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Abstract: A water-soluble, core-multishell (CMS) nanocarrier based on a new hyperbranched
polyester core building block was synthesized and characterized towards drug transport and
degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and
the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS
nanocarrier can transport one molecule of dexamethasone and degrades within five days at a skin
temperature of 32 ˝C to biocompatible fragments.
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1. Introduction

A main objective for polymeric nanocarriers is to increase the solubility of hydrophobic and poorly
water-soluble drugs. The idea to use nanocarriers originates from the mimicry of micellar architectures,
which are self-assembled constructs made of amphiphiles. Inspired by micelles, the first attempts to
mimic this architecture with polymeric structures was made in the late 1980s [1]. Apart from their
good performance in terms of loading efficacy, both architectures can disassemble below a critical
micellar concentration [2,3]. This drawback can be resolved by creating a micelle, as visualized in
Figure 1, which is covalently linked at its focal point [4]. Although there have been advances in the
field of unimolecular micelles, which are based upon hyperbranched and dendritic core molecules,
such as hyperbranched poly(ethylene imine), hyperbranched polyglycerol, or hyperbranched polyester
Boltorn™, little progress has been made in biodegradable systems [5,6]. The majority of published
work focuses on solubilizing drugs in water-soluble nanocarriers. This feature of water solubility
is introduced to the branched nanocarrier scaffold mostly by covalently attaching biocompatible
poly(ethylene glycol) (PEG), which serves as the outer shell of the nanocarrier [7].
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Figure 1. Evolution of nanocarriers, which has led to core-multishell nanocarriers. Adapted from
PhD thesis M.Radowski and reprinted with permission from E. Fleige, B. Ziem, M. Grabolle, R. Haag,
U. Resch-Genger, Macromolecules 2012, 45, 9452–9459 [8]. © Copyright 2012 American Chemical Society.
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Our motivation was to create a biodegradable nanocarrier for the encapsulation of hydrophobic
drugs, such as dexamethasone. As previously reported poly(ε-caprolactone) is a well-suited material
for the entrapment or encapsulation of dexamethasone, we chose this linear, potentially biodegradable
polymer to be a building block for the work presented here, as shown in Figure 2 [9,10]. Combining our
expertise in the synthesis of hyperbranched polymers and synthesizing universal nanocarriers for
the transport of drugs, our aim was to synthesize a biodegradable polyester-based core-multishell
nanocarrier (CMS) for the encapsulation of dexamethasone [5,6,11]. In this paper we will show
the synthesis of a CMS based on a hyperbranched polyester (shown in Figure 2) that acts as
a multifunctional initiator for the ring-opening polymerization of ε-caprolactone (ε-CL) in a
grafting-from approach, which is terminated by a methoxy poly (ethylene glycol) (mPEG) chain
to introduce the feature of water solubility. The synthesis comprises a surprising, and not often
discussed, ring opening of glycidol by the terminal carboxylic acid groups of the core. This leads to
the introduction of hydroxyl groups at the surface of the inner core and will be discussed based on
detailed analysis. We studied how the polyester architecture can transport the drug dexamethasone
and the degradation behavior of the CMS nanocarrier.
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Figure 2. Building blocks and schematic representation of water-soluble CMS nanocarriers based
on polyesters.

2. Materials and Methods

2.1. Materials

Adipic acid (Fluka Analytical, Steinheim, Germany), dibutyltin dilaurate (DBTL, Merck KGaA,
Darmstadt, Germany), Tin(II) 2-ethylhexanoate (Sn(Oct)2, 92.5%–100%), glycidol (Sigma Aldrich,
Steinheim, Germany), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, ě99%,
Carl Roth GmbH + Co. KG, Karlsruhe, Germany), 4-(dimethylamino)-pyridin (4-DMAP, 99%,
Acros Organics, Acros Organics, Beel, Belgium), poly (ethylene glycol) methyl ether (mPEG, Mn

~2000 g¨mol´1
, Sigma Aldrich, Steinheim, Germany), and succinic anhydride (Acros Organics, Beel,

Belgium) were used without further purification. ε-Caprolactone (ε-CL, 97%, Sigma Aldrich, Steinheim,
Germany) was dried over ground CaH2 (Sigma Aldrich) and distilled using cryogenic distillation
prior to reaction. Solvents were purchased as HPLC grade and used without further purification.
Anhydrous solvents were either purchased as ultra-dry solvents from Acros Organics, or taken
from a MBraun MB SPS-800 solvent purification system. CAL B lipase, which is immobilzed on
acrylic resin, was purchased from Sigma Aldrich. Dialysis was performed in benzoylated cellulose
dialysis tubes from Sigma-Aldrich (width: 32 mm, MWCO = 1000 g/mol). Ultrafiltration was
performed in a Millipore solvent-resistant stirred cell (47 mm diameter, 300 mL volume) with
Millipore-regenerated cellulose membranes (47 mm diameter) and nitrogen pressure set between
four to five bar. Reactions were performed under dry conditions using a Schlenk line, Schlenk flasks,
and argon as the inert gas.
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2.2. Characterization

2.2.1. Nuclear Magnetic Resonance Spectroscopy

1H NMR and 13C NMR spectra were recorded on a Bruker AMX 500 (Bruker Corporation,
Billerica, MA, USA), Jeol ECP 500 (JEOL (Germany) GmbH, Freising, Germany), or a Bruker Avance
400 spectrometer (Bruker Corporation, Billerica, MA, USA) (at 295 K). Inverse-gated 13C NMR and
overnight measurements spectra were recorded on a Bruker Avance 500 spectrometer, or a Bruker
Avance III 700 (Bruker Corporation, Billerica, MA, USA). Tetramethylsilane was used for internal
calibration at 125 MHz with complete proton decoupling. Degree of branching was evaluated by
inverse-gated 13C NMR according to Frey et al., as shown in Equation (A4) in the Appendix [12].

2.2.2. TAV and THV

Total acid values TAV and total hydroxyl values THV were determined based on 1H NMR
spectroscopy (see Appendix).

2.2.3. Gel Permeation Chromatography

GPC measurements in THF were performed with highly-dilute fractions eluting from a SEC
system consisting of an Agilent 1100 solvent delivery system (Agilent Technologies, Santa Clara, CA,
USA) with isopump, manual injector, and an Agilent 1100 differential refractometer. Three 30 cm
columns were used (PLgel Mixed C, Agilent Technologies, Santa Clara, CA, USA, 5 µm particle
size) to separate polymer samples. The mobile phase was THF and the flow rate was 1.0 mL¨min´1.
The columns were held at room temperature. For each measurement, 100 µL of a sample of 15
or a 5 mg mL´1 solution was injected. WinGPC Unity from PSS was used to acquire data from
the seven scattering angles (detectors) and the differential refractometer. Molecular weights and
molecular-weight distributions were compared with poly(methyl methacrylate) (PMMA) standards
(PSS, Mainz, Germany).

GPC in DMF data was obtained by measurements using a Shimadzu (Kyoto, Japan) liquid
chromatography (LC) set up with degasser, pump, auto sampler, column oven, and differential
refractometer. Three PolarSil columns (PSS Polymer Standards Service GmbH, Mainz, Germany;
PolarSil 8 mm ˆ 300 mm, 100, 1000, 3000 Å with 5 µm particle size) using DMF with 0.3% LiBr and
0.6% acetic acid as the mobile phase at a flow rate of 1 mL¨min´1 were used to analyze polymer
samples. The columns were operated at 40 ˝C with the RI detector set to the same temperature.
The calibration was performed by using polystyrene standard (PSS, Mainz, Germany). Samples were
measured at a concentration of 10 mg¨mL´1 injecting 100 µL. LC solution software from Shimadzu
was used for data acquirement and interpretation.

2.2.4. Dynamic Light Scattering

DLS experiments were performed using a Malvern Zetasizer Nano instrument (Malvern
Instruments Ltd, Worcestershire, UK) equipped with a He-Ne laser (633 nm) using backscattering
mode (detector angle 173˝). The CMS nanocarriers were dissolved in dH2O, mixed by a Vortex shaker
for 2 min, followed by filtration using a 0.45 µm RC syringe filter. 100 µL of the filtered solution was
added to a disposable Plastibrand®micro cuvette (Brand GmbH + Co KG, Wertheim, Germany) with a
round aperture. The autocorrelation functions of the backscattered light fluctuation were analyzed
using Zetasizer DLS software from Malvern Instruments Ltd (Worcestershire, UK) to determine the
size distribution by intensity and volume. The measurements were performed at 25 ˝C, equilibrating
the system on this temperature for 120 s. Mean diameter values were obtained from four different runs.
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2.2.5. High Pressure Liquid Chromatography

HPLC measurements for the analysis of dexamethasone content was performed on a Knauer
Smartline-HPLC system with an internal UV absorption detector (λ = 254 nm), equipped with a
Gemini RP C18 column (Phenomenix, 250 nm ˆ 4.6 mm, particle size: 5 µm) and run with an
acetonitrile-water (40:60) mixture as the mobile phase at a flow rate of 1.0 mL¨min´1 under isocratic
regime. The data were analyzed with Chromgate software (Knauer, Berlin, Germany). A calibration
curve of dexamethasone was obtained by measuring dexamethasone in an acetonitrile-water (40:60)
mixture in the concentration range of 0.004–2 mg¨mL´1.

2.2.6. Infrared Spectroscopy

IR-spectra were obtained from a Nicolet Avatar 320 FT-IR spectrometer (Thermo Fisher Scientific
Inc., Waltham, MA, USA) operating from 4000–400 cm´1, equipped with a Smart Orbit ATR accessory
with a diamond crystal.

2.3. Synthesis

2.3.1. Synthesis of Hyperbranched Polyester hPES 1

At room temperature, adipic acid (39.9 g, 273 mmol, 1.2 eq) was charged into a three-neck glass
vertical reactor, equipped with a mechanical stirrer and a Liebig condenser. After adding pre-dried
glycerol (20.9 g, 228 mmol), the bulk monomer mixture was heated to 150 ˝C. Under stirring at 150 rpm,
a 0.6 mL of a stock solution of DBTL in toluene (100 ppm) was added to the molten monomers using a
syringe. The reaction temperature was increased to 160 ˝C. After 1 h at 160 ˝C, the formed volatiles
were removed by cryo distillation and collected in a round-bottom flask. The removal of volatiles was
repeated every hour. With proceeding reaction time, the frequency of volatile removal was increased
to once per every 10 min. Conversion of the reaction was controlled by determination of the ratio
of unreacted to total amount of acid groups, using 1H NMR spectroscopy. When conversion almost
reached the maximum conversion PA as determined by the Flory Equation, the reaction was stopped
by complete removal of the volatiles and cooling the reactor to room temperature. The viscous product
hPES 1 was obtained without any further purification as a light yellow viscous solid and dissolved
in THF for easier handling. Product was characterized via 1H NMR, IG 13C NMR, and GPC in THF
(see Table A1 and Figure A6).

2.3.2. Synthesis of Polyesterol hPES-OH 2

30 mL of a solution of hyperbranched polyester hPES 1 in THF (c = 347 mg¨mL´1, 10.41 g, 19 mmol
COOH) was charged into a Schlenk flask. Residual catalyst DBTL (1.3 mg, 3.9 µmol) from the original
product hPES 1 was used to catalyze the reaction; no further catalyst was added. After solubilization
in 10 mL DMF under stirring at RT, the flask was heated to 85 ˝C. THF was removed from the mixture
under controlled reduced pressure using cryo distillation. Within the limits of 1H–NMR, no residual
THF was detected. After that, the mixture was heated to 110 ˝C. Glycidol (1.25 mL, 1.388 g, 19 mmol,
1 eq) was added dropwise to the stirring yellow solution during a time period of 10 min using a
syringe. The reaction mixture was stirred at 110 ˝C for 120 min, afterwards at RT overnight. Due to the
incompleteness of the reaction, the reaction was heated to 110 ˝C again and more glycidol (0.1 mL,
20 mmol in total) was added dropwise to the stirring reaction mixture. The reaction was stirred at
110 ˝C for 5.5 h and afterwards allowed to cool down to RT. The viscous product was obtained without
further purification and stored in DMF. Product was characterized via 1H NMR, IG 13C NMR, and
GPC in DMF (see Figure A7).
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2.3.3. Synthesis of Linear Di-Block Copolymer hPES-OCL9-OH 3

In a Schlenk flask pre-dried macroinitiator hPES-OH 2 (2 g, 10.6 mmol OH) was dissolved in
freshly-distilled ε-caprolactone (6.18 g, 54 mmol) at 60 ˝C and two drops of Sn(Oct)2 were added to the
stirring mixture, followed by an increase of the temperature to 125 ˝C. The bulk mixture was stirred at
125 ˝C for 18 h. Purification was performed by dissolving the crude reaction mixture in DCM in high
dilution and precipitation in a high excess of ice-cold MeOH under vigorous stirring. The dispersion
was separated from the formed gel, solvent was removed under reduced pressure, and the received
solid was redissolved in DCM in high dilution. Another precipitation was performed by adding the
DCM solution drop-wise into vigorously stirred ice-cold diethyl ether. The mixture was separated by
centrifugation at 4000 min´1 for 1 min, and the supernatant was collected. After drying the separated
supernatant under reduced pressure, the received solid was once again purified using dialysis in
DCM (benzoylated RC membrane, MWCO = 1000 g/mol, 7 h) for removal of Sn(Oct)2 and traces of
ε-caprolactone. A white wax-like solid product was obtained after removal of solvent under reduced
pressure (2.69 g, yield: 33%). The product was characterized via 1H NMR, IG 13C NMR, and GPC in
DMF (see Figure A8).

2.3.4. Functionalization of mPEG-OH

To a solution of pre-dried mPEG (4.786 g, 2.5 mmol) in a mixture of 10% anhydrous DMF in
anhydrous THF (28 mL) in a 50 mL Schlenk flask, 4-DMAP (0.44 g, 3.8 mmol, 1.5 eq), TEA (0.5 mL,
3.8 mmol, 1.5 eq), and succinic anhydride (1.2 g, 12.5 mmol, 5 eq) were added under stirring at RT.
After stirring at RT for three days, unreacted precipitated starting material was removed from the
solution and the solution was dried under reduced pressure. The crude product was purified by
precipitation from DCM solution into ice-cold, 10-fold excess of Et2O. The formed precipitate was
filtered off using a glass filter (P4), redissolved in DCM, and precipitated once more following the
same procedure. The collected precipitate was dried under high vacuum and 3.5 g (1.67 mmol, yield:
70%) of pure product were obtained. The product was characterized via 1H NMR, IG 13C NMR, and
GPC in DMF.

2.3.5. Synthesis of Core Multishell Nanocarrier hPES-OCL9-PEG-OMe 4

In a dried 25 mL Schlenk flask, solid mPEG-COOH (1.110 g, 0.529 mmol, 1.1 eq) was added at RT
to a stirring solution of hPES-OCL9-OH 3 (304 mg, 0.48 mmol OH) in 6 mL anhydrous DMF. After the
addition of 4-DMAP (0.016 g, 0.106 mmol, 20 mol %), EDCl (0.110 g, 0.574 mmol, 1.1 eq) was added at
0 ˝C. The reaction mixture was stirred for 10 min at 0 ˝C, and then allowed to reach RT by removing
the ice bath. After 20 h of stirring at RT, the crude product was purified via extensive ultrafiltration
(DMF, MWCO = 10,000 g/mol), followed by repeated fractionation. For this purpose, the impure
product was dissolved in DCM and yielded a clear solution. Hexane was added to the clear solution at
RT until cloudiness appeared. The cloudy dispersion was heated to obtain a clear solution, followed
by the addition of hexane to obtain a dispersion. The warm solution was allowed to reach RT and
centrifuged (1 min, 3900 min´1) to separate into a stable dispersion and sediment. The dispersion was
dried and refractionated following the above-described procedure. The progress of purification was
monitored using GPC in DMF. After six cycles of refractionation and removal of solvent under reduced
pressure, followed by drying at high vacuum, a white solid product was obtained (0.116 g, yield: 12%).
The product was characterized via 1H NMR, IG 13C NMR, and GPC in DMF (see Figure A8).

2.3.6. Encapsulation of Dexamethasone in CMS Nanocarrier

Encapsulation of dexamethasone was performed using the film method uptake [8], in which
dexamethasone solubilized in ethanol was dried under reduced pressure at 40 ˝C, which created a dry
film at the bottom of the vial. The dry film was subsequently dissolved in a double amount of CMS
nanocarrier in dH2O at a concentration of 10 mg¨mL´1. The mixture was stirred for 22 h at 1200 min´1
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and RT and, afterwards, filtered using a 0.45 µm PTFE syringe filter to remove excess dexamethasone.
The size of the loaded CMS nanocarriers was determined using a DLS measurement of the aqueous
solutions after filtration. The determination of dexamethasone content via HPLC was performed
either by aqueous solution after filtration, to which acetonitrile (ACN/dH20 4:6) was added prior to
measurement, or the samples were first freeze-dried and then redissolved in an acetonitrile-water (4:6)
mixture before measurement. The amount of dexamethasone in the CMS solution was determined
by HPLC measurement relative to a dexamethasone calibration curve. As dexamethasone has some
solubility in water, a blank sample was prepared to determine the natural solubility of dexamethasone
in water. Therefore, a solution of dexamethasone in water was prepared in a procedure analog to
the film method uptake. The solubility of the drug obtained from this blank control was subtracted
from the nanocarrier results in order to obtain the effective loading. The values obtained from HPLC
measurements of dexamethasone-loaded CMS were inserted in the following equation, which led to
the loading capacity (LC):

Loading capacity pLCq “
n pencapsulated dexamethasoneq

n pnanocarrierq
ˆ 100 (1)

2.3.7. Degradation of CMS Nanocarriers

Acidic degradation of CMS nanocarriers was studied by incubation of 2 mL of a CMS nanocarrier
solution (10 mg¨mL´1) in acetate buffer (pH 5.0) at 32 ˝C and constant stirring at 500 rpm.
At defined time points, samples of 100 µL were withdrawn and freeze-dried in 1.5 mL Eppendorf
tubes. The obtained lyophilisates were dissolved in DMSO-d6. Insoluble salts were separated by
centrifugation at 4000 U¨min´1 for 1 min, and the supernatant was analyzed by 1H NMR spectroscopy.
For studying enzymatic degradation, samples were prepared for each time point as follows: 0.5 mL
of a CMS nanocarrier solution (5 mg¨mL´1) in 0.1 M PBS buffer (pH 7.4) was prepared in a 1.5 mL
Eppendorf tube, and 200 wt % with respect to the polymer of immobilized CAL B was added, followed
by 5 µL of n-butanol. The samples were incubated at 32 ˝C in an incubator shaker (New Brunswick
Scientific Co. Int., Enfield, CT, USA). Samples were withdrawn at defined time points, frozen with
liquid nitrogen, and kept in a freezer. After all the samples were obtained, the samples were allowed
to thaw, and the immobilized enzymes were separated from the aqueous solution by centrifugation
at 4000 U¨min´1 for 1 min. The supernatant was transferred to a 1.5 mL Eppendorf tube, and
combined with 0.5 mL dH2O used for washing the separated resin. The resin-free aqueous solution
was freeze-dried, and the obtained lyophilisate was dissolved in DMSO-d6. After the insoluble salts
were separated by centrifugation (4000 U¨min´1, 1 min), the supernatant was analyzed via 1H NMR
spectroscopy. As a control for both experiments, degradation of CMS nanocarriers in 0.1 M PBS
buffer (pH 7.4) was performed in the absence of enzyme by incubation of 1 mL of a CMS nanocarrier
solution (10 mg¨mL´1) in 0.1 M PBS buffer (pH 7.4) at 32 ˝C and constant stirring at 500 rpm.
At defined time points, samples of 100 µL were withdrawn and freeze-dried in 1.5 mL Eppendorf
tubes. The obtained lyophilisates were dissolved in DMSO-d6. Insoluble salts were separated by
centrifugation at 4000 U¨min´1 for 1 min, and the supernatant was analyzed by 1H NMR spectroscopy.

3. Results and Discussion

3.1. Synthesis of Hyperbranched Polyester

Based on previous work of Stumbé et al., hyperbranched polyester hPES 1 was synthesized, as
shown in Scheme 1, by polycondensation of a 1.2:1 molar ratio of adipic acid and glycerol at 160 ˝C
and catalyzation with dibutyltin dilaurate [13]. NMR spectroscopy, which is the key for evaluating
the hyperbranched polymer’s structure, was used during the polymerization process to control the
polymerization conversion, and to provide information about the extent of branching. The first step
to control the polymerization via NMR was to predict the theoretical polymerization conversion PA
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before reaching the gel point. This value could be calculated based on Flory’s theory of gelation and
led to a PA value of 0.79 for a molar ratio of 1.2:1 (diacid:triol) [14].
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The conversion P was monitored by 1H NMR spectroscopy based on the conversion of acid to
ester groups, i.e., the ratio between the integral of the methylene next to the acid at 2.2 ppm and the
integral of the methylene next to the ester at 2.3 ppm. The calculated P value of 0.83 is slightly higher
than the PA value of 0.79. The reason might be the underestimation of the reactivity difference of
primary and secondary alcohol functional groups of glycerol in Flory’s theory. Information about
the degree of branching is extracted from inverse-gated 13C NMR (IG 13C NMR). The degree of
branching (DB) of a hyperbranched polymer contributes the most to an understanding of the polymers’
architecture, because it reflects the perfection of the branching, which is essential for evaluating
the structural similarity to dendritic systems. DB values range from 0 for linear systems to 1 for
perfectly-branched dendrimers [15]. In hPES 1, glycerol is the trifunctional branching unit (B3) and,
thus, mainly responsible for the extent of branching. If the trifunctional branching unit has equal
reactivities at every reactive end group, full branching is achieved at every step. In reality, the
primary alcohol groups of glycerol are reported to have high reactivity, while the secondary alcohol
shows reduced reactivity [16]. This difference in reactivity leads to the formation of different types of
distinguishable glycerol units. Glycerol can react in three modes: at one primary and one secondary
alcohol group forming a L1,2 unit, at both primary alcohol groups forming a L1,3 unit, and it can react
with all three functional groups, which leads to a branching unit D. Terminal glycerol units can either
have one free primary and one free secondary alcohol group that produce a T1,2 unit or two free
primary alcohol groups, which form T1,3, as shown in Figure 3. According to previously published
detailed analysis, and as supported by HMQC-NMR spectroscopy, the signals of the five types of
glycerol units obtained by IG 13C NMR spectroscopy can be assigned, leading to the DB value as
defined by Frey et al. [12,13,17]. Based on the spectrum shown in Figure 3, a DB value of 0.52 was
calculated for product hPES 1. Values for total acid and total hydroxyl values were obtained by 1H
NMR spectra analysis. The majority of free functional groups are represented by free hydroxyl groups
with a percentage of 56%, compared to the overall amount of free functional groups. Molecular weights
were determined by GPC measurements in THF and showed two peaks with values of 3.7 ˆ 107 and
1600 g¨mol´1 in Mw.

3.2. Modification of hPES 1 to Uniform Diol Endgroups

In order to obtain a monofunctional branched polyester scaffold, hPES 1 was modified with
glycidol via ROP, which yielded hPES-OH 2. The benefit of using glycidol is that the risk of
transesterification during the process is omitted and the number of hydroxyl groups increases
rapidly, as one ring-opening process yields two hydroxyl groups in the first ring opening step.
The new approach in this synthesis is that glycidol reacts with carboxylic acids, instead of hydroxyl
groups. Reactions between carboxylic acids and glycidol have not been reported in literature yet.
Nevertheless, there are some reports of comparable reactions with epoxide moieties and carboxylic
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acids, which took place under metal-mediated catalysis. The reported catalysts for the ring-opening
reactions of epoxides initiated by carboxylic acids are generally limited to Lewis acid catalysts, such as
FeCl3, tetrabutylammonium chloride and bromide, and Ce(OTf)4 [18–21]. In the case of glycidol, the
combination of the high ring strain of the epoxide and the polarity of the carbon-oxygen bonds makes
the ring prone to nucleophilic attack. The ring-opening reactions can be catalyzed under acidic or basic
conditions, but can also take place at high temperatures initiated by any weak nucleophile. The latter
case is called thermally-induced, ring-opening reaction of glycidol [22]. Based on the above-mentioned
literature, we hypothesized that DBTL as Lewis acid mediates a ring-opening of glycidol initiated
by carboxylic acid of hyperbranched polyesters. Hyperbranched polyester hPES 1 with an total acid
value of 1.8 mmol carboxylic acid groups per gram polyester was modified with equimolar amounts of
glycidol per hydroxyl group of hPES 1, aiming at a modification of one glycidol per carboxylic acid. We
chose the polar aprotic solvent DMF as solvent, since preliminary results showed that it performed best
for this type of ring-opening reaction. The reactions were performed at a bath temperature of 110 ˝C
for two hours and afterwards at room temperature overnight. The reaction progress was monitored by
1H NMR, which showed the disappearance of the methylene signal next to the free carboxylic acid
as well as the proton signal of terminating carboxylic acid groups. We paid special attention to the
expected changes of several structural units as well as the possibility of the shown side reaction, as
shown in Scheme 2.
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1H and inverse-gated 13C NMR spectra were measured and checked for a change in methine and
methylene signals of the various glycerol units. In summary, the amount of esterified carboxylic acid
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units increased by a factor of 2.5 compared to the esterified carboxylic acid units before the modification,
while full modification of carboxylic acids could not be achieved. The degree of functionalization
of carboxylic acids is Df (COOH) = 0.83. The ring-opening of glycidol did not only take place at C1
carbon atom, which led to a new T1,2 unit, but also at the C2 carbon atom, which formed T1,3 units.
Formation of oligoglycerols only took place to a low extent.

3.3. ε-Caprolactone Polymerization Using hPES-OH 2 in Grafting from

Having hyperbranched polyester hPES-OH 2 at hand, there were two options to synthesize a
core-multishell nanocarrier: either by synthesizing the amphiphilic double-shell and attaching it via a
grafting-to approach, or using the hydroxyl groups of hPES-OH 2 as initiators for a polymerization,
aiming at the grafting-from approach. As previous trials with grafting to approaches led to low
functionalization of the hyperbranched template, and removal of unreacted amphiphilic double-shell
building blocks turned out to be quite tedious, we decided to use the grafting-from approach.
As already discussed in other publications, multiple hydroxyl groups on one branched scaffold
allow the polymerization to simultaneously take place at ideally all accessible hydroxyl groups [23,24].
This concept of a so-called macroinitiator was used in our herein-presented work to polymerize
ε-caprolactone in a tin-catalyzed ring opening polymerization. We aimed for an oligocaprolactone with
five repeating units per free OH groups, but as calculated based on 1H NMR spectroscopy we, instead,
obtained nine repeating units (see Figure 4). The number of repeating units was calculated based on
a comparison of methylene CH2

E, at 3.98 ppm and methylene neighboring terminal alcohol groups
CH2

EΩ at 3.36 ppm, which was obtained by 1H NMR spectroscopy. In order to investigate whether
ring opening occurred at both species of hydroxyl groups of the core’s glycerol units, namely, primary
and secondary, we integrated the individual methine CH signals via IG 13C NMR and compared their
abundance as shown in Table A3. We could show that polymerization occurred at both primary and
secondary hydroxyl groups, and the degree of functionalization was Df (OH) = 0.67 (for NMR spectra,
see Figure A9).
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3.4. Synthesis of CMS Nanocarrier

The attachment of succinic acid anhydride-modified mPEG outer shell was accomplished by ester
bond formation using modified Steglich type conditions, as shown in Scheme 3 [25,26]. We used the
water soluble carbodiimide coupling reagent EDC and catalytic amounts of 4-(dimethylamino)-pyridin
(4-DMAP) in anhydrous DMF for the ester bond formation, which was followed by a multistep
purification approach consisting of extraction and ultrafiltration to remove starting material and
low-functionalized CMS nanocarriers. We used ultrafiltration membranes with a molecular weight
cutoff of 10 kDa, which yielded a product with a quite narrow molecular weight distribution of
Mw/Mn = 1.1. The decreasing PDI from the precursor hPES-OH 2 and hPES-OCL9-OH 3 to the final
product hPES-OCL9-mPEG 4 reflects the effort put into the purification procedure. While hPES-OH 2
was not purified, hPES-OCL9-OH 3 was purified by precipitation and dialysis, removing products
with very high and very low functionalization. The impact of purification on the PDI can be observed
especially in the final product hPES-OCL9-mPEG 4, where a combination of ultrafiltration and
precipitation was performed. As described in Materials and Methods, the ultrafiltration desks had
a molecular weight cutoff of 10 kDa and, hence, allowed the removal of low molecular weight
compounds. To further narrow down the molecular weight distribution, fractionation was performed.
This strategy consisting of precipitation and dissolution including heat-chill cycles lead to the removal
of high molecular weight side-products. The initial PDI of 1.2 obtained after ultrafiltration was
therefore decreased to 1.1. In addition to the impact of the purification, it is known and has been
reported in the literature that the PDI of CMS nanocarriers is often lower than the PDI of the core
or core-single shell precursors [24,27]. Owing to both the multistep synthesis and the extensive
purification procedures, the overall yield was 12%. 1H NMR measurements of the purified product 4
were analyzed with respect to increasing the ester neighboring methylene signals, which revealed an
esterification efficacy of oligocaprolactone’s hydroxyl groups of Df (CL) = 0.7. Furthermore, we could
show that 55% of present mPEG chains were attached to terminal caprolactone and 45% of mPEG
chains reacted with internal glycerol units. The Mn of the final CMS nanocarrier as calculated by NMR
of 30 kDa is similar to the findings from GPC measurement, which were obtained by comparison
to linear polymer standards. Table 1 summarizes the characteristics of the CMS nanocarrier and its
building blocks. The degree of branching increased from 0.41 (hPES-OCL-OH 3) to 0.52, which matches
well the observation that mPEG-COOH reacted with the internal glycerol hydroxyl groups. The size of
the CMS nanocarriers in dH2O was determined by DLS measurements and showed a hydrodynamic
diameter of 28 nm in the volume distribution. The size indicates aggregation behavior of the CMS
nanocarriers, which has been observed before [8,28–30].
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Table 1. Comparison of physical characteristics of CMS with its macroinitiator and intermediate.

Compound Df
a DB a Mn

b Mw/Mn
b

hPES-OH 2 0.83 0.41 900 b 2.7 b

hPES-OCL9-OH 3 0.67 0.74 c 5,150 d 1.7 d

hPES-OCL9-mPEG 4 0.7 e 0.52 27,900 d 1.1 d

a determined via NMR; b GPC in THF, Pullulan standards; c based on overnight 13C NMR measurements;
d GPC in DMF, PS standards; and e Df of terminal caprolactone hydroxyl groups.

3.5. Encapsulation of Dexamethasone in CMS Nanocarriers

In order to elaborate whether polyester-based CMS nanocarriers are suitable for hydrophobic
drugs, synthesized CMS nanocarriers were tested for the encapsulation of dexamethasone.
Dexamethasone is an approved glucocorticoid drug used for its anti-inflammatory and immune
suppressant effect. Due to its hydrophobic nature, it has a low water solubility of c = 0.08 mg¨mL´1

that limits its application. Therefore, solubilizing dexamethasone in water-soluble nanocarriers
is of great interest and might increase its significance as a used drug. The encapsulation of
dexamethasone is performed according to the film-method uptake. For example, a dry film of 50 wt %
dexamethasone is dissolved in a stock solution of CMS in dH2O and the dispersion is stirred for 22 h
at 1200 rpm, which is followed by filtration using a syringe filter. The filtration process removes big
crystals of dexamethasone, while dexamethasone-loaded CMS as well as the water-soluble fraction
of dexamethasone pass the filter. Analysis by HPLC combined with an internal UV absorption
detector was used to determine the concentration of dexamethasone. The overall concentration of
dexamethasone of the CMS nanocarrier sample is c = 0.182 mg¨mL´1. This value roughly correlates
to one molecule of encapsulated dexamethasone per CMS nanocarrier after deducting the drug’s
natural solubility.

3.6. Acidic and Enzymatic Degradation of CMS Nanocarriers

In order to mimic the conditions in skin, degradation of CMS nanocarriers was investigated in both
acidic and enzymatic environments at 32 ˝C. For creating an acidic environment, CMS nanocarriers
were solubilized in an acetic acid buffer of pH 5.0, while the enzymatic degradation study was
performed using non-specific lipase expressed from Candida Antarctica (CAL B) and immobilized on
acrylic resin [31,32]. Both studies were performed for five days and sampled at defined time points.
A control experiment at pH 7.4 in the absence of enzyme was performed simultaneously and showed
no degradation. The hydrolysis of ester bonds leading to formation of carboxylic acids was monitored
by 1H NMR spectroscopy in DMSO-d6. While the signal intensity of methylene-neighboring ester
bonds at 2.3 ppm decreased, the intensity of methylene neighboring carboxylic acids at 2.2 ppm
increased, as depicted in Figure 5. After one day of incubation, a new peak at 2.24 ppm appeared,
which is the signal of cleaved succinic acid. Even though the integral of this signal does not allow
for isolated integration of the peak at 2.3 ppm, the disappearance of the ester-neighboring methylene
is clearly visible. Table 2 gives the values of the individual integrals for each time point, as well
as the percentage of cleaved ester bonds. After five days of enzymatic degradation, nearly all ester
bonds are degraded (for full spectrum, please see Figure A10). In contrast to the successful enzymatic
degradation, no degradation was observed in acidic environment at pH 5.0, even after seven days.
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Figure 5. Overlay of magnified 1H NMR spectra in DMSO-d6 of CMS nanocarriers after incubation with
CAL B at 32 ˝C at various time points during a five-day study; simultaneous decrease of –CH2–COOR
at 2.27 ppm and increase of –CH2–COOH at 2.15 ppm.

Table 2. Degree of degradation of CMS nanocarriers by incubation with CAL B.

Incubation time (Days) Ratio CH2–COOR: CH2–COOH Degree of degradation (%)

0 1:0 0
0.5 1:0.3 24
1 1:0.4 30
2 1:4.3 81
3 1:5.2 84
4 1:6 86
5 1:22 96

4. Conclusions

A hyperbranched polyester was synthesized in a bulk polycondensation based on adipic acid
and glycerol, catalyzed by the tin catalyst DBTL. The obtained branched scaffold with a degree of
branching of 0.41 and a rather low molecular weight of Mn = 900 Da was modified with glycidol in a
ring-opening reaction in the presence of the tin catalyst. The obtained scaffold was further used as a
macroinitiator for the ring-opening polymerization of ε-caprolactone. Based on 13C NMR spectroscopy,
we showed that the polymerization of ε-caprolactone was initiated by both primary and secondary
hydroxyl groups of mainly terminal glycerol units, which led to oligocaprolactone chains with about
nine repeating units and an overall degree of functionalization of 0.67. After functionalization of the
obtained scaffold with mPEG–COOH linear chains via ester bond formation using modified Steglich
type conditions followed by purification, we obtained CMS nanocarriers with a Mn of 28,000 Da and
a low dispersity of 1.1. While 60% of all attached mPEG chains were bound to caprolactone chains
ends, another 40% were attached to internal glycerol hydroxyl groups. The obtained water-soluble
CMS nanocarrier was used for the encapsulation of the hydrophobic drug dexamethasone using the
film method uptake and resulted in a transport capacity of one molecule dexamethasone per CMS
nanocarrier. Furthermore, we performed degradation studies showing almost full degradation within
five days at 32 ˝C, mediated by lipase, while degradation in acidic environment at pH 5.0 within seven
days at 32 ˝C was not observed.
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Abbreviations

The following abbreviations are used in this manuscript:

NMR nuclear magnetic resonance
PEG poly(ethylene glycol)
CMS core-multishell nanocarrier
ε-CL ε-caprolactone
mPEG methoxy poly(ethylene glycol)
Sn(Oct)2 Tin(II) 2-ethylhexanoate
DBTL dibutyltin dilaurate
EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
4-DMAP 4-(dimethylamino)-pyridin
MWCO molecular weight cut-off
TAV total acid value
THV total hydroxyl value
GPC gel permeation chromatography
SEC size-exclusion chromatography
PMMA poly(methyl methacrylate)
HPLC high pressure liquid chromatography
hPES hyperbranched poly (ester)
eq. equivalents
IG inverse-gated
DCM dichloromethane
MeOH methanol
TEA triethylamine
Et2O diethyl ether
DMF dimethylformamide
dH2O deionized water
ACN acetonitrile
LC loading capacity
PA conversion of polymerization at gel point
DB degree of branching
HMQC Heteronuclear multiple-quantum correlation spectroscopy
ROP ring opening polymerization
PCL poly(ε-caprolactone)
r.u. repeating units
rpm revolutions per minute
DMSO dimethyl sulfoxide
Mw weight average molecular weight
Mn number average molecular weight

Appendix

A.1. Synthesis of Hyperbranched Polyester (hPES 1)

At room temperature, adipic acid (39.9 g, 273 mmol, 1.2 eq) was charged into a three-neck glass
vertical reactor, equipped with a mechanical stirrer and a Liebig condenser. After adding pre-dried
glycerol (20.9 g, 228 mmol), the bulk monomer mixture was heated to 150 ˝C. Under stirring at 150 rpm,
a 0.6 mL of a stock solution of DBTL in toluene (100 ppm) was added to the molten monomers using a
syringe. The reaction temperature was increased to 160 ˝C. After 1 h at 160 ˝C, the formed volatiles
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were removed by cryo-distillation and collected in a round-bottom flask. The removal of volatiles was
repeated every hour. With proceeding reaction time, the frequency of volatile removal was increased
to once per every 10 min. Conversion of the reaction was controlled by determining the ratio of the
unreacted acid groups to the total amount of acid groups, using 1H NMR spectroscopy. When the
conversion almost reached the maximum conversion PA. as determined by Flory Equation, the reaction
was stopped by completely removing the volatiles and cooling the reactor to RT. The viscous product
hPES 1 was obtained without any further purification as a light yellow, viscous solid and dissolved in
THF for easier handling.

1H NMR (400 MHz, DMSO-d6): δ = 12.00 (s, 1H, R–COOH), 5.18 (m, 1H, CHD), 4.94 (m, 1H,
CHL1,2), 4.72 (m, 1H, CHT1,3), 4.26–4.23, 4.14–4.12 (2 m, 4H, CH2

D), 4.23–4.07 (m, 2H, CH2
L1,2), 4.03,

3.89 (2 m, 4H, CH2
T1,3), 3.98 (m, 4H, CH2

L1,3), 3.86 (m, 1H, CHL1,3), 3.63 (q, 1H, CHT1,2), 3.49–3.40
(m, 4H, CH2

T1,3), 3.49–3.48 (m, 2H, CH2
L1,2), 3.55–3.26 (m, 2H, CH2

T1,2), 2.30 (m, 2H, –CH2–COOR),
2.20 (m, 2H, –CH2–COOH), 1.52 (m, 4H, ROOC–CH2–(CH2)2–CH2–COOR) ppm. Abbreviations in
accordance with Figure A1.

IG 13C NMR (400 MHz, DMSO-d6): δ = 174.42–174.34 (m, 1H, HOOC–(CH2)4–COO–CH2–
(CHOR)–(CH2OR)), 172.88–172.08 (m, HOOC–(CH2)4–COO–CH2–(CHOH)–(CH2OR), HOOC–
(CH2)4–COO–CH2–(CHOH)–(CH2OR), HOOC–(CH2)4–COO–CH2–(CHOR)–(CH2OR), (CH2OR)–
(CHOR)–CH2–OOC–(CH2)4–COO–CH2–(CHOR)–(CH2OR)), 75.53 (s, 1 C, CH T1,3), 72.01 (s, 1 C,
CHL1,2), 69.35 (s, 1 C, CHT1,2), 68.83 (s, 1 C, CHD), 66.22 (s, 1 C, CHL1,3), 65.62 (s, 1 C, CH2–ORT1,2),
64.89 (s, 1 C, CH2

L1,2), 62.69 (CH2–OHT1,2), 62.38 (s, 1 C, CH2–ORL1,2), 61.90 (s, 1 C, CH2
D), 59.85

(s, 1 C, CH2
T1,3), 59.56 (s, 1 C, CH2–OHL1,2), 33.44–32.93 (m, 2 C, ROCO–CH2–(CH2)2 –CH2–COOR),

24.10–23.67 (m, 2 C, ROCO–CH2–(CH2)2–CH2–COOR) ppm. Abbreviations in accordance with
Figure A1.Polymers 2016, 8, 192 14 of 24 
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Table A1. Molecular weight distribution of hPES 1.

Peak No. Mn Mw Mw/Mn

1 3.4 ˆ 107 Da 4.2 ˆ 107 Da 1.2
2 300 Da 1,600 Da 5

DB: 0.52
GPC (THF)
TAV: 1.80 mmol COOH/g polymer
THV: 2.25 mmol OH/g polymer
IR: ν = 3458.71, 2948.63, 1729.83, 1455.03, 1416.46, 1381.75, 1166.72, 1135.87, 1078.01, 1061.62,

943.02, 754.031 cm´1.
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A.2. Synthesis of Polyesterol hPES-OH 2

30 mL of a solution of hyperbranched polyester hPES 1 in THF (c = 347 mg¨mL´1, 10.41 g,
19 mmol COOH) was charged into a Schlenk flask. The residual catalyst DBTL (1.3 mg, 3.9 µmol)
from the original product hPES 1 was used to catalyze the reaction; no further catalyst was added.
After solubilization in 10 mL DMF under stirring at RT, the flask was heated to 85 ˝C. THF was removed
from the mixture under controlled reduced pressure using cryo-distillation, and the completeness of
the THF removal was controlled by 1H NMR. After THF was removed, the mixture was heated to
110 ˝C. Glycidol (1.25 mL, 1.388 g, 19 mmol, 1 eq) was added drop wise to the stirring yellow solution
during a time period of 10 min using a syringe. The reaction mixture was stirred at 110 ˝C for 120 min,
afterwards at RT overnight. Due to the incompleteness of reaction, the reaction was reheated to 110 ˝C
and more glycidol (0.1 mL, 20 mmol in total) was added dropwise to the stirring reaction mixture.
The reaction was stirred at 110 ˝C for 5.5 h and afterwards allowed to cool down to RT. The viscous
product was obtained without further purification and stored in DMF.

1H NMR (500 MHz, DMSO-d6): δ = 7.95 (s, DMF), 5.18 (s, 1 H, CHD), 4.94 (s, 1 H, CHL1,2),
4.72 (q, 1 H, CHT1,3), 3.86–4.26 (m, 13 H, CHL1,3, CH2

T1,2, CH2
L1,3, CH2

L1,2, CH2
D), 3.63 (q, 1 H,

CHT1,2), 3.60 (THF), 3.27–3.50 (m, 6 H, CH2
’T1,2, CH2

T1,3, CH2
’L1,2), 3.19, 3.02, 2.89, 2.73 (s, DMF),

2.59, 2.31 (m, 2H, –CH2–CO2–R), 2.10–2.12 (m, 2 H, –CH2–CO2H), 1.75 (THF), 1.54 (m, 4 H, –OCO–
CH2–(CH2)2–CH2–COO–) ppm. Abbreviations in accordance with Figures A1 and A2.

IG 13C NMR (500 MHz, DMSO-d6): δ = 174.93–175.04 (CH2–COOH), 172.08–172.85
(CH2–COOR), 75.49 (CHT1,3), 72.98, 72.52, 71.97 (CHL1,2), 70.52, 69.33 (CHT1,2), 68.79 (CHD),
67.02 (THF), 66.19 (CHL1,3), 65.57 (CH2–ORT1,2), 64.85 (s, CH2

L1,3), 62.68 (s, CH2–OHT1,2), 62.33
(s, CH2–ORL1,2), 61.83 (s, CH2

D), 59.79 (CH2
T1,3), 59.52 (CH2–OHL1,2), 35.75 (DMF), 32.85–33.36

(–OCO–CH2–(CH2)2–CH2–COO), 30.74 (DMF), 25.13 (THF), 23.62–23.91 (–OCO–CH2–(CH2)2–
CH2–COO–) ppm. Abbreviations in accordance with Figures A1 and A2.

DB: 0.41
GPC: Mn = 900 Da; Mw = 2400 Da, Mw/Mn = 2.7
TAV: 0.045 mmol COOH/g polymer
THV: 5.3 mmol OH/g polymer
IR: ν = 3384.46, 2938.02, 2871.49, 2332.48, 1732.73, 1660.41, 1439.6, 1409.71, 1383.68, 1250.61,

1167.69, 1137.8, 1091.51, 1054.87, 937.24, 865.88 cm´1.
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A.3. Synthesis of Linear Di-Block Copolymer hPES-OCL9-OH 3

In a Schlenk flask pre-dried macroinitiator hPES–OH 2 (2 g, 10.6 mmol OH) was dissolved in
freshly distilled ε-caprolactone (6.18 g, 54 mmol) at 60 ˝C and two drops of Sn(Oct)2 were added to the
stirring mixture, followed by an increase of the temperature to 125 ˝C. The bulk mixture was stirred at
125 ˝C for 18 h. Purification was performed by dissolving the crude reaction mixture in DCM in high
dilution and precipitation in a high excess of ice-cold MeOH under vigorous stirring. The dispersion
was separated from the formed gel, solvent was removed under reduced pressure, and the received
solid was redissolved in DCM in high dilution. Another precipitation was performed by adding the
DCM solution dropwise into vigorously stirred ice-cold diethyl ether. The mixture was separated by
centrifugation at 4000 min´1 for 1 min, and the supernatant was collected. After drying the separated
supernatant under reduced pressure, the received solid was once again purified using dialysis in DCM
(benzoylated RC membrane, MWCO 1–2 kDa, 7 h) for removal of Sn(Oct)2 and traces of ε-caprolactone.
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A white, wax-like solid product was obtained after removing the solvent under reduced pressure
(2.69 g, yield: 33%).

1H NMR (500 MHz, DMSO-d6): δ = 5.18 (CHD), 5.09 (new), 4.93 (CHL1,2), 4.31 (CH2
T1,3), 4.24

(CH2
D), 4.12 (CH2

L1,2), 3.98 (CH2
E), 3.86 (CHL1,3), 3.57 (CHT1,2), 3.51 (CH2

L1,2), 3.36 (CH2
EΩ), 2.27

(m, CH2
C, CH2

X), 1.54 (CH2
D1, CH2

D3, CH2
y), 1.40, 1.30 (m, CH2

D2) ppm. Abbreviations in accordance
with Figure A3.

13C NMR (700 MHz, overnight, DMSO-d6): δ = 172.8, 172.7, 172.4 (various CH2-COOR),
71.9 (CHL1,2), 69.8 (new), 69.3 (CHT1,2), 68.8 (CHD), 66.1 (CHL1,3), 64.7 (CH2

L1,3), 63.5 (CH2
E), 62.6

(CH2OHT1,2), 62.3 (CH2ORL1,2), 61.8 (CH2
D), 60.5 (CH2

EΩ), 59.5 (CH2OHL1,2), 33.6 (CH2
X), 33.3 (CH2

C),
32.1, 27.8 (CH2

D3), 25.0, 24.9 (CH2
D2), 24.4, 24.1 (CH2

D1) ppm. Abbreviations in accordance with
Figure A3.

DB: 0.74
GPC: Mn = 5000 Da, Mw = 8900 Da, Mw/Mn = 1.72
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A.4. Functionalization of mPEG-OH (mPEG-COOH)

To a solution of pre-dried mPEG (4.786 g, 2.5 mmol) in a mixture of 10% anhydrous DMF in
anhydrous THF (28 mL) in a 50 mL Schlenk flask, 4-DMAP (0.44 g, 3.8 mmol, 1.5 eq), TEA (0.5 mL,
3.8 mmol, 1.5 eq), and succinic anhydride (1.2 g, 12.5 mmol, 5 eq) were added under stirring at RT
After stirring at RT for three days, the unreacted precipitated starting material was removed from
the solution and the solution was dried under reduced pressure. The crude product was purified by
precipitation from DCM solution into an ice-cold, 10-fold excess of Et2O. The formed precipitate was
filtered off using a glass filter (P4), redissolved in DCM, and precipitated once more following the
same procedure. The collected precipitate was dried under high vacuum and 3.5 g (1.67 mmol, yield:
70%) of pure product were obtained.

1H NMR (500 MHz, DMSO-d6): δ = 4.21 (t, 2 H, CH2
A”), 3.73–3.45 (m, 185 H, various CH2

A),
3.33 (s, 3 H, PEG–O–CH3), 2.64–2.58 (m, 4 H, CH2

H1, CH2
H2) ppm. Abbreviations in accordance with

Figure A4.
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In a dried 25 mL Schlenk flask, solid mPEG–COOH (1.110 g, 0.529 mmol, 1.1 eq) was added at RT
to a stirring solution of hPES–OCL9–OH 3 (304 mg, 0.48 mmol OH) in 6 mL anhydrous DMF. After the
addition of 4-DMAP (0.016 g, 0.106 mmol, 20 mol %), EDCl (0.110 g, 0.574 mmol, 1.1 eq) was added at
0 ˝C. The reaction mixture was stirred for 10 min at 0 ˝C and then allowed to reach RT by removing
the ice bath. After 20 h of stirring at RT, the crude product was purified via extensive ultrafiltration
(DMF, MWCO < 10 kDa), followed by repeated fractionation. For this purpose, the impure product
was dissolved in DCM, which yielded a clear solution. Hexane was added to the clear solution at
RT until cloudiness appeared. The cloudy dispersion was heated to obtain a clear solution, followed
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by the addition of Hexane to obtain a dispersion. The warm solution was allowed to reach RT and
centrifuged (1 min, 3900 min´1) to separate into a stable dispersion and sediment. The dispersion was
dried and refractionated following the above-described procedure. The progress of purification was
monitored using GPC in DMF. After six cycles of refractionation and removal of solvent under reduced
pressure, followed by drying at high vacuum, a white solid product was obtained (0.116 g, yield: 12%).

1H NMR (700 MHz, DMSO-d6): δ = 5.17 (CHD), 4.24 (CH2
D), 4.12 (CH2

L1,2), 3.98 (CH2
E), 3.59–3.40

(various CH2
A, CH2

A”), 3.24 (PEG–OCH3), 2.27 (CH2
C, CH2

x), 1.54 (CH2
D1,CH2

D3, CH2
y), 1.29 (CH2

D2)
ppm. Abbreviations in accordance with Figure A5.

13C NMR (500 MHz, DMSO-d6): δ = 172.7 (–COOR–), 171.9 (–COOR–), 78.9, 75.3, 71.3 (CHL1,2),
69.8 (PEG backbone), 69.6, 68.22 (various CH2, CH2), 69.6 (CHD), 63.8 (CH2

L1,2), 63.5 (CH2
E), 61.8

(CH2
D), 58.0 (PEG–OCH3), 33.3–33.1 (CH2

C, CH2
x), 28.5 (CH2

H1, CH2
H2), 27.8 (CH2

D1, CH2
D3), 24.9

(CH2
D2), 24.1 (CH2

y) ppm. Abbreviations in accordance with Figure A5.
DB: 0.52
GPC: Mn = 27,900 Da, Mw = 31,100 Da, Mw/Mn = 1.11
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A.7. Determination of TAV and THV of hPES 1 and hPES-OH 2

To determine the total acid value (TAV) and total hydroxyl value (THV) it is crucial to know the
conversion at the respective point of the reaction. Synthesis of hyperbranched polyester 1 consisting of
a diacid (A2) and triol (B3) was stopped before reaching the so-called gel point. According to Flory, the
gel point is the point when the conversion reaches its maximum before becoming an infinite network
[14]. The actual gel point can be predicted as a function of the functionality f and ratio ρ. In our case of
adipic acid as A2 and glycerol as B3 unit, functionality f is 3, reflecting three functional groups on the
branching unit, while ratio ρ is the ratio between the number of A functional groups and the number
of B functional groups yields:

ρ “
nCOOH

nOH
(A1)

nCOOH, amount of acid groups in mol; nOH, amount of hydroxyl groups in mol.
This theoretical approach does not take into account the difference in reactivity of primary and

secondary functional groups of the B3 trifunctional branching unit. Functionality f can be used to
determine the critical value αc of the branching coefficient α for formation of infinite networks:

αc “
1

f ´ 1
(A2)

f, functionality of branching unit; αc, critical value of branching coefficient α
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In our case for B3 monomers, f is 3 and αc consequently 0.5. The connection between functionality
f and ratio ρ is as follows:

PA “

ˆ

αc

ρ

˙
1
2

(A3)

PA, conversion at gel point; αc, critical value of branching coefficient α; ρ, ratio, see above.
Equation (3) allows for prediction of the theoretical conversion PA at the gel point. For the

synthesis of hPES 1 with a ratio of 1.2:1 (A2:B3), the value for PA is 0.79. The conversion during the
reaction was monitored by using 1H NMR spectroscopy and analysis of the ratio of CH2–COOH
(2.3 ppm) versus CH2–COOR (2.2 ppm). When the reaction approached the theoretical PA value, the
reaction was stopped and the bulk polymer cooled down to stop the polymerization. After evaluation
of the real P value, the TAV and THV were calculated for hPES 1 as follows:

m(adipic acid) = 39.9 g n0(COOH) = 545 mmol
m(glycerol) = 20.93 g n0(OH) = 682 mmol
m(polymer) = 52.708 g

Conversion p = (Integral CH2–COOH)/(Integral CH2–COOH + Integral CH2–COOR) = 1/1.21 = 0.83
TAV:
nt(COOH) = (1´P) ˆ n0(COOH) = 94.9 mmol
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Conversion p = (Integral CH2–COOH)/(Integral →CH2–COOH + Integral CH2–COOR) = 1/1.21 = 
0.83 

TAV: 
nt(COOH) = (1−P) × n0(COOH) = 94.9 mmol 
TAV = 94.9 mmol COOH/52.708 g polymer = 1.80 mmol/g polymer 
THV: 
nt(OH) = (1−P) × n0(OH)= 118.7 mmol 
THV = 118.7 mmol OH/52.708 g polymer = 2.25 mmol/g polymer 
Values of TAV and THV of hPES–OH 2 were determined based on the assumption that COOH 

reacted with glycidol with a conversion of p = 0.97.so that hPES–OH 2 had 2.9% remaining COOH: 
n0(COOH) = 18.7 mmol 
n0(OH) = 26.8 mmol 
m(polymer) = 11.918 g 
TAV: 

nt(COOH) = (1−P) × n0(COOH) = 0.5423 mmol  
TAV = 0.5423 mmol/11.918 g polymer = 0.045 mmol COOH/g polymer 
THV: 
nt(OH) = n0(OH) + [(n0(COOH) − nt(COOH)) × 2] = 63.1 mmol 
THV = 63.1 mmol OH/11.918 g polymer = 5.3 mmol OH/g polymer 

A.8. Determination of Degree of Branching DB 

The degree of branching was calculated based on Equation (4), which is the calculation of the 
DB as published by Frey et al. We chose this equation, because Frey states that the original Fréchet 
Equation (5) overestimates the branching, if small or low branched molecules are considered [12,33]. 

ܤܦ ൌ 2 2ܦ ܦ   (A4) ܮ

ܤܦ		 ൌ ܦ  ܮܶ  ܦ  ܶ (A5) 

Where: T: relative integral of terminal units of type T1,2, T1,3, and TA. 
L: relative integral of linear units of type L1,3 and L1,2 
D: relative integral of dendritic unit D. 

The relative integrals needed for this calculation are the integrals of methine signals of the 
various glycerol branching units, as depicted in Figure A9 for the case of hPES 1, hPES-OH 2, and 
hPES–OCL9–OH 3. The spectra were measured by inverse-gated 13C spectroscopy, because the 
obtained carbon peaks were quantifiable. Table A2 summarizes all the relevant data for the 
calculation of branched products 1, 2, 3, and 4. In the case of product CMS 4, a quantification of 
methine and methylene signals was not possible. 

Table A2. Interpretation of inverse-gated (IG) 13C NMR spectra of hyperbranched polyesters in 
DMSO-d6. Integral values of –CH– signals of relevant glycerol units for evaluating the degree of 
branching (DB). 

 Integral value
Structure CH L1,2 CH D CH L1,3 DB

hPES 1 1.00 1.54 1.86 0.52 
hPES-OH 2 0.74 1.00 2.15 0.41 
hPES–OCL9–OH 3 0.16 * 1.00 * 0.54 * 0.74 * 

* obtained from overnight 13C NMR measurement, non IG; neither CH L1,2 and CH L1,3 nor CH2 L1,2 and 
CH2 L1,3 were detected in IG due to the low signal-to-noise ratio. 

TAV = 94.9 mmol COOH/52.708 g polymer = 1.80 mmol/g polymer
THV:
nt(OH) = (1´P) ˆ n0(OH)= 118.7 mmol
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hPES-OH 2 0.74 1.00 2.15 0.41 
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* obtained from overnight 13C NMR measurement, non IG; neither CH L1,2 and CH L1,3 nor CH2 L1,2 and 
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A.8. Determination of Degree of Branching DB

The degree of branching was calculated based on Equation (4), which is the calculation of the
DB as published by Frey et al. We chose this equation, because Frey states that the original Fréchet
Equation (5) overestimates the branching, if small or low branched molecules are considered [12,33].

DB “
2 D

2 D` L
(A4)

DB “
D` T

L`D` T
(A5)

Where: T: relative integral of terminal units of type T1,2, T1,3, and TA.

L: relative integral of linear units of type L1,3 and L1,2

D: relative integral of dendritic unit D.
The relative integrals needed for this calculation are the integrals of methine signals of the

various glycerol branching units, as depicted in Figure A9 for the case of hPES 1, hPES-OH 2, and
hPES–OCL9–OH 3. The spectra were measured by inverse-gated 13C spectroscopy, because the
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obtained carbon peaks were quantifiable. Table A2 summarizes all the relevant data for the calculation
of branched products 1, 2, 3, and 4. In the case of product CMS 4, a quantification of methine and
methylene signals was not possible.

Table A2. Interpretation of inverse-gated (IG) 13C NMR spectra of hyperbranched polyesters in
DMSO-d6. Integral values of –CH– signals of relevant glycerol units for evaluating the degree of
branching (DB).

Structure Integral value DB
CH L1,2 CH D CH L1,3

hPES 1 1.00 1.54 1.86 0.52
hPES-OH 2 0.74 1.00 2.15 0.41

hPES–OCL9–OH 3 0.16 * 1.00 * 0.54 * 0.74 *

* obtained from overnight 13C NMR measurement, non IG; neither CH L1,2 and CH L1,3 nor CH2 L1,2 and CH2
L1,3 were detected in IG due to the low signal-to-noise ratio.Polymers 2016, 8, 192 20 of 24 
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Figure A9. Details of 13C NMR spectra of hPES 1, hPES–OH 2, and hPES–OCL9–OH 3 (top to bottom).
Depicted are peaks relevant for calculation of Df and DB analysis. Five types of glycerol units can be
distinguished in the structure of the hyperbranched polyester. For comparability of signal integrals,
the value for diacid peaks was set to be identical in hPES 1 and hPES–OH 2.
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A.9. Determination of Degree of Functionalization Df

A.9.1. hPES-OH 2

Hyperbranched polyester hPES 1 with a total acid value of 1.8 mmol carboxylic acid groups
per gram polyester was modified with equimolar amounts of glycidol with respect to the amount of
hydroxyl groups of hPES 1, in order to modify one glycidol per carboxylic acid. The reactions were
performed at a bath temperature of 110 ˝C in DMF for two hours; afterwards at room temperature
overnight. The reaction progress was monitored by 1H NMR, i.e., the disappearance of the methylene
signal next to the free carboxylic acid as well as the proton signal of terminating carboxylic acid groups.
We paid special attention to the expected changes of several structural units as well as the possibility
of the side reaction shown in Scheme 4.Polymers 2016, 8, 192 21 of 24 
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Scheme 4. Simplified scheme of polyester modification by ring-opening reaction of glycidol; crucial
units for NMR evaluation are highlighted in boxes. %: abundance of species relative to abundance of
all glycerol units.

Even though equimolar amounts of glycidol were used during the reaction, full conversion of
all carboxylic acid groups could not be achieved. Evaluation of the methylene signals next to free
carboxylic acids versus those next to ester groups after 1H NMR measurements showed that the fraction
of carbons from free carboxylic acid decreased from 17.4% before to 2.9% after modification, giving a
functionalization degree of Df (COOH) = 0.83. At the same time, the amount of esterification increased
by a factor of 2.5, which was evaluated according to the increased methine peak supplementary
inverse-gated 13C NMR spectroscopy. Based on inverse-gated 13C NMR spectroscopy, we can also
show that T1,2 methine and methylene signals increased by a factor of 2.5 as well, indicating that these
newly formed T1,2 units arose from reactions with carboxylic acids at the sterically less-hindered C1
atom of glycidol. We can furthermore observe the increase of T1,3 methylene signals by a factor of
1.4. Hence, ring-opening of glycidol also occurred on the sterically more-hindered C2 carbon atom,
as shown in Scheme 4. The inverse-gated 13C NMR spectra were also checked for further changes
of integrals, as we were also interested in the question whether formation of oligoglycerol formation
occurred. If terminal glycerol hydroxyl groups initialized ring-opening of glycidol, new signals should
have arisen. In fact, three new signals can be found in the region of methine shifts (70.52–72.98 ppm,
see Figure A1). With regard to the shift of these signals, they could have resulted from the methylene
next to the ether bond between two glycerol units. With an average integral of 0.4, the new signals
represent only 2% of the amount of overall carbon signals in the region of glycerol’s methine and
methylene signals. As this amount is small, the presence of oligoglycerols should not interfere with
further reactions and analysis. In summary, terminal carboxylic acid groups of the hyperbranched
polyester hPES 1 were modified with glycerol units by in a tin-catalyzed, ring-opening reaction with
glycidol. The amount of esterified carboxylic acid units increased by a factor of 2.5 compared to the
esterified carboxylic acid units before the modification, while full modification of carboxylic acids
could not be achieved. Ring-opening of glycidol did not only take place at C1 carbon atom leading to
a new T1,2 unit but also at the C2 carbon atom, which formed T1,3 units. Oligoglycerols only formed to
a certain extent.
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A.9.2. hPES-OCL9-OH 3

Determination of Df was accomplished based on Equation (6), where the estimated amount
of reacted hydroxyl groups of hPES–OCL9–OH 3 is compared to the estimated amount of
theoretically-available hydroxyl groups of hPES–OH 2.

Df “
amount reacted OH of hPES´OCL9 ´OH 3

amount free OH of hPES´OH 2
(A6)

The amounts of hydroxyl groups were estimated based on the integrals in 13C NMR spectra of
methine arising from glycerol units, marked with orange lines in Figure A9. The relative abundance of
the methine signals was calculated and normalized according to Table A2, which gave the amounts of
reacted and free OH grous of hPES–OH 2 and hPES–OCL9—OH 3 that were needed for Equation (A6):

Df “
119´ 39

119
“ 0.67

Table A3. Comparison of 13C NMR spectra of hPES–OH 2 and hPES–OCL9–OH 3 as shown in
Figure A9 with regard to specific glycerol’s methine signals and calculation of their relative abundance,
and absolute and normalized amounts of OH and OR groups for calculation of the degree of
functionalization Df.

hPES–OH 2 hPES–OCL9–OH 3

Signal CH L1,2 CH T1,2 CHD CHL1,3 all CH L1,2 CH T1,2 CHD CHL1,3 all
abs. integral value 0.74 2.21 1 2.15 6.1 0.16 0.10 1 0.54 1.80
rel. integral value 12% 36% 16% 35% 100% 9% 6% 56% 30% 100%

amount OH a 12 72 - 35 119 6.9 b 9.2 b - 23.1 b 39.3 b

amount OR - - 48 - 48 - - 127 b - 127 b

a Linear units contributed 1 OH group, terminal units contributed two OH groups, dendritic units contributed
three OR groups; b The amount of OH and OR groups was normalized by factor F = 0.77 = (119 + 48)/(39 + 127)
to maintain a constant sum of OR and OH groups.

A.9.3. CMS Nanocarrier hPES–OCL9–PEG–OMe 4

Functionalization of terminal caprolactone hydroxyl groups was analyzed via 1H NMR by
determining the increase of esterification of caprolactone hydroxyl groups. This was done by
comparing the ratio of CH2

E and CH2
C+x before the reaction to the ratio after the reaction. Since the

integral of CH2
C+x remained constant upon functionalization with mPEG–COOH, we could fix this

integral value and determine the percental increase of CH2
E, leading to a value of Df(CL–OH) = 0.7.

To cross check this assumption, the integral of methoxy CH3 of mPEG was compared to CH2
C+x.

This comparison revealed an 80% excess of mPEG chains, which therefore should be attached to
internal glycerol hydroxyl groups. The functionalization of internal hydroxyl groups was supported
by 13C-NMR of the product, which showed a disappearance of CHL1,2 and CHL1,3 and indicated that
the respective hydroxyl groups reacted with mPEG–COOH. As the abundance of internal glycerol
units was too small to allow for quantification, we could not estimate the degree of functionalization
of internal glycerol hydroxyl groups based on 13C NMR. Nevertheless, 1H NMR analysis led to the
assumption, that roughly 55% of present mPEG–COOH chains were attached to 70% of terminal
caprolactone units, while 45% of mPEG–COOH reacted with internal glycerol units.
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