coordinate
system. In order to find the tendency of a chain to lie in the xy-plane parallel to the substrate
surface, one can plot the sum of the contributions in the x and y directions to the conformation tensor,
i.e., C0

xx + C0
yy. On the other hand, C0

zz can represent the perpendicular orientations with respect
to the solid surfaces. The results of such analyses are reported in Figure 8a. The components of
the conformation tensor are calculated for each chain individually and plotted as a function of the
z coordinate of the center of mass of that respective chain. It is clear that the chain conformations across
the film are significantly different from their unperturbed shape in the bulk with no confinement.
It is evident from the data that the chains located closer to the substrates are extensively compressed
along the z direction. These chains show a higher tendency to lie in xy-planes parallel to the surface
(C0

xx + C0
yy > C0

zz). However, it does not always lead to extended chain conformations in the xy-plane
(C0

xx + C0
yy < 1 close to the upper substrate) which can be ascribed to strong adsorption of the chains

on the surfaces prohibiting large-scale structural re-arrangements. The extremely small horizontal
error bars in these regions of the film can be an indication of such strong adsorptions on the solids.
This adsorption effectively prohibits any exchange of chains between the adsorbed layer and the bulk
of the film. Otherwise, the horizontal error bars were much more significant than in the present case.
Note that the horizontal error bars are multiplied by a factor of 10 to increase their visibility in the
figure. As one moves away from the solid surfaces into the bulk of the film, the chain compression
in the z direction disappears with C0

zz reaching to unity. This suggests that in the bulk of the film the
configurations of the chains mimic that of the unconfined chains in the z direction. In parallel xy-planes
however, the chains are still extended and deviate from the unperturbed conditions (C0

xx + C0
yy > 1).
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Daoulas et al. [12] simulated the components of the conformation tensor for polyethylene
melts at 450 K on a graphite substrate. At distances of 10, 20, and 30 Å away from the graphite
surface the corresponding components of the conformation tensor are respectively C0

zz ∼ 0.2 and
C0

xx + C0
yy ∼ 3, C0

zz ∼ 0.5 and C0
xx + C0

yy ∼ 1.9, and finally, C0
zz ∼ 0.9 and C0

xx + C0
yy ∼ 2.2.

These values are in good agreement with our results at distances further into the bulk. At the interfacial
regions, however, the overall chain sizes in our simulations are smaller than Daoulas et al. [12].
Taking into account the previous arguments, this observation could be ascribed to space-filling
considerations. Daoulas et al. [12] performed their simulations on a substrate surface with Lx = 49.2 Å
and Ly ≈ 46.9 Å which provides a surface area of approximately three times more than our simulations.
Furthermore, as it was argued before, their results are reported for a coarse-grained polyethylene melt
with 78 backbone carbon atoms. This also implies a smaller chain with less steric hindrance which was
brought to contact on a larger graphite surface in comparison with the present model. Consequently,
the importance of the available space for the development of conformations persists on a larger scale
than bonds and influences the flattening of the chains as well.Polymers 2016, 8, 361 12 of 19 
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Figure 8. The overall alignment of PP chains along the thickness of the film either parallel (C0
xx + C0

yy)
or normal (C0

zz) to the substrates expressed utilizing the concept of the conformation tensor. The results
in (a) are calculated based on Equation (5); in (b), Equation (5) was reduced by the end-to-end distance
of each confined chain instead of the averaged end-to-end distance of the unperturbed chains. Therefore,
the ‘0’ superscript was removed from the notations of the conformation tensor and its components
to emphasize this distinction. The data are calculated for each chain individually and are plotted as
a function of the z coordinate of the center of mass of that respective chain. Note that the horizontal
error bars are multiplied by a factor of 10 to increase their visibility. The results are calculated for the
confined PP/Fe2O3 system at 458 K and 1 atm.

In order to have a clearer picture of how flat a chain is, Equation (5) was reduced by the end-to-end
distance of each confined chain instead of the averaged end-to-end distance of the unperturbed chains.
This should allow us to rationalize the contributions of each direction of the coordinate system to
the overall chain end-to-end distance. In this way of description, the more a chain is flattened in the
xy-plane the less its corresponding zz component is in the conformation tensor. In order to emphasize
the distinction in the two definitions of the conformation tensors used here, the “0” superscript was
removed from the notations of the conformation tensor and its components. The results are presented
in Figure 8b. It is obvious from the data that the chains prefer to flatten in the xy-plane as they all have
larger Cxx + Cyy values compared with Czz. This flattening results in the overall parallel orientation
of the chains with respect to the substrate surfaces. Moreover, it is important to note that the chains
which are located at the interfacial regions show a more pronounced parallel orientation than those
in the bulk due to the relatively larger difference between Cxx + Cyy and Czz values in these regions
compared to the bulk of the film.
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Based on the information provided by the local order parameter (P2) and the conformation tensors,
it is now possible to draw a picture of the local ordering at several length scales across the film. In the
interfacial region, the backbone bonds of the chains orient parallel to the solid surface while the
side groups are perpendicularly ordered. The parallel orientation in the backbone is persistent up to
three C–C bonds. The chains were shown to be compressed in the z direction due to the presence of
the solid surfaces and were aligned in the xy-plane parallel to the surface overall. Moving into the bulk
of the film, the local bond ordering vanishes and all C–C bonds depict random orientation patterns.
On a larger length scale, the chains show unperturbed structures in the z direction while still slightly
flattened in the xy-plane parallel to the surface. As a result, a systematic structural profile is developed
throughout the film due to the confinement which is absent in the bulk simulations. These results
are in agreement with previous studies on other interfacial systems including PE/graphite [12],
PP/graphite [54], acrylic polymers/α-quartz, as well as acrylic polymers/α-Fe2O3 [26].

3.3. Surface Tension Evaluation

In this part of the manuscript, we set out to provide data on the surface tension, γ, of our confined
model. The hydrodynamic definition of surface tension is the isothermal work of formation per unit
area of interface. At the atomic scale, it can be expressed as the integrated imbalance of normal and
tangential pressures, PN (z) and PT (z) respectively, at the interface as [15,16]

γ =
1
2

∫ +∞

−∞
[PN(z)− PT (z)] dz. (6)

For a plane interface in our study which is perpendicular to the z direction, the tangential and
normal pressures are defined as

PN(z) = Pzz (z) , (7)

and
PT(z) =

1
2
[Pxx(z) + Pyy(z)], (8)

respectively. In these equations, the components of the pressure tensor are calculated using the virial
theorem of statistical mechanics according to

Pαα = 〈 1
V

[
∑

j
mjv2

αj + ∑
i>j

∑
j

rαijfαij

]
〉, (9)

with mj, vj, rj, and fj representing the mass, the velocity vector, the position vector, and the total
force acting on the jth atom, respectively. Here, V denotes the volume of the thin layers parallel to
the xy-plane each with a thickness of dz. Typical plots of the time evolution of the three diagonal
components of the pressure tensor as well as the corresponding [PN(z)− PT (z)] values are shown
in Figure 9. The data are calculated for polymer atoms in the interfacial regions of the confined
PP/Fe2O3 system at 458 K and 1 atm. In the figures, black and red curves show the instantaneous
and running average values, respectively. Since the normal pressure has reached a constant value
in the interfacial region (see Figure 9c and note Equation (7)), and PN(z) = PT (z) further away
from the interfaces, one can conclude that the system is at equilibrium [15]. As evidenced by the
pressure profiles, the oscillations in the pressure during the data collection simulations are negligible
in the NVT ensemble. This consistency in the pressure profile is mainly due to the effectiveness
of the relaxation simulations at high temperatures performed before running the data collection
simulations. Such a negligible oscillation is better highlighted if one considers the more pronounced
pressure oscillations in the similar study of Anastassiou et al. [26] who utilized the NPT ensemble
in their simulations. This comparison as well as previous arguments ensure that the studied system
is well-equilibrated and the NVT ensemble in this work produces precise thermodynamic data with
minor influence from the pressure oscillations. The use of the NVT ensemble was also motivated in
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this study in order to control the degree of confinement by preserving a constant volume throughout
the simulations.

In order to utilize Equation (6), we need to evaluate the profile of [PN(z)− PT (z)] across the
thickness of the film. To do this, the film was divided into bins each with a 4 Å thickness and the
pressures were monitored for all the atoms in the corresponding bins. The results are shown in
Figure 10. According to the pressure profiles, the intrinsically anisotropic nature of the local pressure
tensor extends over distances up to approximately 18 Å away from the solid surface. Beyond this
distance, the pressure tensor becomes isotropic indicating that the presence of the substrate is not felt
there. This is another indication that the structural and conformational properties of the bulk of the
film depict the corresponding properties of the unconfined bulk polymers.Polymers 2016, 8, 361 14 of 19 
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Benefitting from Figure 10, the surface tension is calculated utilizing Equation (6) to be
approximately equal to ~1180 mJ·m−2. The hydrodynamic definition of surface tension is the
isothermal work of formation/destruction per unit area of interface. This value was shown before
to be the main constituent part of the work of adhesion (or the adsorption energy) in interfacial
systems [21,26,43,44,48,54]. It signifies a stronger interfacial adhesion between the components as it
becomes larger, after the interface is formed under confinement due to space-filling considerations [26].
Considering typical surface energy values for Fe2O3 in the range of 2250 to 2360 mJ·m−2 [26,34],
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and for PP approximately 20.29 mJ·m−2 [58,59], it can be concluded that the formed interface with the
evaluated energy per unit area under this confined conditions is strongly adherent. This adsorption
is effective up to a depth of 18 Å into the film thickness from the solid surface. For PP/Fe2O3

interfaces at the simulated temperature of 458 K, we were not able to find any experimental reports
in the literature on the surface tension value probably due to difficulties in the experimentation
procedure. Consequently, direct comparison of this result with experiments is not possible at this
time. However, it cannot be totally wrong to expect that the theoretical surface tension should be
significantly different from probable measurements. In a similar study on polymer/solid interfaces,
Anastassiou et al. [26] also reported such a significant difference and ascribed it to several factors
such as (i) the very smooth atomic nature of the substrates in simulations; (ii) the perfect crystalline
structure assumed for the simulated substrates; and (iii) the absence of any impurities at the interfaces
in simulations. In experiments on the other hand, surface roughness, imperfect crystalline structures
of Fe2O3 substrates, and contamination influence the results to a large extent. The authors also report
the values for the adsorption energy of acrylic adhesives on α-Fe2O3 based on the same approach
used here to be ~1654 mJ·m−2. The authors discussed in detail that as the adsorption energy increases,
the adhesion strength is improved. This further supports the earlier conclusion that the interfaces
between PP and Fe2O3 with an interfacial energy of ~1180 mJ·m−2 are strongly adherent after formation
under confinement. Moreover, from a practical viewpoint, the SDS process could not be properly
carried out if this notion was not true. Our experience shows that it is possible to perform SDS with
PP/Fe2O3 systems [6].

It should be noted that the methodology of surface tension evaluation used here has been
successfully applied to other interfacial systems for which experimental results are also available.
Mansfield et al. [48] used this approach and evaluated the surface energy of a glassy atactic PP
exposed to vacuum at 233 K. Their theoretical prediction of the surface energy of 43 ± 23 mJ·m−2

was in good agreement with the experimental value of 45.9 ± 2 mJ·m−2. The authors further applied
this technique to calculate the surface tension of this PP under the same conditions with a graphite
substrate [54]. In this way, they could successfully re-produce the experimental value for the work of
adhesion. Alejandre et al. [15] applied this approach to study the liquid-vapor equilibrium of water
and successfully calculated the surface tension of water for a range of temperatures from 316 to 573 K.
A similar study on water was also carried out by Shi et al. [16]. These works are valuable proofs that
the current methodology for surface tension evaluation is effective.
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Figure 10. The profile of the difference of normal (PN (z)) and tangential pressures (PT (z)) across the
film thickness for the confined PP/Fe2O3 system at 458 K and 1 atm. The surface tension is calculated
from Equation (6) to be approximately equal to ~1180 mJ·m−2.
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4. Conclusions

In this study, atomistic MD simulations of confined molten PP chains between Fe2O3 surfaces
were performed. Local structures formed in the polymer film were studied utilizing density profiles,
orientation of bonds, and end-to-end distance of chains. The density profile proved the existence of
an adsorbed polymer layer on the surface with a thickness of ~7 Å. At distances beyond 20 Å into the
film, the density was similar to that of unconfined PP. Based on previous works, it was argued that this
distance is mainly determined by thermal motions rather than chain size. The number of adsorbed
carbon and hydrogen atoms was also estimated at interfacial regions. It was observed that most of the
adsorbed atoms (~70%) are closely packed on the oxide surface rather than freely dangling in the bulk
of the film. This was ascribed to the strong adsorption of polymer chains on the surface as a result of
the high surface energy of the metal oxide substrates.

The local order parameter and the conformation tensors were calculated in order to have an idea
of the locally-ordered structures of confined PP chains at various length scales. This analysis revealed
that at the interfacial region, the backbone C–C bonds of the chains orient parallel to the solid surface
while the C–C bonds with the side groups tend to perpendicularly orient to a limited degree. The order
parameter in the interfacial regions was discussed to be dominated by space-filling considerations.
For both C–C bond types, random orientation was observed in the bulk of the film. In general,
the PP chains prefer to flatten in the xy-planes parallel to the solid surfaces on a larger length scale.
This behavior is more pronounced at the interfacial regions compared to the bulk of the film.

Finally, the surface tension was calculated utilizing the buildup imbalance of normal and
tangential pressures. The surface tension value reveals a strong adsorption of PP chains on the Fe2O3

substrate after they formed an interface under confinement. It was observed that the intrinsically
anisotropic nature of the local pressure tensor extends over distances up to approximately 18 Å away
from the solid surface. Beyond this distance, the pressure tensor becomes isotropic indicating that the
presence of the substrate is not felt there.

These results confirm the applicability of PP as a backbone component in a MIM feedstock
containing ferritic materials due to the strong adsorption and parallel orientation of the polymer at the
surface of Fe2O3 substrates. This notion is particularly important since the backbone polymer should
hold the metal particles in place during the shaping process, and while other components are being
removed during the debinding step. This guarantees that the geometry of the molded part will be
maintained and sintering can be done to obtain a metal part with complex shape.
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