Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering
Abstract
:1. Introduction
2. Experimental Methods and Materials
2.1. Materials
2.2. Preparation of the PVDF Porous Membrane
2.3. Preparation of Copper-Metalized PVDF Membranes
2.4. Characterization of the Membranes
2.5. List of Abbreviations and Symbols
3. Results and Discussion
3.1. Surface Morphology and Hydrophobic Property
3.2. The Distribution State of Copper
3.3. Pore Structure and Permeation Separation Performances
3.4. Antibacterial Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ma, Z.; Lu, X.L.; Wu, C.R. Functional surface modification of PVDF membrane for chemical pulse cleaning. J. Membr. Sci. 2017, 524, 389–399. [Google Scholar] [CrossRef]
- Sui, Y.; Wang, Z.N.; Gao, C.J. An investigation on the antifouling ability of PVDF membranes by polyDOPA coating. Desalin. Water. Treat. 2012, 50, 22–33. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Cui, M. YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property. Chem. Eng. J. 2016, 301, 342–352. [Google Scholar] [CrossRef]
- Pang, R.; Li, J.; Wei, K. In situ preparation of Al-containing PVDF ultrafiltration membrane via sol-gel process. J. Colloid Interface Sci. 2011, 364, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Shao, X.S.; Zhou, Q. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 2013, 265, 663–670. [Google Scholar] [CrossRef]
- Smolin, Y.Y.; Janakiraman, S.; Soroush, M. Experimental and theoretical investigation of dye sensitized solar cells integrated with crosslinked poly(vinylpyrrolidone) polymer electrolyte using initiated chemical vapor deposition. Thin Solid Films 2016, 12, 34–42. [Google Scholar] [CrossRef]
- You, S.J.; Semblante, G.U.; Lu, S.C. Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2. J. Hazard. Mater. 2012, 237, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.; Wang, Z. PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J. Membr. Sci. 2013, 442, 57–64. [Google Scholar] [CrossRef]
- Ellmer, K. Surfaces and Interfaces of Sputter-Deposited ZnO Films. J. Phys. D Appl. Phys. 2000, 33, 17–32. [Google Scholar] [CrossRef]
- Eykens, L.; Rose, K.; Dubreuil, M.; De Sitter, K. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation. Appl. Sci. 2017, 7, 637. [Google Scholar] [CrossRef]
- Xing, Y.; Baumann, K.; Uhlenbruck, M. Development of a metallic/ceramic composite for the deposition of thin-film oxygen transport membrane. J. Eur. Ceram. Soc. 2013, 33, 287–296. [Google Scholar] [CrossRef]
- Zendehnam, A.; Mokhtari, S.; Hosseini, S.M. Fabrication of novel heterogeneous cation exchange membrane by use of synthesized carbon nanotubes-co-copper nanolayer composite nanoparticles: Characterization performance in desalination. Desalination 2014, 347, 86–93. [Google Scholar] [CrossRef]
- Zendehnam, A.; Robatmili, N.; Hosseini, S.M. Fabrication and modification of acrylonitrile–butadiene–styrene-based heterogeneous ion-exchange membranes by plasma treatment: Investigation of the nanolayer deposition rate and temperature effects. J. Appl. Polym. Sci. 2014, 131, 592. [Google Scholar] [CrossRef]
- Venault, A.B.; Ballad, M.R.; Huang, Y.T. Antifouling PVDF membrane prepared by VIPS for microalgae harvesting. Chem. Eng. Sci. 2016, 142, 97–111. [Google Scholar] [CrossRef]
- Davenport, D.M.; Gui, M.; Ormsbe, L.R.; Bhattacharyya, D. Development of PVDF membrane nanocomposites via various functionalization approaches for environmental applications. Polymers 2016, 2, 32. [Google Scholar] [CrossRef]
- Tavsanoglu, T.; Jeandi, M.; Addemir, O. Synthesis and characterisation of thin films in the B-C-N triangle. Surf. Eng. 2016, 32, 755–760. [Google Scholar] [CrossRef]
- Zhang, S.M.; Wang, R.S.; Zhang, S.F. Development of phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membranes for waste water treatment. Chem. Eng. J. 2013, 230, 260–271. [Google Scholar] [CrossRef]
- Li, L.; Hou, J.W.; Ye, Y.; Mansouri, J.; Zhang, Y.T. Suppressing Salt Transport through Composite Pervaporation Membranes for Brine Desalination. Appl. Sci. 2017, 7, 856. [Google Scholar] [CrossRef]
- Chiu, H.C.; Huang, J.J.; Liu, C.H. Batch adsorption performance of methyl methacrylate/styrene copolymer membranes. React. Funct. Polym. 2006, 66, 1515–1524. [Google Scholar] [CrossRef]
- Ding, Z.D.; Liu, X.L.; Liu, Y.; Zhang, L.P. Enhancing the compatibility, hydrophilicity and mechanical properties of polysulfone ultrafiltration membranes with lignocellulose nanofibrils. Polymers 2016, 10, 349. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zuo, D.W.; Lu, W.Z. Influence of film thickness on structural and optical-switching properties of vanadium pentoxide films. Surf. Eng. 2017, 33, 292–298. [Google Scholar] [CrossRef]
- Mishra, D.; Greving, D.; Badini Confalonieri, G.A. Growth modes of nanoparticle superlattice thin films. Nanotechnology 2014, 25, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.P.; Wang, C.; Wang, T.M. Preparation and characterization of pH sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid). J. Colloid Interface Sci. 2014, 434, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Cuynet, S.; Caillard, A.; Lecas, T. Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering. J. Phys. D Appl. Phys. 2014, 47, 994–1004. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Liu, J. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem. Eng. J. 2012, 210, 298–308. [Google Scholar] [CrossRef]
- Mohammad, H.; Ashkan, B.; Ehsan, S. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf. Coat. Technol. 2017, 321, 171–179. [Google Scholar]
Membrane | Mean Diameter (μm) | Surface Roughness (μm) | ||
---|---|---|---|---|
Sp | Sa | Sq | Z | |
M0 | 0 | 0.071 | 0.0897 | 0.546 |
M5 | 0.067 | 0.118 | 0.121 | 0.903 |
M15 | 0.138 | 0.133 | 0.142 | 0.914 |
M30 | 0.175 | 0.130 | 0.129 | 1.101 |
M45 | 0.193 | 0.090 | 0.105 | 1.430 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Fu, Y.; Lu, Q.; Xiao, C. Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering. Polymers 2017, 9, 524. https://doi.org/10.3390/polym9100524
Li N, Fu Y, Lu Q, Xiao C. Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering. Polymers. 2017; 9(10):524. https://doi.org/10.3390/polym9100524
Chicago/Turabian StyleLi, Nana, Yuanjing Fu, Qingchen Lu, and Changfa Xiao. 2017. "Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering" Polymers 9, no. 10: 524. https://doi.org/10.3390/polym9100524
APA StyleLi, N., Fu, Y., Lu, Q., & Xiao, C. (2017). Microstructure and Performance of a Porous Polymer Membrane with a Copper Nano-Layer Using Vapor-Induced Phase Separation Combined with Magnetron Sputtering. Polymers, 9(10), 524. https://doi.org/10.3390/polym9100524