Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the {[ZII(bpy)3][NaRu(C2O4)3]}n (ZII = Zn2+ (1), Cu2+ (3), Ru2+ (5), Os2+ (7)), {[ZII(bpy)3][LiRu(C2O4)3]}n (ZII = Cu2+ (4), Ru2+ (6), Os2+ (8)) and {[Zn(bpy)3](H2O)[LiRu(C2O4)3]}n (2) Series of Compounds
2.3. X-Ray Structure Determinations
2.4. Characterization Methods
2.5. Photocatalytic Hydrogen Evolution
3. Results and Discussion
3.1. Crystal Structures
Compound | 1–2 [Zn(bpy)3]2+ | 3–4 [Cu(bpy)3]2+ | 5–6 [Ru(bpy)3]2+ | 7–8 [Os(bpy)3]2+ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bonds | MI = Na | MI = Li (H2O) | MI = Na | MI = Li | MI = Na | MI = Li | MI = Na | MI = Li | ||
Ru–O1 | 2.013(7) | 2.047(3) | 2.017(3) | 2.034(2) | 2.021(3) | 2.029(2) | 2.027(5) | 2.038(4) | ||
Ru–O2 | 2.036(5) | 2.050(3) | 2.030(3) | 2.044(2) | 2.023(3) | 2.043(3) | 2.045(5) | 2.049(4) | ||
MI–O3 | 2.336(9) | 2.110(9) | 2.336(4) | 2.136(6) | 2.319(4) | 2.214(4) | 2.306(6) | 2.140(9) | ||
MI–O4 | 2.375(9) | 2.232(9) | 2.339(4) | 2.235(5) | 2.330(4) | 2.220(5) | 2.312(6) | 2.236(9) | ||
ZII–N1 | 2.126(8) | 2.028(4) | 2.116(4) | 2.100(3) | 2.059(3) | 2.052(2) | 2.057(5) | 2.060(4) | ||
ZII–N2 | 2.141(8) | 2.034(4) | 2.125(3) | 2.101(3) | 2.063(3) | 2.059(2) | 2.064(5) | 2.062(4) | ||
ZII–Nav | 2.133(6) | 2.031(2) | 2.121(4) | 2.100(4) | 2.061(2) | 2.055(3) | 2.061(3) | 2.061(1) | ||
Δ /Λ form | Λ | Δ | Δ | Λ | Λ | Λ | Δ | Λ | ||
2 σ2 | 68.0 | 37.3 | 60.9 | 56.2 | 49.1 | 48.5 | 53.9 | 53.5 | ||
3 λ | 1.2 × 10−5 | 2.2 × 10−6 | 4.5 × 10−6 | 5.0 × 10−8 | 9.4· × 10−7 | 2.9 × 10−6 | 2.8 × 10−6 | 2.3 ×·10−7 | ||
Bond length and distortion parameters of [ZII(bpy)3]2+ cation in salts 1 | ||||||||||
Complex | [Zn(bpy)3]2+ | [Cu(bpy)3]2+ | [Ru(bpy)3]2+ | [Os(bpy)3]2+ | ||||||
ZII–Nrang. | 2.110(5)–2.240(3) | 2.020(2)–2.454(2) | 2.056(1)–2.060(1) | 2.062(1)–2.062(1) | ||||||
ZII–Nav | 2.159(10) | 2.136(11) | 2.058(2) | 2.062 | ||||||
2 σ2 | 95.6 | 85.1 | 57.6 | 63.9 | ||||||
3 λ | 4.8 × 10−4 | 5.7 × 10−3 | 6.8 × 10−7 | 3.7 × 10−6 |
3.2. Infrared Spectroscopy
3.3. Thermogravimetric Analysis
3.4. UV–Vis Spectroscopy
3.5. Photocatalytic Activity
MOF/CP | H2 (μmol) | T (h) | TON | TOF (TON·h−1) | λ (nm) | Ref. |
---|---|---|---|---|---|---|
[RuII,III2(p-BDC)2BF4]n | 29.3 | 4 | 47.0 1 | 11.7 | >420 | [47] |
[RuII,III2(p-BDC)2Cl]n [RuII,III2(p-BDC)2Br]n | 13.5 46.7 | 4 | 5.38 2 18.7 2 | 1.34 4.67 | >420 | [48] |
Ti–MOF–NH2@Pt | 11.7 | 3 | 1.17 2 | 0.39 | >420 | [49] |
Ti–MOF–NH2@Pt | 15.5 | 3 | 1.5 2 | 0.5 | >420 | [50] |
NH2–UiO–66(Zr) NH2–UiO–66(Zr)@Pt | 107.1 125 | 3 | 2.38 2 2.77 2 | 0.93 0.79 | 370 | [51] |
MIL–101(Cr)@CdS/Pt | 300 | 1 | 150 2 | 75.5 | >420 | [52] |
UiO–66(Zr)@Pt UiO–66(Zr)@RhB UiO–66(Zr)@RhB/Pt | 0.97 0.67 1.4 | 5 | 19.5 3 13.5 3 28 3 | 3.9 2.7 5.6 | >420 | [53] |
UiO–67[Ir(ppy)2(bpy)]@Pt | 64.8 | 6 | 1620 1 | 270 | 420 | [54] |
MOF–253–Pt | 3000 | 34 | 5.6 1 | 0.17 | 420 | [55] |
UiO–66–[FeFe](dcbdt)(CO)6 | 3.5 | 2.5 | 0.7 2 | 0.28 | 470 | [56] |
{[Sm2Cu5(OH)2(pydc)6(H2O)8]·I8} {[Eu2Cu5(OH)2(pydc)6(H2O)8]·I8} {[Gd2Cu5(OH)2(pydc)6(H2O)8]·I8} {[Tb2Cu5(OH)2(pydc)6(H2O)8]·I8} | 979.0 1131.4 1025.2 1052.5 | 5 | 9790 3 11,314 3 10,252 3 10,525 3 | 1958.0 2262.8 2050.4 2105.0 | 420 | [57] |
(TBA)2[CuII(BBTZ)2(x-Mo8O26)] | 4.68 | 6 | 0.05 2 | 0.008 | <400 | [58] |
{[AlOH)]2H2TCPP(DMF3–(H2O)2} | 3.15 | 8 | 900 3 | 112.5 | 420 | [59] |
{[Zn(bpy)3][NaRu(C2O4)3]}n | 0.36 | 8 | 0.04 1,3 36 2 | 0.005 4.5 | ≥417 | This work |
0.36 | 0.04 1,3 36 2 | 0.005 4.5 | ≤366 | |||
{[Zn(bpy)3][LiRu(C2O4)3]}n | 0.34 | 0.03 1,3 34 2 | 0.004 4.25 | ≥417 | ||
0.65 | 0.06 1,3 65 2 | 0.007 8.12 | ≤366 | |||
{[Cu(bpy)3][NaRu(C2O4)3]}n | 0.30 | 0.03 1,3 30 2 | 0.004 3.75 | ≥417 | ||
0.30 | 0.03 1,3 30 2 | 0.004 3.75 | ≤366 | |||
{[Cu(bpy)3][LiRu(C2O4)3]}n | 0.39 | 0.04 1,3 39 2 | 0.005 4.87 | ≥417 | ||
0.35 | 0.04 1,3 35 2 | 0.004 4.37 | ≤366 | |||
{[Ru(bpy)3][NaRu(C2O4)3]}n | 0.45 | 0.04 1,3 45 2 | 0.005 5.62 | ≥417 | ||
0.71 | 0.07 1,3 71 2 | 0.009 8.75 | ≤366 | |||
{[Ru(bpy)3][LiRu(C2O4)3]}n | 0.52 | 0.05 1,3 52 2 | 0.006 6.5 | ≥417 | ||
0.83 | 0.08 1,3 83 2 | 0.01 10.4 | ≤366 | |||
{[Os(bpy)3][NaRu(C2O4)3]}n | 0.48 | 0.05 1,3 48 2 | 0.006 6 | ≥417 | ||
1.08 | 0.11 1,3 108 2 | 0.13 13.5 | ≤366 | |||
{[Os(bpy)3][LiRu(C2O4)3]}n | 0.64 | 0.06 1,3 64 2 | 0.008 8 | ≥417 | ||
1.23 | 0.12 1,3 123 2 | 0.15 15.4 | ≤366 |
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CPs | Coordination polymers |
MOFs | Metal-organic frameworks |
BDC | Benzene-1,4-dicarboxylate |
bpy | 2,2’-Bipyridine |
EDTA | Ethylenediaminetetraacetate |
MV2+ | N,N’-Dimethyl-4,4’-bipyridinium |
ppy | 2-Phenylpyridine |
dcbdt | 1,4-Dicarboxylbenzene-2,3-dithiolate |
TBA | Tetrabutylammonium cation |
BBTZ | 1,4-bis(1,2,4-Triazol-1-ylmethyl)-benzene |
H2TCPP | Tetra(4-carboxyl-phenyl)porphyrin |
SEM | Scanning electron microscopy |
TGA | Thermogravimetric analysis |
XRD | X-ray diffraction |
TEA | Triethylamine |
3D | Three-dimensional |
SBU | Secondary building unit |
SDTA | Simultaneous difference thermal analysis |
DSC | Differential scanning calorimetry |
MLCT | Metal-to-ligand charge transfer |
References
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energ. Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, Y.; Toyao, T.; Takeuchi, M.; Matsuoka, M.; Anpo, M. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion—From semiconducting TiO2 to MOF/PCP photocatalysts. Phys. Chem. Chem. Phys. 2013, 15, 13243–13253. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, K.-X.; Guo, X.-X.; Chen, J.-S. Single-site photocatalysts with a porous structure. Proc. R. Soc. A 2012, 468, 2099–2112. [Google Scholar] [CrossRef]
- Stuart, B.R.; Neil, C.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar]
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M.; O'Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; García, H.; Llabrés i Xamena, F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiong, R.-G. Ferroelectric metal–organic frameworks. Chem. Rev. 2012, 112, 1163–1195. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Designer coordination polymers: Dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 2013, 42, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F.X. Metal organic framework catalysis: Quo vadis? ACS Catal. 2014, 4, 361–378. [Google Scholar] [CrossRef]
- Ramaswamy, P.; Wong, N.E.; Shimizu, G.K.H. MOFs as proton conductors—Challenges and opportunities. Chem. Soc. Rev. 2014, 43, 5913–5932. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F.X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112. [Google Scholar] [CrossRef] [PubMed]
- Llabrés i Xamena, F.X.; Corma, A.; Garcia, H. Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80–85. [Google Scholar] [CrossRef]
- Wang, J.-L.; Wang, C.; Lin, W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012, 2, 2630–2640. [Google Scholar] [CrossRef]
- Nasalevich, M.A.; van der Veen, M.; Kapteijn, F.; Gascon, J. Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges. Cryst. Eng. Comm. 2014, 16, 4919–4926. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, Z.; deKrafft, K.E.; Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364–3367. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on photocatalytic CO2 reduction over NH2–UiO–66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal–organic frameworks. Chem. Eur. J. 2013, 19, 14279–14285. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, W.; Fu, Y.; Fang, Z.; Sun, F.; Fu, X.; Zhang, Y.; Li, Z. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): A case study on M/NH2–MIL–125(Ti) (M=Pt and Au). Chem. Eur. J. 2014, 20, 4780–4788. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, D.; Yang, C.; He, S.; Chen, S.; Lin, J.; Zhu, L.; Li, X. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. J. Solid State Chem. 2013, 203, 154–159. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Sun, Q.; Wang, Z.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Appl. Mater. Interfaces 2013, 5, 7654–7658. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wei, Y.; Grzybowski, B.A. A metal–organic framework stabilizes an occluded photocatalyst. Chem. Eur. J. 2013, 19, 11194–11198. [Google Scholar] [CrossRef] [PubMed]
- Ameloot, R.; Roeffaers, M.B.J.; De Cremer, G.; Vermoortele, F.; Hofkens, J.; Sels, B.F.; De Vos, D.E. Metal–organic framework single crystals as photoactive matrices for the generation of metallic microstructures. Adv. Mater. 2011, 23, 1788–1791. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Europium-based metal−organic framework as a photocatalyst for the one-electron oxidation of organic compounds. Langmuir 2010, 26, 10437–10443. [Google Scholar] [CrossRef] [PubMed]
- Laurier, K.G.M.; Vermoortele, F.; Ameloot, R.; De Vos, D.E.; Hofkens, J.; Roeffaers, M.B.J. Iron(III)-based metal–organic frameworks as visible light photocatalysts. J. Am. Chem. Soc. 2013, 135, 14488–14491. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: An efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A 2013, 1, 11473–11482. [Google Scholar] [CrossRef]
- Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.-H.; Yang, X.-L.; Zou, C.; Wu, C.-D. A SnIV–porphyrin-based metal–organic framework for the selective photo-oxygenation of phenol and sulfides. Inorg. Chem. 2011, 50, 5318–5320. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.-R.; Kang, Y.; Zhang, J. Highly selective sorption of small hydrocarbons and photocatalytic properties of three metal–organic frameworks based on Tris(4-(1h-imidazol-1-yl)phenyl)amine ligand. Inorg. Chem. 2014, 53, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Miao, J.; Li, P.-Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti(IV)-based metal-organic framework with visible-light photo-response. Chem. Commun. 2014, 50, 3786–3788. [Google Scholar] [CrossRef] [PubMed]
- Mahata, P.; Madras, G.; Natarajan, S. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. J. Phys. Chem. B 2006, 110, 13759–13768. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-T.; Ma, L.; Ke, F.; Peng, F.-M.; Xu, G.-S.; Shen, Y.-H.; Zhu, J.-F.; Qiu, L.-G.; Yuan, Y.-P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Trans. 2014, 43, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, L.; Li, L.; Cheng, J.; Yuan, D.; Luo, J. A highly symmetric metal–organic framework based on a propeller-like Ru-organic metalloligand for photocatalysis and explosives detection. Cryst. Growth Des. 2013, 13, 5466–5472. [Google Scholar] [CrossRef]
- Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 2012, 48, 11656–11658. [Google Scholar] [CrossRef] [PubMed]
- Toyao, T.; Saito, M.; Horiuchi, Y.; Matsuoka, M. Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal-organic framework. Catal. Sci. Technol. 2014, 4, 625–628. [Google Scholar] [CrossRef]
- Wu, P.; He, C.; Wang, J.; Peng, X.; Li, X.; An, Y.; Duan, C. Photoactive chiral metal–organic frameworks for light-driven asymmetric α-alkylation of aldehydes. J. Am. Chem. Soc. 2012, 134, 14991–14999. [Google Scholar] [CrossRef] [PubMed]
- Gascon, J.; Hernández-Alonso, M.D.; Almeida, A.R.; van Klink, G.P.M.; Kapteijn, F.; Mul, G. Isoreticular mofs as efficient photocatalysts with tunable band gap: An operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem 2008, 1, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Nasalevich, M.A.; Goesten, M.G.; Savenije, T.J.; Kapteijn, F.; Gascon, J. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem. Commun. 2013, 49, 10575–10577. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-K.; Zhao, D.; Gao, W.-Y.; Yang, Z.; Ye, J.; Xu, T.; Ge, Q.; Ma, S.; Liu, D.-J. Tunability of band gaps in metal–organic frameworks. Inorg. Chem. 2012, 51, 9039–9044. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-M.; Fang, G.-Y.; Ma, J.; Ganz, E.; Han, S.S. Band gap engineering of paradigm MOF-5. Cryst. Growth Des. 2014, 14, 2532–2541. [Google Scholar] [CrossRef]
- Meyer, K.; Ranocchiari, M.; van Bokhoven, J.A. Metal organic frameworks for photo-catalytic water splitting. Energ. Environ. Sci. 2015, 8, 1923–1937. [Google Scholar] [CrossRef]
- Ren, Y.; Chia, G.H.; Gao, Z. Metal–organic frameworks in fuel cell technologies. Nano Today 2013, 8, 577–597. [Google Scholar] [CrossRef]
- Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n. Energ. Environ. Sci. 2009, 2, 397–400. [Google Scholar] [CrossRef]
- Kataoka, Y.; Miyazaki, Y.; Sato, K.; Saito, T.; Nakanishi, Y.; Kiatagwa, Y.; Kawakami, T.; Okumura, M.; Yamaguchi, K.; Mori, W. Modification of MOF catalysts by manipulation of counter-ions: Experimental and theoretical studies of photochemical hydrogen production from water over microporous diruthenium (II, III) coordination polymers. Supramol. Chem. 2011, 23, 287–296. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J. Phys. Chem. C 2012, 116, 20848–20853. [Google Scholar] [CrossRef]
- Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst. Catal. Sci. Technol. 2013, 3, 2092–2097. [Google Scholar] [CrossRef]
- Gomes Silva, C.; Luz, I.; Llabrés i Xamena, F.X.; Corma, A.; García, H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem. Eur. J. 2010, 16, 11133–11138. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. Chem. Commun. 2013, 49, 6761–6763. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wang, Y.; Yan, Z. A dye-sensitized Pt@UiO–66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem. Commun. 2014, 50, 7063–7066. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; de Krafft, K.E.; Lin, W. Pt nanoparticles@photoactive metal–organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energ. Environ. Sci. 2013, 6, 3229–3234. [Google Scholar] [CrossRef]
- Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S.M.; Ott, S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal–organic framework. J. Am. Chem. Soc. 2013, 135, 16997–17003. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-L.; Sun, C.-Y.; Qin, C.; Wang, X.-L.; Wang, H.-N.; Zhou, E.-L.; Li, W.-E.; Su, Z.-M. Iodine-templated assembly of unprecedented 3D-4F metal-organic frameworks as photocatalysts for hydrogen generation. Chem. Commun. 2013, 49, 3564–3566. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Qin, C.; Lu, Y.; Zhang, Z.-M.; Li, Y.-G.; Su, Z.-M.; Li, W.-L.; Wang, E.-B. An ionothermal synthetic approach to porous polyoxometalate-based metal–organic frameworks. Angew. Chem. Int. Ed. 2012, 51, 7985–7989. [Google Scholar] [CrossRef] [PubMed]
- Fateeva, A.; Chater, P.A.; Ireland, C.P.; Tahir, A.A.; Khimyak, Y.Z.; Wiper, P.V.; Darwent, J.R.; Rosseinsky, M.J. A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 2012, 51, 7440–7444. [Google Scholar] [CrossRef] [PubMed]
- Nasalevich, M.A.; Becker, R.; Ramos-Fernandez, E.V.; Castellanos, S.; Veber, S.L.; Fedin, M.V.; Kapteijn, F.; Reek, J.N.H.; van der Vlugt, J.I.; Gascon, J. Co@NH2-MIL-125(Ti): Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energ. Environ. Sci. 2015, 8, 364–375. [Google Scholar] [CrossRef]
- Decurtins, S.; Schmalle, H.W.; Schneuwly, P.; Ensling, J.; Guetlich, P. A concept for the synthesis of 3-dimensional homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. Structural, moessbauer, and magnetic studies in the field of molecular-based magnets. J. Am. Chem. Soc. 1994, 116, 9521–9528. [Google Scholar] [CrossRef]
- Milos, M.; Hauser, A. A model for spectral diffusion induced by resonant energy migration applied to the 4A2→2E transition of Cr3+ in [Cr(ox)3]3− (ox=C2O42−). J. Lumin. 2009, 129, 1901–1904. [Google Scholar] [CrossRef]
- Milos, M.; Hauser, A. Chromium(III)-trisoxalate, a versatile building block for luminescent materials. J. Lumin. 2013, 133, 15–20. [Google Scholar] [CrossRef]
- Milos, M.; Penhouet, T.; Pal, P.; Hauser, A. Structural study of mixed crystals of [Zn1−xRux(bpy)3][NaCr(ox)3] probed by high-resolution absorption spectroscopy and high-pressure experiments. Inorg. Chem. 2010, 49, 3402–3408. [Google Scholar] [CrossRef] [PubMed]
- Pellaux, R.; Decurtins, S.; Schmalle, H.W. Three anionic polymeric networks: Sodium(I)-ruthenium(III), sodium(I)-rhodium(III) and sodium(I)-aluminium(III) µ-oxalato complexes with Tris(2,2’-bipyridine)ruthenium(II) cations. Acta Crystallogr. Sect. C 1999, 55, 1075–1079. [Google Scholar] [CrossRef]
- Rabaste, S.; Amstutz, N.; Hauser, A.; Pillonnet, A. Optical properties of thin films of [Ru(bpy)3][NaCr(ox)3] polymeric networks. Appl. Phys. Lett. 2005, 87, 251904. [Google Scholar] [CrossRef]
- Roman, P.; Guzman-Miralles, C.; Luque, A. Synthesis, structure and characterisation of [Ni(bipy)3][NaAl(ox)3]:(bipy = 2,2’-bipyridine, ox = oxalate). J. Chem. Soc. Dalton Trans. 1996. [Google Scholar] [CrossRef]
- Sieber, R.; Decurtins, S.; Stoeckli-Evans, H.; Wilson, C.; Yufit, D.; Howard, J.A.K.; Capelli, S.C.; Hauser, A. A thermal spin transition in [Co(bpy)3][LiCr(ox)3] (ox = C2O42−; bpy = 2,2’-bipyridine). Chem. Eur. J. 2000, 6, 361–368. [Google Scholar] [CrossRef]
- Von Arx, M.E.; Burattini, E.; Hauser, A.; van Pieterson, L.; Pellaux, R.; Decurtins, S. Luminescence and energy transfer of [Ru(bpy)3]2+, [Cr(ox)3]3−, and [Os(bpy)3]2+ in three-dimensional oxalato-networks. J. Phys. Chem. A 2000, 104, 883–893. [Google Scholar] [CrossRef]
- Von Arx, M.E.; Hauser, A.; Riesen, H.; Pellaux, R.; Decurtins, S. Resonant and phonon-assisted excitation energy transfer in the R1 line of [Cr(ox)3]3−. Phys. Rev. B 1996, 54, 15800–15807. [Google Scholar] [CrossRef]
- Andrés, R.; Gruselle, M.; Malézieux, B.; Verdaguer, M.; Vaissermann, J. Enantioselective synthesis of optically active polymeric homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. Inorg. Chem. 1999, 38, 4637–4646. [Google Scholar] [CrossRef] [PubMed]
- Decurtins, S.; Schmalle, H.W.; Pellaux, R.; Schneuwly, P.; Hauser, A. Chiral, three-dimensional supramolecular compounds: Homo- and bimetallic oxalate- and 1,2-dithiooxalate-bridged networks. A structural and photophysical study. Inorg. Chem. 1996, 35, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.; Riesen, H.; Pellaux, R.; Decurtins, S. Resonant excitation energy transfer in [Rh(bpy)3][NaCr(ox)3]ClO4. Chem. Phys. Lett. 1996, 261, 313–317. [Google Scholar] [CrossRef]
- Langford, V.S.; von Arx, M.E.; Hauser, A. Superexchange and dipole−dipole energy transfer from the [Cr(ox)3]3− of 3D oxalate networks to encapsulated [Cr(bpy)3]3+. J. Phys. Chem. A 1999, 103, 7161–7169. [Google Scholar] [CrossRef]
- Milos, M.; Pal, P.; Hauser, A. Effect of external pressure on the excitation energy transfer from [Cr(ox)3]3− to [Cr(bpy)3]3+ in [Rh1−xCrx(bpy)3][NaM1−yCry(ox)3]ClO4. ChemPhysChem 2010, 11, 3161–3166. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, M.E.; Langford, V.S.; Oetliker, U.; Hauser, A. Resonant energy transfer in the mixed crystal series [Rh(bpy)3][NaAlxCr1-x(ox)3]ClO4 (bpy = 2,2’-bipyridine, ox = oxalate, x = 0.05−1). J. Phys. Chem. A 2002, 106, 7099–7105. [Google Scholar] [CrossRef]
- Larsen, R.W.; Wojtas, L. Photophysical studies of Ru(II)tris(2,2’-bipyridine) confined within a Zn(II)–trimesic acid polyhedral metal–organic framework. J. Phys. Chem. A 2012, 116, 7830–7835. [Google Scholar] [CrossRef] [PubMed]
- Burstall, F.H.; Dwyer, F.P.; Gyarfas, E.C. 194. Optical activity dependent on a six-covalent bivalent osmium complex. J. Chem. Soc. 1950. [Google Scholar] [CrossRef]
- Kaziro, R.; Hambley, T.W.; Binstead, R.A.; Beattie, J.K. Potassium Tris(oxalato)ruthenate (III). Inorg. Chim. Acta 1989, 164, 85–91. [Google Scholar] [CrossRef]
- Thornton, D.A.; Watkins, G.M. The infrared spectra (4000–50 cm−1) of complexes of 2,2’-bipyridine, 1,10-phenanthroline and their perdeuterated analogues with metal(II) perchlorates of the first transition series. J. Coord. Chem. 1992, 25, 299–315. [Google Scholar] [CrossRef]
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.C.; Polidori, G.; Camalli, M. SIR92—a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 1994, 27, 435. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with shelxl. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Flack, H.D.; Bernardinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. J. Appl. Cryst. 2000, 33, 1143–1148. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Hyde, S.T.; O’Keeffe, M.; Proserpio, D.M. A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew. Chem. Int. Ed. 2008, 47, 7996–8000. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Wang, R.-Q.; Yu, X.-L. Tris(2,2’-bipyridine)zinc(II) perchlorate. Acta Crystallogr. Sect. C 1995, 51, 1545–1547. [Google Scholar] [CrossRef]
- Majumdar, P.; Ghosh, A.K.; Falvello, L.R.; Peng, S.-M.; Goswami, S. Silver(I) assisted metal exchange reaction. A generalized synthesis of tris-chelated copper(II) complexes of neutral N,N-donors. Inorg. Chem. 1998, 37, 1651–1654. [Google Scholar] [CrossRef]
- Harrowfield, J.; Sobolev, A. The crystal structure of tris(2,2’-bipyridine)ruthenium(II) perchlorate. Aust. J. Chem. 1994, 47, 763–767. [Google Scholar] [CrossRef]
- Richter, M.M.; Scott, B.; Brewer, K.J.; Willett, R.D. Crystal and molecular structure of Tris(2,2’-bipyridyl)osmium(II) bis(hexafluorophosphate). Acta Crystallogr. Sect. C 1991, 47, 2443–2444. [Google Scholar] [CrossRef]
- Robinson, K.; Gibbs, G.V.; Ribbe, P.H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.D.; Shannon, R.D. Empirical bond-strength-bond-length curves for oxides. Acta Crystallogr. Sect. A 1973, 29, 266–282. [Google Scholar] [CrossRef]
- Russell, M.V.; Craig, C.D.; Scudder, L.M.; Dance, G.I. Interpenetrating non-molecular and supramolecular (10,3)—a nets occurring with chiral recognition in crystalline (Ph3MeP)2[NaCr(ox)3]. Cryst. Eng. Comm. 2000, 2, 16–23. [Google Scholar] [CrossRef]
- Baburin, I.A.; Blatov, V.A. Sizes of molecules in organic crystals: The Voronoi-Dirichlet approach. Acta Crystallogr. Sect. B 2004, 60, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Olliff, R.W.; Odell, A.L. 454. Correlation of reaction rates with electronic absorption spectra for a series of trisoxalates of tervalent metals. J. Chem. Soc. 1964, 2417–2421. [Google Scholar] [CrossRef]
- Lever, A.B.P. Inorganic electronic spectroscopy; Elsevier: Amsterdam, NY, USA, 1984. [Google Scholar]
- Palmer, R.A.; Piper, T.S. 2,2’-Bipyridine complexes. I. Polarized crystal spectra of Tris (2,2’-bipyridine)copper(II), -nickel(II), -cobalt(II), -iron(II), and -ruthenium(II). Inorg. Chem. 1966, 5, 864–878. [Google Scholar] [CrossRef]
- Riesen, H.; Wallace, L.; Krausz, E. Localised 3MLCT states of [Ru(bpy)3−x(phen)x]2+ (x = 0 to 3) in racemic [Zn(bpy)3] (ClO4)2. Chem. Phys. Lett. 1994, 228, 605–609. [Google Scholar] [CrossRef]
- Otsuka, T.; Takahashi, N.; Fujigasaki, N.; Sekine, A.; Ohashi, Y.; Kaizu, Y. Crystal structure and energy transfer in double-complex salts composed of tris(2,2’-bipyridine)ruthenium(II) or tris(2,2’-bipyridine)osmium(II) and hexacyanochromate(III). Inorg. Chem. 1999, 38, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.L.; Tauc, J. Weak absorption tails in amorphous semiconductors. Phys. Rev. B 1972, 5, 3144–3151. [Google Scholar] [CrossRef]
- Larsen, R.W.; Wojtas, L. Photoinduced inter-cavity electron transfer between Ru(II)tris(2,2’-bipyridne) and Co(II)tris(2,2’-bipyridine) co-encapsulated within a Zn(II)-trimesic acid metal organic framework. J. Mater. Chem. A 2013, 1, 14133–14139. [Google Scholar] [CrossRef]
- Kumura, M.; Yamashita, T.; Nishida, S. Light-induced electron-transfer reactions. Part 2. Kinetics of the intra-molecular redox decomposition of tris(oxalato)-cobaltate(III) by irradiation with visible light of aqueous solution containing tris(2,2’-bipyridine)ruthenium(II) ion. Inorg. Chim. Acta 1984, 89, 193–198. [Google Scholar] [CrossRef]
- Decurtins, S.; Pellaux, R. Supramolecular host/guest compounds and their prospects for multifunctional materials. Comments Inorg. Chem. 1998, 20, 143–161. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikhtiarenko, A.; Villanueva-Delgado, P.; Valiente, R.; García, J.R.; Gimeno, J. Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers 2016, 8, 48. https://doi.org/10.3390/polym8020048
Dikhtiarenko A, Villanueva-Delgado P, Valiente R, García JR, Gimeno J. Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers. 2016; 8(2):48. https://doi.org/10.3390/polym8020048
Chicago/Turabian StyleDikhtiarenko, Alla, Pedro Villanueva-Delgado, Rafael Valiente, José R. García, and José Gimeno. 2016. "Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction" Polymers 8, no. 2: 48. https://doi.org/10.3390/polym8020048
APA StyleDikhtiarenko, A., Villanueva-Delgado, P., Valiente, R., García, J. R., & Gimeno, J. (2016). Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers, 8(2), 48. https://doi.org/10.3390/polym8020048