The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Preparation of Network Films
2.4. In Vitro Enzymatic Degradation
2.5. In Vitro Hydrolytic Degradation
2.6. In Vivo Degradation
3. Results and Discussion
3.1. Synthesis of Cross-Linked PTMC Networks
3.2. In Vitro Enzymatic Degradation
3.3. In Vitro Hydrolytic Degradation
3.4. In Vivo Degradation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mehdikhani-Nahrkhalaji, M.; Fathi, M.H.; Mortazavi, V.; Mousavi, S.B.; Hashemi-Beni, B.; Razavi, S.M. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J. Mater. Sci. Mater. Med. 2012, 23, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Q.; Yang, D.; Guan, Y.M.; Li, J.X.; Li, M. Random copolymers based on trimethylene carbonate and ε-caprolactone for implant applications: Synthesis and properties. J. Appl. Polym. Sci. 2012, 124, 3714–3720. [Google Scholar] [CrossRef]
- Böstman, O.; Pihlajamäki, H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: A review. Biomaterials 2000, 21, 2615–2621. [Google Scholar] [CrossRef]
- Weiler, A.; Hoffmann, R.F.; Stähelin, A.C.; Helling, H.J.; Südkamp, N.P. Biodegradable implants in sports medicine: The biological base. Arthroscop 2000, 16, 305–321. [Google Scholar] [CrossRef]
- Witte, F.; Calliess, T.; Windhagen, H. Degradable synthetische implantatmaterialien. Orthopade 2008, 37, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S. The evolution of clinical applications of biodegradable implants in arthroscopic surgery. Biomaterials 2000, 21, 2631–2634. [Google Scholar] [CrossRef]
- Allcock, H.R. Biodegradable Polymers as Drug Delivery Systems; Chasin, M., Langer, R., Eds.; Marcel Dekker: New York, NY, USA, 1990; p. 163. [Google Scholar]
- Wang, H.; Dong, J.H.; Qiu, K.Y.; Gu, Z.W. Synthesis of poly(1, 4-dioxan-2-one-co-trimethylene carbonate) for application in drug delivery systems. J. Polym. Sci. A Polym. Chem. 1998, 36, 1301–1307. [Google Scholar] [CrossRef]
- Zhang, Z.; Foks, M.A.; Grijpma, D.W.; Feijen, J. PTMC and MPEG-PTMC microparticles for hydrophilic drug delivery. J. Control. Release 2005, 101, 392–394. [Google Scholar]
- Zhang, Y.; Zhuo, R.X. Synthesis and drug release behavior of poly(trimethylene carbonate)-poly (ethylene glycol)-poly(trimethylene carbonate) nanoparticles. Biomaterials 2005, 26, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Younes, H.M.; El-Kadi, A.O.; Neufeld, R.J.; Amsden, B.G. Sustained interferon-γ delivery from a photocrosslinked biodegradable elastomer. J. Control. Release 2005, 102, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Hafeman, A.E.; Nyman, J.S.; Esparza, J.M.; Shinomiya, K.; Spengler, D.M. A sustained release of lovastatin from biodegradable, elastomeric polyurethane scaffolds for enhanced bone regeneration. Tissue Eng. A 2010, 16, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Stankus, J.J.; Wagner, W.R. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J. Control. Release 2007, 120, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Pêgo, A.P.; Poot, A.A.; Grijpma, D.W.; Feijen, J. Copolymers of trimethylene carbonate and ε-caprolactone for porous nerve guides: Synthesis and properties. J. Biomater. Sci. Polym. Ed. 2001, 12, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Schappacher, M.; Fabre, T.; Mingotaud, A.F.; Soum, A. Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer—Part 1: Preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials 2001, 22, 2849–2855. [Google Scholar] [CrossRef]
- Fabre, T.; Schappacher, M.; Bareille, R.; Dupuy, B.; Soum, A.; Bertrand-Barat, J.; Baquey, C. Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer—Part 2: in vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide. Biomaterials 2001, 22, 2951–2958. [Google Scholar] [CrossRef]
- Song, Y.; Wennink, J.W.; Kamphuis, M.M.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. J. Biomed. Mater. Res. A 2010, 95, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.N.; Brites, P.; Fonseca, C.; Pêgo, A.P. Poly(Trimethylene carbonate-co-ε-caprolactone) promotes axonal growth. PLoS ONE 2014, 9, e88593. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wennink, J.W.; Kamphuis, M.M.; Sterk, L.M.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Tissue Eng. A 2011, 17, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Papenburg, B.J.; Schüller-Ravoo, S.; Bolhuis-Versteeg, L.A.; Hartsuiker, L.; Grijpma, D.W.; Feijen, J.; Wessling, M.; Stamatialis, D. Designing porosity and topography of poly(1, 3-trimethylene carbonate) scaffolds. Acta Biomater. 2009, 5, 3281–3294. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.; Zhao, L.; Spencer, R.W.; Burghouwt, A.; Taylor, M.S.; Shalaby, S.W.; Niklason, L.E. Development of novel biodegradable polymer scaffolds for vascular tissue engineering. Tissue Eng. A 2011, 17, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.I.; Kim, B.S.; Kang, S.W.; Kwon, J.H.; Lee, Y.M.; Kim, S.H.; Kim, Y.H. In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-ε-caprolactone) scaffolds. Biomaterials 2004, 25, 5939–5946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kuijer, R.; Bulstra, S.K.; Grijpma, D.W.; Feijen, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006, 27, 1741–1748. [Google Scholar] [PubMed]
- Zhu, K.J.; Hendren, R.W.; Jensen, K.; Pitt, C.G. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 1991, 24, 1736–1740. [Google Scholar] [CrossRef]
- Pêgo, A.P.; van Luyn, M.J.A.; Brouwer, L.A.; van Wachem, P.B.; Poot, A.A.; Grijpma, D.W.; Feijen, J. In vivo behavior of poly (1, 3-trimethylene carbonate) and copolymers of 1, 3-trimethylene carbonate with d,l-lactide or ε-caprolactone: Degradation and tissue response. J. Biomed. Mater. Res. 2003, 67A, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Pêgo, A.P.; Poot, A.A.; Grijpma, D.W.; Feijen, J. In vitro degradation of trimethylene carbonate based (co)polymers. Macromol. Biosci. 2002, 2, 411–419. [Google Scholar] [CrossRef]
- Albertsson, A.C.; Eklund, M. Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride). J. Appl. Polym. Sci. 1995, 57, 87–103. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003, 5, 29–39. [Google Scholar] [PubMed]
- Karp, J.M.; Shoichet, M.S.; Davies, J.E. Bone formation on two-dimensional poly (dl-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J. Biomed. Mater. Res. A 2003, 64, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Engelberg, I.; Kohn, J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 1991, 12, 292–304. [Google Scholar] [CrossRef]
- Pêgo, A.P.; Grijpma, D.W.; Feijen, J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 2003, 44, 6495–6504. [Google Scholar] [CrossRef]
- Bat, E.; Plantinga, J.A.; Harmsen, M.C.; van Luyn, M.J.; Zhang, Z.; Grijpma, D.W.; Feijen, J. Trimethylene carbonate and ε-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation. Biomacromolecules 2008, 9, 3208–3215. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; Plantinga, J.A.; Harmsen, M.C.; van Luyn, M.J.; Feijen, J.; Grijpma, D.W. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: Degradation and tissue response. J. Biomed. Mater. Res. A 2010, 95A, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Timbart, L.; Tse, M.Y.; Pang, S.C.; Amsden, B.G. Tissue response to, and degradation rate of, photocrosslinked trimethylene carbonate-based elastomers following intramuscular implantation. Materials 2010, 3, 1156–1171. [Google Scholar] [CrossRef]
- Jansen, J.; Boerakker, M.J.; Heuts, J.; Feijen, J.; Grijpma, D.W. Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications. J. Control. Release 2010, 147, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.; Bosman, M.B.; Boerakker, M.J.; Feijen, J.; Grijpma, D.W. Photo-crosslinked poly(trimethylene carbonate)-fumarate/n-vinyl pyrrolidone networks for the controlled release of proteins. J. Control. Release 2010, 148, e79–e80. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kamphuis, M.M.; Zhang, Z.; Sterk, L.M.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater. 2010, 6, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; Kothman, B.H.; Higuera, G.A.; van Blitterswijk, C.A.; Feijen, J.; Grijpma, D.W. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials 2010, 31, 8696–8705. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.; Koopmans, S.A.; Los, L.I.; van der Worp, R.J.; Podt, J.G.; Hooymans, J.M.; Feijen, J.; Grijpma, D.W. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(d,l-lactic acid). Biomaterials 2011, 32, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Q.; He, B.; Meng, S.; Zhang, J.Z.; Li, M.; Guan, Y.M.; Li, J.X.; Gu, Z.W. Biodegradable cross-linked poly(trimethylene carbonate) networks for implant applications: Synthesis and properties. Polymer 2013, 54, 2668–2675. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Meng, S.; Jin, Y.; Zhang, J.; Li, M.; Guo, J.; Gu, Z. The in vitro and in vivo degradation behavior of poly(trimethylene carbonate-co-ε-caprolactone) implants. Polymer 2014, 55, 5111–5124. [Google Scholar] [CrossRef]
- Bat, E.; Plantinga, J.A.; Harmsen, M.C.; van Luyn, M.J.A.; Grijpma, D.W.; Feijen, J. In vivo degradation of TMC and ε-CL(co)polymer networks. In Proceedings of the 8th World Biomaterials Congress, Amsterdam, The Netherlands, 28 May–1 June 2008.
- Chapanian, R.; Tse, M.Y.; Pang, S.C.; Amsden, B.G. The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers. Biomaterials 2009, 30, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Tracy, M.A.; Ward, K.L.; Firouzabadian, L.; Wang, Y.; Dong, N.; Qian, R.; Zhang, Y. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 1999, 20, 1057–1062. [Google Scholar] [CrossRef]
- Chapanian, R.; Tse, M.Y.; Pang, S.C.; Amsden, B.G. Long term in vivo degradation and tissue response to photo-cross-linked elastomers prepared from star-shaped prepolymers of poly(ε-caprolactone-co-d,l-lactide). J. Biomed. Mater. Res. A 2010, 92, 830–842. [Google Scholar] [PubMed]
- Karjalainen, T.; HiljanenVainio, M.; Malin, M.; Seppala, J. Biodegradable lactone copolymers. III. Mechanical properties of ε-caprolactone and lactide copolymers after hydrolysis in vitro. J. Appl. Polym. Sci. 1996, 59, 1299–1304. [Google Scholar] [CrossRef]
- Storey, R.F.; Warren, S.C.; Allison, C.J.; Puckett, A.D. Methacrylate-endcapped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer 1997, 38, 6295–6301. [Google Scholar] [CrossRef]
- Van Wachem, P.B.; van Luyn, M.J.; Olde Damink, L.H.; Dijkstra, P.J.; Feijen, J.; Nieuwenhuis, P. Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen. J. Biomed. Mater. Res. 1994, 28, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hooper, K.A.; Macon, N.D.; Kohn, J. Comparative histological evaluation of new tyrosine-derived polymers and poly(l-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 1998, 41, 443–454. [Google Scholar] [CrossRef]
- Holder, W.D.; Gruber, H.E.; Moore, A.L.; Culberson, C.R.; Anderson, W.; Burg, K.J.; Mooney, D.J. Cellular ingrowth and thickness changes in poly-l-lactide and polyglycolide matrices implanted subcutaneously in the rat. J. Biomed. Mater. Res. 1998, 41, 412–421. [Google Scholar] [CrossRef]
No. | Monomers (mol) | Gel percentage b (%) | Mn c (g/mol) | PDI c | Tg d (°C) | Td (°C) | E e (MPa) | σm f (MPa) | εm g (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
TMC | CL | BTB | |||||||||
N100 | 100 | 0 | 0 | n/a | 274,700 | 1.07 | −16.2 | 254.7 | 3.08 ± 0.18 | 3.32 ± 0.23 | 3570 ± 514 |
N100-1 | 100 | 0 | 0.01 | 19 ± 2 | 265,200 | 1.11 | −14.7 | 286.8 | 3.18 ± 0.16 | 4.48 ± 0.59 | 2150 ± 212 |
N100-2 | 100 | 0 | 0.02 | 31 ± 2 | 288,400 | 1.06 | −13.8 | 291.7 | 3.98 ± 0.20 | 6.69 ± 0.71 | 1350 ± 208 |
N75-1 | 75 | 25 | 0.01 | 11 ± 2 | 260,100 | 1.14 | −31.4 | 296.8 | 2.69 ± 0.14 | 3.43 ± 0.12 | 3350 ± 173 |
N50-1 | 50 | 50 | 0.01 | 8 ± 3 | 240,500 | 1.21 | −44.1 | 306.3 | 1.83 ± 0.23 | 1.30 ± 0.08 | 163 ± 10 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Li, J.; Li, M.; Gu, Z. The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks. Polymers 2016, 8, 151. https://doi.org/10.3390/polym8040151
Yang L, Li J, Li M, Gu Z. The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks. Polymers. 2016; 8(4):151. https://doi.org/10.3390/polym8040151
Chicago/Turabian StyleYang, Liqun, Jianxin Li, Miao Li, and Zhongwei Gu. 2016. "The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks" Polymers 8, no. 4: 151. https://doi.org/10.3390/polym8040151
APA StyleYang, L., Li, J., Li, M., & Gu, Z. (2016). The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks. Polymers, 8(4), 151. https://doi.org/10.3390/polym8040151