Polydopamine Particle as a Particulate Emulsifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PDA Particles Synthesis
2.3. PDA Particles Characterization
2.3.1. Scanning Electron Microscopy (SEM) Study
2.3.2. Dynamic Light Scattering (DLS) and Zeta Potential Studies
2.3.3. Density
2.3.4. Infrared (IR) study
2.4. Emulsion Preparation
2.5. Crosslinking of Particle-Stabilized Emulsion
2.6. Sonication Challenge
2.7. Emulsion Characterization
2.7.1. Drop Test
2.7.2. Optical Microscopy (OM) Study
2.7.3. Laser Diffraction Study
2.7.4. Scanning Electron Microscopy Study
3. Results and Discussion
3.1. PDA Particles Characterization
3.2. Emulsions Stabilized with PDA Particles
3.2.1. Different Oils Emulsion Data
3.2.2. Effects of PDA Particles Concentration on Emulsion Formation and Stability
- Voilinitial:
- Initial oil volume prior to emulsification
- Voilseparated:
- Volume of separated oil
3.2.3. Visualization of Transparent Emulsion
3.2.4. Emulsion Data with Dichloromethane as a Model Volatile Oil
3.3. Formation of Colloidosomes from Particle-Stabilized Emulsion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PDA | Polydopamine |
DA–HCl | Dopamine hydrochloride |
DCM | Dichloromethane |
PEI | Poly(ethylene imine) |
PVA | Poly(vinyl alcohol) |
SEM | Scanning electron microscopy |
DLS | Dynamic light scattering |
OM | Optical microscopy |
References
- Ramsden, W. Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)-Preliminary account. Proc. R. Soc. Lond. 1903, 72, 156–164. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.-emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Binks, B.P.; Horozov, T.S. Colloidal Particles at Liquid Interfaces; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Binks, B.P. Particles as surfactants-similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- Binks, B.P.; Lumsdon, S.O. Stability of oil-in-water emulsions stabilised by silica particles. Phys. Chem. Chem. Phys. 1999, 1, 3007–3016. [Google Scholar] [CrossRef]
- Binks, B.P.; Lumsdon, S.O. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 2000, 16, 2539–2547. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Kurth, D.G.; Möhwald, H. Directing self-assembly of nanoparticles at water/oil interface. Angew. Chem. Int. Ed. 2004, 43, 5639–5642. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, D.; Sobal, N.S.; Giersig, M.; Kurth, D.G.; Möhwald, H. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Let. 2005, 5, 949–952. [Google Scholar]
- Wang, D.; Duan, H.; Möhwald, H. The water/oil interface: The emerging horizon for self-assembly of nanoparticles. Soft Matter. 2005, 1, 412–416. [Google Scholar] [CrossRef]
- Lin, Y.; Skaff, H.; Böker, A.; Dinsmore, A.D.; Emrick, T.; Russell, T.P. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 2003, 125, 12690–12691. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A.D.; Russell, T.P. Nanoparticle assembly and transport at liquid-liquid interfaces. Science 2003, 299, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Cauvin, S.; Colver, P.J.; Bon, S.A.F. Pickering stabilized miniemulsion polymerization: Preparation of clay armored latexes. Macromolecules 2005, 38, 7887–7889. [Google Scholar] [CrossRef]
- Fujii, S.; Okada, M.; Furuzono, T. Hydroxyapatite nanoparticles as stimuls-responsive particulate emulsifiers and building block for porous materials. J. Colloid Int. Sci. 2007, 315, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Okada, M.; Sawa, H.; Furuzono, T.; Nakamura, Y. Hydroxyapatite nanoparticles as particulate emulsifier: Fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir 2009, 25, 9759–9766. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; He, J.; Xu, J.; Pingali, S.; Jutz, G.; Böker, A.; Niu, Z.; Li, T.; Rawlinson, D.; Emrick, T.; Lee, B.; Thiyagarajamn, P.; Russell, T.P.; Wang, Q. Interfacial assembly of turnip yellow mosaic virus nanoparticles. Langumuir 2009, 25, 5168–5176. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Aichi, A.; Muraoka, M.; Kishioto, N.; Iwahori, K.; Nakamura, Y.; Yamashita, I. Ferritin as a bionano-particulate emulsifier. J. Colloid Interface Sci. 2009, 338, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, P.; Mougin, N.C.; Franke, D.; Park, H.; Böker, A. Pickring emulsion templated soft capsules by self-assembling cross-linkable ferritin-polymer conjugates. Chem. Commun. 2011, 47, 8376–8371. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Liebeck, B.M.; John, D.; Heiss, A.; Subkowskic, T.; Böker, A. Protein–mineral hybrid capsules from emulsions stabilized with an amphiphilic protein. J. Mater. Chem. 2011, 21, 9731–9736. [Google Scholar] [CrossRef]
- Velev, O.D.; Furusawa, K.; Nagayama, K. Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 1996, 12, 2374–2384. [Google Scholar] [CrossRef]
- Cayre, O.J.; Noble, P.F.; Paumov, V.N. Fabrication of novel colloidsome microcapsules with gelled aqueous cores. J. Mater. Chem. 2004, 14, 3351–3355. [Google Scholar] [CrossRef]
- Binks, B.P.; Rodrigues, J.A. Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Dinsmore, A.D.; Hsu, M.F.; Nikolaides, M.G.; Marquez, M.; Bausch, A.R.; Weitz, D.A. Colloidsomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Amalvy, J.I.; Armes, S.P.; Binks, B.P.; Rodrigues, J.A.; Unali, G.-F. Use of sterically-stabilised polystyrene latex particles as a pH-responsive particulate emulsifier to prepare surfactant-free oil-in-water emulsions. Chem. Commun. 2003, 15, 1826–1827. [Google Scholar] [CrossRef]
- Binks, B.P.; Murakami, R.; Armes, S.P.; Fujii, S. Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew. Chem. Int. Ed. 2005, 44, 4795–4798. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Randall, D.P.; Armes, S.P. Synthesis of polystyrene/poly[2-(dimethylamino)ethyl methacrylate-stat-ethylene glycol dimethacrylate] core-shell latex particles by seeded emulsion polymerization and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions. Langmuir 2004, 20, 11329–11335. [Google Scholar]
- Fujii, S.; Aichi, A.; Akamatsu, K.; Nawafune, H.; Nakamura, Y. One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier. J. Mater. Chem. 2007, 17, 3777–3779. [Google Scholar] [CrossRef]
- Fujii, S.; Read, E.S.; Armes, S.P.; Binks, B.P. Stimulus-responsive emulsifiers based on nanocomposite microgel particles. Adv. Mater. 2005, 17, 1014–1018. [Google Scholar] [CrossRef]
- Binks, B.P.; Murakami, R.; Armes, S.P.; Fujii, S. Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles. Langmuir 2006, 22, 2050–2057. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Armes, S.P.; Binks, B.P.; Murakami, R. Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels. Langmuir 2006, 22, 6815–6825. [Google Scholar] [CrossRef] [PubMed]
- Ngai, T.; Behrens, S.H.; Auweter, H. Novel emulsions stabilized by pH and temperature sensitive microgels. Chem. Commum. 2005, 3, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Cai, Y.; Weaver, J.V.M.; Armes, S.P. Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers. J. Am. Chem. Soc. 2005, 127, 7304–7305. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yan, Y.; Such, G.K.; Liang, K.; Ochs, C.J.; Postma, A.; Caruso, F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomolecules 2012, 13, 2225–2228. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Guo, Y.L.; Odusote, G.; Qu, F.L.; Priestley, R.D. Core–shell Fe3O4 polydopamine nanoparticles serve multipurpose drug carrier, catalyst support and carbon adsorbent. ACS Appl. Mater. Interfaces 2013, 5, 9167–9171. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.C.; Sun, Y.M.; Zhou, J.J.; Xu, R.; Duan, H.W. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces 2013, 5, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
- Kohri, M.; Kohma, H.; Shinoda, Y.; Yamauchi, M.; Yagai, S.; Kojima, T.; Taniguchi, T.; Kishikawa, K. A colorless functional polydopamine thin layer as a basis for polymer capsules. Polym. Chem. 2013, 4, 2696–2702. [Google Scholar] [CrossRef]
- Kohri, M.; Shinoda, Y.; Kohma, H.; Nannichi, Y.; Yamauchi, M.; Yagai, S.; Kojima, T.; Taniguchi, T.; Kishikawa, K. Facile synthesis of free-standing polymer brush films based on a colorless polydopamine thin layer. Macromol. Rapid Commun. 2013, 34, 1220–1224. [Google Scholar] [CrossRef] [PubMed]
- Kohma, H.; Uradokoro, K.; Kohri, M.; Taniguchi, T.; Kishikawa, K. Hierarchically structured by colorless polydopamine thin layer and polymer brush layer. Trans. Mater. Res. Soc. Jpn. 2014, 39, 157–160. [Google Scholar] [CrossRef]
- Kohri, M.; Kohma, H.; Uradokoro, K.; Taniguchi, T.; Kishikawa, K. Fabrication of colored particles covered by dye-bearing colorless polydopamine layer. J. Colloid Sci. Biotechnol. 2014, 3, 337–342. [Google Scholar]
- Kohri, M.; Nannichi, Y.; Kohma, H.; Abe, D.; Kojima, T.; Taniguchi, T.; Kishikawa, K. Size control of polydopamine nodules formed on polystyrene particles during dopamine polymerization with carboxylic acid-containing compounds for the fabrication of raspberry-like particles. Colloids Surf. A. 2014, 449, 114–120. [Google Scholar] [CrossRef]
- Kang, K.; Lee, S.; Kim, R.; Choi, I.S.; Nam, Y. Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces. Angew. Chem. Int. Ed. 2012, 51, 13101–13104. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cao, Y.; Wang, Y.; Yang, W.; Feng, J. Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 2013, 25, 2980–2983. [Google Scholar] [CrossRef] [PubMed]
- Farnad, N.; Farhadi, K.; Voelcker, N.V. Polydopamine nanoparticles as a new and highly selective biosorbent for the removal of copper (II) ions from aqueous solutions. Water Air Soli Pollut. 2012, 223, 3535–3544. [Google Scholar] [CrossRef]
- Ho, C.C.; Ding, S.J. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J. Mater. Sci. Mater Med. 2013, 24, 2381–2390. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wang, M.; Sun, Z.; Wang, C.; Wang, C.; Deng, Y.; Zhao, D. A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core-shell nanostructures. J. Mater. Chem. B 2013, 1, 6085–6093. [Google Scholar] [CrossRef]
- Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Kohri, M.; Nannichi, Y.; Taniguchi, T.; Kishikawa, K. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C 2015, 3, 720–724. [Google Scholar] [CrossRef]
- Hong, S.; Na, Y.S.; Choi, S.; Song, I.T.; Kim, W.Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717. [Google Scholar] [CrossRef]
- Liebscher, J.; Mrówczyński, R.; Scheidt, H.A.; Filip, C.; Hădade, N.D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: A never-ending story? Langmuir 2013, 29, 10539–10548. [Google Scholar] [CrossRef] [PubMed]
- Kralchevsky, P.A.; Nagayama, K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 2000, 85, 145–192. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Zhao, N.; Dang, Z.M.; Jian Xu, J. Patterned polymer surfaces with wetting contrast prepared by polydopamine modification. J. Appl. Polym. Sci. 2014, 131, 41057. [Google Scholar] [CrossRef]
- Croll, L.M.; Stöver, H.D.H. Formation of tectocapsules by assembly and cross-linking of poly(divinylbenzene-alt-maleic anhydride) spheres at the oil-water interface. Langmuir 2003, 19, 5918–5922. [Google Scholar] [CrossRef]
- Thompson, K.L.; Armes, S.P. From well-defined macromonomers to sterically-stabilised latexes to covalently cross-linkable colloidosomes: Exerting control over multiple length scales. Chem. Commun. 2010, 46, 5274–5276. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.; Thompson, K.L.; Armes, S.P.; York, D.W. Polyamine-functional sterically stabilized latexes for covalently cross-linkable colloidosomes. Langmuir 2010, 26, 18039–18048. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Armes, S.P.; Verstraete, P.; Smets, J. Double emulsions and colloidosomes-in-colloidosomes using silica-based Pickering emulsifiers. Langmuir 2014, 30, 2703–2711. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; van Duijneveldt, J.S. Microcapsules composed of cross-linked organoclay. Langmuir 2012, 28, 1753–1757. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.L.; Armes, S.P.; Howse, J.R.; Ebbens, S.; Ahmad, I.; Zaidi, J.H.; York, D.W.; Burdis, J.A. Covalently cross-linked colloidosomes. Macromolecules 2010, 43, 10466–10474. [Google Scholar] [CrossRef]
PDA Concentration/wt % | Type of Emulsion Formed | Survived Emulsion for 1 Week/ % | Volume-Average Oil Droplet Diameter/ μm |
---|---|---|---|
0.05 | Oil/water | 81 | 88 ± 40 |
0.10 | Oil/water | 99.5 | 46 ± 25 |
0.20 | Oil/water | 99.5 | 44 ± 24 |
0.50 | Oil/water | ~100 | 33 ± 13 |
1.00 | Oil/water | ~100 | 30 ± 12 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishizawa, N.; Kawamura, A.; Kohri, M.; Nakamura, Y.; Fujii, S. Polydopamine Particle as a Particulate Emulsifier. Polymers 2016, 8, 62. https://doi.org/10.3390/polym8030062
Nishizawa N, Kawamura A, Kohri M, Nakamura Y, Fujii S. Polydopamine Particle as a Particulate Emulsifier. Polymers. 2016; 8(3):62. https://doi.org/10.3390/polym8030062
Chicago/Turabian StyleNishizawa, Nobuaki, Ayaka Kawamura, Michinari Kohri, Yoshinobu Nakamura, and Syuji Fujii. 2016. "Polydopamine Particle as a Particulate Emulsifier" Polymers 8, no. 3: 62. https://doi.org/10.3390/polym8030062
APA StyleNishizawa, N., Kawamura, A., Kohri, M., Nakamura, Y., & Fujii, S. (2016). Polydopamine Particle as a Particulate Emulsifier. Polymers, 8(3), 62. https://doi.org/10.3390/polym8030062