PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVDF Membranes
2.3. Membrane Characterization
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Younas, H.; Bai, H.; Shao, J.; Han, Q.; Ling, Y.; He, Y. Super-hydrophilic and fouling resistant pvdf ultrafiltration membranes based on a facile prefabricated surface. J. Membr. Sci. 2017, 541, 529–540. [Google Scholar] [CrossRef]
- Li, N.; Fu, Y.; Lu, Q.; Xiao, C. Microstructure and performance of a porous polymer membrane with a copper nano-layer using vapor-induced phase separation combined with magnetron sputtering. Polymers 2017, 9, 524. [Google Scholar] [CrossRef]
- Chen, F.; Shi, X.; Chen, X.; Chen, W. Preparation and characterization of amphiphilic copolymer pvdf-g-pmabs and its application in improving hydrophilicity and protein fouling resistance of pvdf membrane. Appl. Surf. Sci. 2018, 427, 7877–7897. [Google Scholar] [CrossRef]
- Golzari, N.; Adams, J.; Beuermann, S. Inducing β phase crystallinity in block copolymers of vinylidene fluoride with methyl methacrylate or styrene. Polymers 2017, 9, 306. [Google Scholar] [CrossRef]
- Burnham-Fay, E.D.; Le, T.; Tarbutton, J.A.; Ellis, J.D. Strain characteristics of additive manufactured polyvinylidene fluoride (pvdf) actuators. Sens. Actuators A Phys. 2017, 266, 85–92. [Google Scholar] [CrossRef]
- Kwon, J.; Choi, S. Method of Manufacturing Pvdf-Based Polymer and Method of Manufacturing Multilayered Polymer Actuator Using the Same. U.S. Patent Application No. 13/689,201, 10 October 2013. [Google Scholar]
- Liu, T.; Chang, Z.; Yin, Y.; Chen, K.; Zhang, Y.; Zhang, X. The pvdf-hfp gel polymer electrolyte for li-o2 battery. Solid State Ion. 2017. [Google Scholar] [CrossRef]
- Solvay. Available online: https://www.Solvay.Com/en/media/press_releases/20171107-pvdf-polymer-presence-global-new-unit-china.html (accessed on 18 September 2017).
- Company, F.M.I. Polyvinylidene Fluoride (PVDF) Market: Global Industry Analysis and Opportunity Assessment 2014–2020. Available online: https://www.futuremarketinsights.com/reports/global-polyvinylidene-fluoride-market (22 October 2017).
- Tan, Z.; Wang, X.; Fu, C.; Chen, C.; Ran, X. Effect of electron beam irradiation on structural and thermal properties of gamma poly (vinylidene fluoride) (γ-pvdf) films. Radiat. Phys. Chem. 2017, in press. [Google Scholar] [CrossRef]
- Kang, G.-D.; Cao, Y.-M. Application and modification of poly (vinylidene fluoride) (pvdf) membranes—A review. J. Membr. Sci. 2014, 463, 1451–1465. [Google Scholar] [CrossRef]
- Meng, N.; Mao, R.; Tu, W.; Odolczyk, K.; Zhang, Q.; Bilotti, E.; Reece, M.J. Crystallization kinetics and enhanced dielectric properties of free standing lead-free pvdf based composite films. Polymer 2017, 121, 88–96. [Google Scholar] [CrossRef]
- Farooqui, U.R.; Ahmad, A.L.; Hamid, N.A. Effect of polyaniline (pani) on poly(vinylidene fluoride-co-hexaflouro propylene) (pvdf-co-hfp) polymer electrolyte membrane prepared by breath figure method. Polym. Test. 2017, 60, 124–131. [Google Scholar] [CrossRef]
- Ike, I.A.; Dumée, L.F.; Groth, A.; Orbell, J.D.; Duke, M. Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure pvdf mixed matrix membranes. J. Membr. Sci. 2017, 540, 200–211. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, Y.; Lei, L.; Wang, X.; Wang, H. Crystallization of poly(ε-caprolactone) in poly(vinylidene fluoride)/poly(ε-caprolactone) blend. Polymers 2017, 9, 42. [Google Scholar] [CrossRef]
- Davenport, D.; Gui, M.; Ormsbee, L.; Bhattacharyya, D. Development of pvdf membrane nanocomposites via various functionalization approaches for environmental applications. Polymers 2016, 8, 32. [Google Scholar] [CrossRef]
- Bonnet, A.; Mathieu, C.; Reyna-Valencia, A.; Ramfel, B.; Degoulet, C. Fluorinated Polymer Composition. Patent WO2017017373A1, 2 February 2017. [Google Scholar]
- Kappler, P.; Gauthe, V. Process for the Manufacture of Thermally Stable PVDF. U.S. Patent No. 7,012,122, 14 March 2006. [Google Scholar]
- Pascal, T. Vinylidene Fluoride Polymer Having a Fraction of Non-Transferred Chains and Its Manufacturing Process. U.S. Patent No. 6,989,427, 24 January 2006. [Google Scholar]
- Zhang, J.; Wang, Z.; Wang, Q.; Ma, J.; Cao, J.; Hu, W.; Wu, Z. Relationship between polymers compatibility and casting solution stability in fabricating pvdf/pva membranes. J. Membr. Sci. 2017, 537, 263–271. [Google Scholar] [CrossRef]
- Kakihana, Y.; Cheng, L.; Fang, L.-F.; Wang, S.-Y.; Jeon, S.; Saeki, D.; Rajabzadeh, S.; Matsuyama, H. Preparation of positively charged pvdf membranes with improved antibacterial activity by blending modification: Effect of change in membrane surface material properties. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 133–139. [Google Scholar] [CrossRef]
- Munirasu, S.; Banat, F.; Durrani, A.A.; Haija, M.A. Intrinsically superhydrophobic pvdf membrane by phase inversion for membrane distillation. Desalination 2017, 417, 77–86. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, A.-Q.; Zhu, B.-K.; Du, C.-H.; Xu, Y.-Y. Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process. J. Membr. Sci. 2008, 319, 169–175. [Google Scholar] [CrossRef]
- Binczyk, M.; Nowak, M.; Skrobanska, M.; Tylkowski, B.; Runka, T.; Jastrzab, R. Silver cd-r based substrate as a sers active material. J. Iran. Chem. Soc. 2016, 13, 841–845. [Google Scholar] [CrossRef]
- Nogalska, A.; Ammendola, M.; Tylkowski, B.; Ambrogi, V.; Garcia-Valls, R. Ambient CO2 adsorption via membrane contactors—Value of assimilation from air as nature stomata. J. Membr. Sci. 2018, 546, 41–49. [Google Scholar] [CrossRef]
- Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [Google Scholar] [CrossRef]
- Cui, Z.; Hassankiadeh, N.T.; Zhuang, Y.; Drioli, E.; Lee, Y.M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Sun, D.; An, Q.; Chen, H. Effect of coagulation bath temperature on formation mechanism of poly(vinylidene fluoride) membrane. J. Appl. Polym. Sci. 2008, 110, 1656–1663. [Google Scholar] [CrossRef]
- Gradys, A.; Sajkiewicz, P. Determination of the melting enthalpy of β phase of poly(vinylidene fluoride). e-Polymers 2013, 13, 203–216. [Google Scholar] [CrossRef]
- Gregorio, R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272–3279. [Google Scholar] [CrossRef]
- Tylkowski, B.; Carosio, F.; Castañeda, J.; Alongi, J.; García-Valls, R.; Malucelli, G.; Giamberini, M. Permeation behavior of polysulfone membranes modified by fully organic layer-by-layer assemblies. Ind. Eng. Chem. Res. 2013, 52, 16406–16413. [Google Scholar] [CrossRef]
- Chen, Z.; Rana, D.; Matsuura, T.; Meng, D.; Lan, C.Q. Study on structure and vacuum membrane distillation performance of pvdf membranes: II. Influence of molecular weight. Chem. Eng. J. 2015, 276, 174–184. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Botelho, G.; Lanceros-Méndez, S. Nonsolvent induced phase separation preparation of poly(vinylidene fluoride-co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties. Mater. Des. 2015, 88, 390–397. [Google Scholar] [CrossRef]
- Hassankiadeh, N.T.; Cui, Z.; Kim, J.H.; Shin, D.W.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Pvdf hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of pvdf molecular weight. J. Membr. Sci. 2014, 471, 237–246. [Google Scholar] [CrossRef]
- Matsuyama, H.; Maki, T.; Teramoto, M.; Asano, K. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J. Membr. Sci. 2002, 204, 323–328. [Google Scholar] [CrossRef]
- Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 1992, 73, 259–275. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, D.; Zhang, B.; Xing, W. Membrane surface roughness characterization and its influence on ultrafine particle adhesion. Sep. Purif. Technol. 2012, 90, 140–146. [Google Scholar] [CrossRef]
- Sousa, R.E.; Nunes-Pereira, J.; Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S.; Hassoun, J.; Scrosati, B.; Appetecchi, G.B. Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of li-ion batteries. J. Power Sour. 2014, 263, 29–36. [Google Scholar] [CrossRef]
- Tylkowski, B.; Tsibranska, I. Overview of main techniques used for membrane characterization. J. Chem. Technol. Metall. 2015, 50, 3–12. [Google Scholar]
- Bogdanowicz, K.A.; Tylkowski, B.; Giamberini, M. Preparation and characterization of light-sensitive microcapsules based on a liquid crystalline polyester. Langmuir 2013, 29, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH Publishers, Verlag: Berlin, Germany, 2003. [Google Scholar]
Membrane | Molecular weight of polymer [kDa] | Temperature of coagulation bath [°C] | β/α phase ratio | Main pore size [μm] | Root mean square (RMS) roughness | Contact angle [°] | Thickness of membrane [μm] |
---|---|---|---|---|---|---|---|
M1 | 300–320 | 20 ± 3 | 0.71 | 0.42 ± 0.01 | 16.07 ± 0.08 | 68.7 ± 3.4 | 106 ± 2 |
M2 | 40 ± 3 | 0.29 | 0.37 ± 0.02 | 12.08 ± 0.07 | 61.2 ± 1.0 | 103 ± 2 | |
M3 | 60 ± 3 | 0.17 | 0.18 ± 0.03 | 17.18 ± 0.11 | 78.0 ± 5.4 | 106 ± 2 | |
M4 | 570–600 | 20 ± 3 | 0.59 | 0.38 ± 0.04 | 15.17 ± 0.15 | 74.5 ± 9.0 | 107 ± 2 |
M5 | 40 ± 3 | 0.26 | 0.22 ± 0.03 | 11.26 ± 0.13 | 59.0 ± 2.8 | 120 ± 2 | |
M6 | 60 ± 3 | 0.12 | 0.16 ± 0.02 | 16.56 ± 0.17 | 79.9 ± 4.9 | 113 ± 2 | |
M7 | 670–700 | 20 ± 3 | 0.53 | 0.27 ± 0.02 | 15.71 ± 0.29 | 68.3 ± 3.8 | 114 ± 2 |
M8 | 40 ± 3 | 0.24 | 0.20 ± 0.03 | 12.15 ± 0.14 | 65.2 ± 6.6 | 106 ± 2 | |
M9 | 60 ± 3 | 0.11 | 0.15 ± 0.02 | 18.27 ± 0.23 | 98.1 ± 5.9 | 11 5± 2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haponska, M.; Trojanowska, A.; Nogalska, A.; Jastrzab, R.; Gumi, T.; Tylkowski, B. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers 2017, 9, 718. https://doi.org/10.3390/polym9120718
Haponska M, Trojanowska A, Nogalska A, Jastrzab R, Gumi T, Tylkowski B. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers. 2017; 9(12):718. https://doi.org/10.3390/polym9120718
Chicago/Turabian StyleHaponska, Monika, Anna Trojanowska, Adrianna Nogalska, Renata Jastrzab, Tania Gumi, and Bartosz Tylkowski. 2017. "PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature" Polymers 9, no. 12: 718. https://doi.org/10.3390/polym9120718
APA StyleHaponska, M., Trojanowska, A., Nogalska, A., Jastrzab, R., Gumi, T., & Tylkowski, B. (2017). PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers, 9(12), 718. https://doi.org/10.3390/polym9120718