Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review
Abstract
:1. Introduction
2. Electrospinning for Tissue Engineering
3. Nanocarbons for Tissue Engineering
3.1. Carbon Nanotubes
3.2. Graphene-Based Nanocarbons
3.3. Other Nanocarbons for Tissue Engineering
4. Electrospun Polymeric Nanomats Containing Nanocarbons for Tissue Engineering
4.1. Polymeric Nanomats Containing Carbon Nanotubes
4.1.1. Natural Polymers
4.1.2. Synthetic Polymers
4.2. Polymeric Nanomats Containing Graphene-Based Nanocarbons
4.2.1. Natural Polymers
4.2.2. Synthetic Polymers
4.3. Polymeric Nanomats Containing Other Nanocarbons
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
AA | Acetic acid |
BC | Bacterial cellulose |
CA | Cellulose acetate |
CCM | Charge carrier mobility |
CNT | Carbon nanotubes |
Col | Collagen |
CS | Chitosan |
DCM | Dichloromethane |
DMAc | N,N-dimethylacetamide |
DMF | N,N-dimethyl-formamide |
DMFA | Dimethylformaldehyde |
DMSO | Dimethylsulfoxide |
DWCNT | Double-walled carbon nanotube |
E | Elastic modulus |
ECM | Extracellular matrix |
EtOH | Ethanol |
FN | Fibronectin |
GA | Glutaraldehyde |
GEL | Gelatin |
GNS | Graphene nanosheets |
GO | Graphene oxide |
GO-g-[P(HEMA-g-CL)] | Graphene oxide functionalized with poly(2-hydroxyethyl methacrylate)-graft-poly(e-caprolactone) |
GO-g-PEG | Pegylated graphene oxide |
HA | Hydroxyapatite |
HFIP | 1,1,1,3,3,3-hexafluoro-2-propanol |
MWCNT | Multiwalled carbon nanotube |
ND | Nanodiamond |
NP | Nanoparticle |
PAA | Polyacrylic acid |
PAN | Polyacrylonitrile |
PANI | Polyaniline |
PBAT | Poly(butylene adipate-co-terephthalate |
PCL | Polycaprolactone |
PELA | Poly(ethylene glycol)-poly(d,l-lactide) copolymer |
PEO | Polyethylene oxide |
PGA | Polyglicolide |
PhOMe | 4-methoxyphenyl |
PLA | Polylactic acid |
PLCL | Poly(l-lactic acid-co-3-caprolactone) |
PLGA | Poly(lactic-co-glycolic acid) |
PLLA | Poly-l-lactide |
PNIPAm | Poly(N-isopropyl acrylamide) |
PNIPAm-co-MAA | Poly(N-isopropyl acrylamide-co-methacrylic acid |
PU | Polyurethane |
PVA | Poly(vinyl alcohol) |
PVC | Polyvinylchloride |
PVP | Polyvinyl pyrrolidone |
RGD | Arginine-glycine-aspartic acid peptide |
RGO | Reduced graphene oxide |
SBF | Simulated body fluid |
SDBS | Sodium dodecyl benzene sulfonate |
SEBS | Styrene–ethylene/butylene–styrene |
SF | Silk fibroin |
SWCNT | Single-walled carbon nanotube |
TE | Tissue engineering |
THF | Tetrahydrofuran |
TS | Tensile strength |
References
- Lo Re, G.; Lopresti, F.; Petrucci, G.; Scaffaro, R. A facile method to determine pore size distribution in porous scaffold by using image processing. Micron 2015, 76, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Rigogliuso, S.; Ghersi, G. Preparation of three-layered porous PLA/PEG scaffold: Relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 2016, 54, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Mi, S. Electrospun scaffolds for corneal tissue engineering: A review. Materials 2016, 9. [Google Scholar] [CrossRef]
- Braghirolli, D.I.; Steffens, D.; Pranke, P. Electrospinning for regenerative medicine: A review of the main topics. Drug Discov. Today 2014, 19, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Maio, A.; Botta, L.; Rigogliuso, S.; Ghersi, G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos. Part A Appl. Sci. Manuf. 2017, 92, 97–107. [Google Scholar] [CrossRef]
- Song, J.; Gao, H.; Zhu, G.; Cao, X.; Shi, X.; Wang, Y. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 2015, 95, 1039–1050. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, K.; Chen, Q.; Xu, Y.; Xue, H.; Qian, Q. Preparation and characterization of electrospun La(1-x)Ce(x)CoO(δ): Application to catalytic oxidation of benzene. J. Hazard. Mater. 2015, 296, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Sarbatly, R.; Krishnaiah, D.; Kamin, Z. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills. Mar. Pollut. Bull. 2016, 106, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016, 59, 366–376. [Google Scholar] [CrossRef]
- Cui, W.; Zhou, Y.; Chang, J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 2016, 11, 014108. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, K.; Manakhov, A.; Zaj’\ičková, L.; Thomas, S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone)(PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech 2016, 18, 72–81. [Google Scholar] [CrossRef]
- Frohbergh, M.E.; Katsman, A.; Botta, G.P.; Lazarovici, P.; Schauer, C.L.; Wegst, U.G.K.; Lelkes, P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012, 33, 9167–9178. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Mi, R.; Hoke, A.; Chew, S.Y. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J. Tissue Eng. Regen. Med. 2014, 8, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, S.; Layland, S.L.; Schenke-Layland, K. ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 2015, 97, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Rigogliuso, S.; Ghersi, G. Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. J. Mech. Behav. Biomed. Mater. 2016, 63, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Rigogliuso, S.; Ghersi, G. Melt Processed PCL/PEG Scaffold With Discrete Pore Size Gradient for Selective Cellular Infiltration. Macromol. Mater. Eng. 2016, 301, 182–190. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Maio, A.; Sutera, F.; Botta, L. Development of polymeric functionally graded scaffold: A brief review. J. Appl. Biomater. Funct. Mater. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Surucu, S.; Masur, K.; Sasmazel, H.T.; Von Woedtke, T.; Weltmann, K.D. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation. Appl. Surf. Sci. 2016, 385, 400–409. [Google Scholar] [CrossRef]
- Bauer, A.J.; Wu, Y.; Li, B. Electrospun Poly(ε-caprolactone)/Polyhedral Oligomeric Silsesquioxane-Based Copolymer Blends: Evolution of Fiber Internal Structures. Macromol. Biosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.M.; Kaffashi, B.; Shokrollahi, P.; Seyedjafari, E.; Ardeshirylajimi, A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr. Polym. 2015, 118, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.-Y.; Zhou, X.-P.; Chen, L.; Zeng, X.-Y.; Xie, X.-L.; Mai, Y.-W. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos. Sci. Technol. 2012, 72, 248–255. [Google Scholar] [CrossRef]
- Zhu, W.; Masood, F.; O’Brien, J.; Zhang, L.G. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Nitya, G.; Nair, G.T.; Mony, U.; Chennazhi, K.P.; Nair, S.V. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J. Mater. Sci. Mater. Med. 2012, 23, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Botta, L.; Lopresti, F.; Maio, A.; Sutera, F. Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 2017, 24, 447–478. [Google Scholar] [CrossRef]
- Asmatulu, R.; Patrick, S.; Ceylan, M.; Ahmed, I.; Yang, S.-Y.; Nuraje, N. Antibacterial Polycaprolactone/Natural Hydroxyapatite Nanocomposite Fibers for Bone Scaffoldings. J. Bionanosci. 2015, 9, 120–126. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhai, T.; Wang, X.; Dan, Y.; Turng, L.-S. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2016, 53, 403–413. [Google Scholar] [CrossRef]
- Maio, A.; Fucarino, R.; Khatibi, R.; Rosselli, S.; Bruno, M.; Scaffaro, R. A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers. Compos. Sci. Technol. 2015, 119, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Tadakamalla, S.; Zhang, X.; Huang, Y.; Jiang, Y.; Colorado, H.A.; Luo, Z.; Wei, S.; Guo, Z. Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J. Mater. Chem. C 2013, 1, 729–743. [Google Scholar] [CrossRef]
- Wei, H.; Ding, D.; Wei, S.; Guo, Z. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J. Mater. Chem. A 2013, 1, 10805–10813. [Google Scholar] [CrossRef]
- Wei, H.; Gu, H.; Guo, J.; Wei, S.; Guo, Z. Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J. Electrochem. Soc. 2013, 160, G3038–G3045. [Google Scholar] [CrossRef]
- Gu, H.; Guo, J.; He, Q.; Jiang, Y.; Huang, Y.; Haldolaarachige, N.; Luo, Z.; Young, D.P.; Wei, S.; Guo, Z. Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 2014, 6, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, X.; He, Q.; Wei, H.; Long, J.; Guo, J.; Gu, H.; Yu, J.; Liu, J.; Ding, D.; et al. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 2015, 7, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- McKeon-Fischer, K.D.; Flagg, D.H.; Freeman, J.W. Coaxial electrospun poly(e-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering. J. Biomed. Mater. Res. A 2011, 99, 493–499. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.A.; McGuinness, G.B. Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Biazar, E. Application of polymeric nanofibers in soft tissues regeneration. Polym. Adv. Technol. 2016, 27. [Google Scholar] [CrossRef]
- Tamayol, A.; Akbari, M.; Annabi, N.; Paul, A.; Khademhosseini, A.; Juncker, D. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol. Adv. 2013, 31, 669–687. [Google Scholar] [CrossRef] [PubMed]
- Bendrea, A.-D.; Cianga, L.; Cianga, I. Review paper: Progress in the field of conducting polymers for tissue engineering applications. J. Biomater. Appl. 2011, 26, 3–84. [Google Scholar] [CrossRef] [PubMed]
- Suwantong, O. Biomedical applications of electrospun polycaprolactone fiber mats. Polym. Adv. Technol. 2016, 27. [Google Scholar] [CrossRef]
- Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016, 31, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Corradini, E.; Curti, P.S.; Meniqueti, A.B.; Martins, A.F.; Rubira, A.F.; Muniz, E.C. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 2014, 15, 22438–22470. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef] [PubMed]
- Ercolani, E.; Del Gaudio, C.; Bianco, A. Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. J. Tissue Eng. Regen. Med. 2015, 9, 861–888. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M. Advances in Skin Regeneration: Application of Electrospun Scaffolds. Adv. Healthc. Mater. 2015, 4, 1114–1133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; O’Brien, C.; O’Brien, J.R.; Zhang, L.G. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014, 9, 859–875. [Google Scholar] [CrossRef]
- Rocco, K.A.; Maxfield, M.W.; Best, C.A.; Dean, E.W.; Breuer, C.K. In vivo applications of electrospun tissue-engineered vascular grafts: A review. Tissue Eng. Part B Rev. 2014, 20, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, T.; Li, M.; Fu, N.; Fu, Y.; Ba, K.; Deng, S.; Jiang, Y.; Hu, J.; Peng, Q.; Lin, Y. Electrospun fibers for dental and craniofacial applications. Curr. Stem Cell Res. Ther. 2014, 9, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, X.; Zhou, G.; Fan, H.; Fan, Y. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials 2011, 32, 3784–3793. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Meduri, P.; Agubra, V.; Xiao, X.; Alcoutlabi, M. Graphene-Based Nanocomposites for Energy Storage. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Bhattacharya, M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Graphene/elastomer nanocomposites. Carbon 2015, 95, 460–484. [Google Scholar] [CrossRef]
- Norazlina, H.; Kamal, Y. Graphene modifications in polylactic acid nanocomposites: A review. Polym. Bull. 2015, 72, 931–961. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Gogotsi, Y. Nanodiamond-polymer composites. Diam. Relat. Mater. 2015, 58, 161–171. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.-J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Idumah, C.I.; Hassan, A.; Affam, A.C. A review of recent developments in flammability of polymer nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177. [Google Scholar] [CrossRef]
- Ravichandran, R.; Sundarrajan, S.; Venugopal, J.R.; Mukherjee, S.; Ramakrishna, S. Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromol. Biosci. 2012, 12, 286–311. [Google Scholar] [CrossRef] [PubMed]
- Wendorff, J.H.; Agarwal, S.; Greiner, A. Nature of the Electrospinning Process—Experimental Observations and Theoretical Analysis. In Electrospinning; John Wiley&Sons: Hoboken, NJ, USA, 2012; pp. 29–68. [Google Scholar]
- Wendorff, J.H.; Agarwal, S.; Greiner, A. Medicinal Applications for Electrospun Nanofibers. In Electrospinning; John Wiley&Sons: Hoboken, NJ, USA, 2012; pp. 217–236. [Google Scholar]
- Kuppan, P.; Sethuraman, S.; Krishnan, U.M. Interaction of human smooth muscle cells on random and aligned nanofibrous scaffolds of PHBV and PHBV-gelatin. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 816–825. [Google Scholar] [CrossRef]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366. [Google Scholar] [CrossRef]
- Yao, Z.-C.; Gao, Y.; Chang, M.-W.; Ahmad, Z.; Li, J.-S. Regulating poly-caprolactone fiber characteristics in-situ during one-step coaxial electrospinning via enveloping liquids. Mater. Lett. 2016, 183, 202–206. [Google Scholar] [CrossRef]
- Kalwar, K.; Sun, W.-X.; Li, D.-L.; Zhang, X.-J.; Shan, D. Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity. React. Funct. Polym. 2016, 107, 87–92. [Google Scholar] [CrossRef]
- Vysloužilová, L.; Valtera, J.; Pejchar, K.; Beran, J.; Lukáš, D. Design of Coaxial Needleless Electrospinning Electrode with Respect to the Distribution of Electric Field. Appl. Mech. Mater. 2014, 693, 394–399. [Google Scholar] [CrossRef]
- Yarin, A.L. Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym. Adv. Technol. 2011, 22, 310–317. [Google Scholar] [CrossRef]
- Chen, H.; Wang, N.; Di, J.; Zhao, Y.; Song, Y.; Jiang, L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 2010, 26, 11291–11296. [Google Scholar] [CrossRef] [PubMed]
- Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Allaf, R.M.; Rivero, I.V.; Ivanov, I.N. Fabrication of co-continuous poly(ε-caprolactone)/polyglycolide blend scaffolds for tissue engineering. J. Appl. Polym. Sci. 2015, 132, 1097–4628. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Maio, A.; Sutera, F.; Mistretta, M.C.; La Mantia, F.P. A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size. J. Vis. Exp. 2016. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Sutera, A.; Botta, L.; Fontana, R.M.; Puglia, A.M.; Gallo, G. Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations. Macromol. Biosci. 2016, 16, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.-Y.; Jing, X.; Yu, E.; McNulty, J.; Peng, X.-F.; Turng, L.-S. Fabrication of triple-layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation. Mater. Lett. 2015, 161, 305–308. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Matsiko, A.; Dickson, G.R.; O’Brien, F.J.; Gleeson, J.P. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater. 2014, 10, 1996–2004. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Schindeler, A.; Gleeson, J.P.; Yu, N.Y.C.; Cantrill, L.C.; Mikulec, K.; Peacock, L.; O’Brien, F.J.; Little, D.G. A collagen-hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater. 2014, 10, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, W.; Sun, B.; Li, H.; Wu, T.; Ke, Q.; Huang, C.; EI-Hamshary, H.; Al-Deyab, S.S.; Mo, X. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf. B Biointerfaces 2016, 146, 632–641. [Google Scholar] [CrossRef]
- Correlo, V.M.; Boesel, L.F.; Pinho, E.; Costa-Pinto, A.R.; Alves da Silva, M.L.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties. J. Biomed. Mater. Res. A 2009, 91, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Algul, D.; Sipahi, H.; Aydin, A.; Kelleci, F.; Ozdatli, S.; Yener, F.G. Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue. Int. J. Biol. Macromol. 2015, 79, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Su, D.S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816. [Google Scholar] [CrossRef] [PubMed]
- Maio, A.; Agnello, S.; Khatibi, R.; Botta, L.; Alessi, A.; Piazza, A.; Buscarino, G.; Mezzi, A.; Pantaleo, G.; Scaffaro, R. A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids. J. Alloys Compd. 2016, 664, 428–438. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Lopresti, F.; Giallombardo, D.; Botta, L.; Bondì, M.L.; Agnello, S. Synthesis and self-assembly of a PEGylated-graphene aerogel. Compos. Sci. Technol. 2016, 128, 193–200. [Google Scholar] [CrossRef]
- Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, R.S.; Qian, D.; Kam, W. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008. [Google Scholar] [CrossRef]
- Li, H.J.; Lu, W.G.; Li, J.J.; Bai, X.D.; Gu, C.Z. Multichannel Ballistic Transport in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 2005, 86601, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409–6413. [Google Scholar] [CrossRef] [PubMed]
- Yu, M. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Demczyk, B.G.; Wang, M.; Cumingd, J.; Hetamn, M.; Han, W.; Zettl, A.; Ritchie, R. Direct mechanical measurements of the tensile strength and elastic modulus of multi-walled carbon nanotubes. Mater. Sci. Eng. A. 2002, 334, 173–178. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Liu, F. Mechanical properties of graphene oxides. Nanoscale 2012, 5910–5916. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano 2010, 4, 6557–6564. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.; Gonc, I.C.; Magalhães, F.D. Biointerfaces Graphene-based materials biocompatibility: A review. Colloids Surf. B Biointerfaces 2013, 111, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, D.; Jung, S.; Yi, S.N.; Yun, Y.J.; Chang, S.K.; Ha, D.H. Charge Transport in Thick Reduced Graphene Oxide Film. J. Phys. Chem. C 2015, 119, 28685–28690. [Google Scholar] [CrossRef]
- Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 2009, 113, 15768–15771. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.B.; Sariciftci, N.S.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H. Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility. Appl. Phys. Lett. 2007, 90, 213512. [Google Scholar] [CrossRef]
- Lof, R.W.; van Veenendaal, M.A.; Koopmans, B.; Jonkman, H.T.; Sawatzky, G.A. Band gap, excitons, and Coulomb interaction in solid C60. Phys. Rev. Lett. 1992, 68, 3924–3927. [Google Scholar] [CrossRef] [PubMed]
- Makarova, T.L.; Sundqvist, B.; Scharff, P.; Gaevski, M.E.; Olsson, E.; Davydov, V.A.; Rakhmanina, A.V.; Kashevarova, L.S. Electrical properties of two-dimensional fullerene matrices. Carbon 2001, 39, 2203–2209. [Google Scholar] [CrossRef]
- Jansen, H.; Dobos, D.; Eisel, T.; Pernegger, H.; Eremin, V.; Wermes, N. Temperature dependence of charge carrier mobility in single-crystal chemical vapour deposition diamond. J. Appl. Phys. 2013, 113, 13–27. [Google Scholar] [CrossRef]
- Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45, 2511–2518. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wei, J.; Chen, Y.; Huo, P.; Wei, Y. Electrospinning of poly(l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces 2013, 5, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Dai, H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Chaturvedi, P.; Saho, P.; Jha, P.; Chouksey, A.; Lal, M.; Rawat, J.S.B.S.; Tandon, R.P.; Chaudhury, P.K. Effect of single wall carbon nanotube networks on gas sensor response and detection limit. Sens. Actuators B Chem. 2017, 240, 1134–1140. [Google Scholar] [CrossRef]
- Desforges, A.; Bridi, A.V.; Kadok, J.; Flahaut, E.; Le Normand, F.; Gleize, J.; Bellouard, C.; Ghanbaja, J.; Vigolo, B. Dramatic enhancement of double-walled carbon nanotube quality through a one-pot tunable purification method. Carbon 2016, 110, 292–303. [Google Scholar] [CrossRef]
- Mierczynski, P.; Mierczynska, A.; Maniukiewicz, W.; Maniecki, T.P.; Vasilev, K. MWCNTs as a catalyst in oxy-steam reforming of methanol. RSC Adv. 2016, 6, 81408–81413. [Google Scholar] [CrossRef]
- Maio, A.; Botta, L.; Tito, A.C.; Pellegrino, L.; Daghetta, M.; Scaffaro, R. Statistical study of the influence of CNTs purification and plasma functionalization on the properties of polycarbonate-CNTs nanocomposites. Plasma Process. Polym. 2014, 11, 664–677. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Tito, A.C. High performance PA6/CNTs nanohybrid fibers prepared in the melt. Compos. Sci. Technol. 2012, 72, 1918–1923. [Google Scholar] [CrossRef] [Green Version]
- Scaffaro, R.; Maio, A.; Agnello, S.; Glisenti, A. Plasma functionalization of multiwalled carbon nanotubes and their use in the preparation of nylon 6-based nanohybrids. Plasma Process. Polym. 2012, 9, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Scaffaro, R.; Maio, A. Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles. Polym. Test. 2012, 31, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Botta, L.; Maio, A.; Mistretta, M.C.; La Mantia, F.P. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites. Materials 2016, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Scaffaro, R.; Botta, L.; Maio, A.; Gallo, G. PLA graphene nanoplatelets nanocomposites: Physical properties and release kinetics of an antimicrobial agent. Compos. Part B Eng. 2017, 109, 138–146. [Google Scholar] [CrossRef]
- Persson, H.; Yao, Y.; Klement, U.; Rychwalski, R.W. A simple way of improving graphite nanoplatelets (GNP) for their incorporation into a polymer matrix. Express Polym. Lett. 2012, 6, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Maio, A.; Giallombardo, D.; Scaffaro, R.; Piccionello, A.P.; Pibiri, I. Synthesis of a fluorinated graphene oxide-silica nanohybrid: Improving oxygen affinity. RSC Adv. 2016, 6, 46037–46047. [Google Scholar] [CrossRef]
- Agnello, S.; Alessi, A.; Buscarino, G.; Piazza, A.; Maio, A.; Botta, L.; Scaffaro, R. Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites. J. Alloys Compd. 2016, 695, 2054–2064. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A. A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing. Chem. Eng. J. 2017, 308, 1034–1047. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Taylor, R.; Walton, D.R.M. The chemistry of fullerenes. Nature 1993, 363, 685–693. [Google Scholar] [CrossRef]
- Krueger, A. New Carbon Materials: Biological Applications of Functionalized. Chemistry 2008, 39, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.C.; Lee, J.H.; Kim, M.J.; Hong, S.W.; Kim, B.; Hyun, J.K.; Choi, Y.S.; Park, J.; Han, D. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J. Biol. Eng. 2015, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.C.; Lee, J.H.; Jin, L.; Kim, M.J.; Kim, Y.J.; Hyun, J.K.; Jung, T.G.; Hong, S.W.; Han, D.W. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J. Nanobiotechnol. 2015, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, N.; Gatti, T.; Salice, P.; Scapin, G.; Marega, C.; Filippini, F.; Menna, E. Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nano fi brous matrix boosting neuronal differentiation. Carbon 2015, 95, 725–730. [Google Scholar] [CrossRef]
- Edwards, S.L.; Church, J.S.; Werkmeister, J.A.; Ramshaw, J.A.M. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials 2009, 30, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, Y.; Lv, Z.J.; Wei, W.J.; Guan, X.; Guan, Q.L.; Leng, Z.Q.; Zhao, J.Y.; Miao, H.; Liu, J. Potential Neurogenesis of Human Adipose-Derived Stem Cells on Electrospun Catalpol-Loaded Composite Nanofibrous Scaffolds. Ann. Biomed. Eng. 2015, 43, 2597–2608. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.-Z.; Kim, M.; Shin, U.S.; Kim, H.-W. Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells. Cell Biol. Int. 2011, 35, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, M.; Oraee-yazdani, S.; Dodel, M.; Hanaee-ahvaz, H.; Soudi, S.; Seyedjafari, E.; Salehi, M.; Soleimani, M. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly(l-lactic acid ) composite scaffold intended for nerve tissue engineering. EXCLI J. 2015, 14, 851–860. [Google Scholar] [PubMed]
- Liu, Y.; Lu, J.; Xu, G.; Wei, J.; Zhang, Z.; Li, X. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating. Mater. Sci. Eng. C 2016, 69, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Ostrovidov, S.; Shi, X.; Zhang, L.; Liang, X.; Kim, S.B.; Fujie, T.; Ramalingam, M.; Chen, M.; Nakajima, K.; Al-Hazmi, F.; et al. Myotube formation on gelatin nanofibers—Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials 2014, 35, 6268–6277. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xie, Y.; Zhang, H.; Ye, Z.; Zhang, W. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells. Colloids Surf. B Biointerfaces 2014, 123, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.V.M.; Silva, A.S.; Melo, G.F.S.; Vasconscellos, L.M.R.; Marciano, F.R.; Lobo, A.O. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater. Sci. Eng. C 2016, 59, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhou, S.; Li, L.; Li, J.; Luo, C.; Wang, J.; Li, X.; Weng, J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 2011, 32, 2821–2833. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Yang, H.; Shor, L.; Ko, F. Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes. Polymer 2009, 50, 1918–1924. [Google Scholar]
- Pan, H.; Zhang, Y.; Hang, Y.; Shao, H.; Hu, X.; Xu, Y.; Feng, C. Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 2012, 13, 2859–2867. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.X.; Zheng, W.; Li, L.; Zheng, Y.F. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Mater. Sci. Eng. C 2010, 30, 1014–1021. [Google Scholar] [CrossRef]
- Macossay, J.; Sheikh, F.A.; Cantu, T.; Eubanks, T.M.; Salinas, M.E.; Farhangi, C.S.; Ahmad, H.; Hassan, M.S.; Khil, M.S.; Maffi, S.K.; Kim, H.; Bowlin, G.L. Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex?? EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes. Appl. Surf. Sci. 2014, 321, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Kong, H.; Han, Z.; Wang, C.; Zhu, G.; Xie, S.; Xu, H. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J. Biomed. Mater. Res. Part A 2009, 88, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Han, Z.; Kong, H.; Qi, X.; Wang, C.; Xie, S.; Xu, H. Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. J. Biomed. Mater. Res. Part A 2010, 95, 312–320. [Google Scholar] [CrossRef] [PubMed]
- McCullen, S.D.; Stano, K.L.; Stevens, D.R.; Roberts, W.A.; Monteiro-Riviere, N.A.; Clarke, L.I.; Gorga, R.E. Development, optimization, and characterization of electrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 2007, 105, 1668–1678. [Google Scholar] [CrossRef]
- Markowski, J.; Magiera, A.; Lesiak, M.; Sieron, A.L.; Pilch, J.; Blazewicz, S. Preparation and characterization of nanofibrous polymer scaffolds for cartilage tissue engineering. J. Nanomater. 2015, 2015, 45. [Google Scholar] [CrossRef]
- Mei, F.; Zhong, J.; Yang, X.; Ouyang, X.; Zhang, S.; Hu, X.; Ma, Q.; Lu, J.; Ryu, S.; Deng, X. Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 2007, 8, 3729–3735. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, S.; Costa, P.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Lanceros-Méndez, S. Electrospun styrene-butadiene-styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Compos. Part B 2014, 67, 30–38. [Google Scholar] [CrossRef]
- Sharma, Y.; Tiwari, A.; Hattori, S.; Terada, D.; Sharma, A.K.; Ramalingam, M.; Kobayashi, H. Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. Int. J. Biol. Macromol. 2012, 51, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Sharma, Y.; Hattori, S.; Terada, D.; Sharma, A.K.; Turner, A.P.F.; Kobayashi, H. Influence of Poly(N-isopropylacrylamide)–CNT–Polyaniline Three-Dimensional Electrospun Microfabric Scaffolds on Cell Growth and Viability. Biopolymers 2013, 99, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, S.; Shen, M.; Qi, R.; Fang, Y.; Guo, R.; Cai, H.; Cao, X.; Tomás, H.; Zhu, M.; Shi, X. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr. Polym. 2013, 91, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Qi, R.; Shen, M.; Cao, X.; Guo, R.; Zhang, Y.; Shi, X. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf. B Biointerfaces 2011, 84, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Bruinink, A.; Bitar, M.; Pleskova, M.; Wick, P.; Krug, H.F.; Maniura-weber, K. Addition of nanoscaled bioinspired surface features: A revolution for bone-related implants and scaffolds? J. Biomed. Mater. Res. Part A 2014, 102, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tonderys, D.; Leggett, S.E.; Kendall, E.; Kiani, M.T.; Spitz, R.; Qiu, Y.; Wong, I.Y.; Hurt, R.H. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology. Carrbon 2016, 97, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Massoumi, B.; Ghandomi, F.; Abbasian, M. Surface functionalization of graphene oxide with poly(2-hydroxyethyl methacrylate)-graft-poly(e-caprolactone) and its electrospun nanofibers with gelatin. Appl. Phys. A 2016, 122, 1000. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Simchi, A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Mater. Sci. Eng. C 2017, 70, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Azarniya, A.; Eslahi, N.; Mahmoudi, N.; Simchi, A. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan / bacterial cellulose nanofibrous composites. Compos. Part A 2016, 85, 113–122. [Google Scholar] [CrossRef]
- Aznar-cervantes, S.; Martínez, J.G.; Bernabeu-esclapez, A.; Lozano-pérez, A.A.; Meseguer-olmo, L.; Otero, T.F.; Cenis, J.L. Bioelectrochemistry Fabrication of electrospun silk fi broin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry 2016, 108, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Y.; Wang, Y.; Cui, W. Fabrication of gelatin-based electrospun composite fibers for anti-bacterial properties and protein adsorptino. Mar. Drugs 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Park, M.; Kyoung, H.; Pant, B.; Choi, J.; Wan, Y.; Youb, J.; Park, S.; Kim, H. Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J. Ind. Eng. Chem. 2014, 20, 4415–4420. [Google Scholar] [CrossRef]
- Jin, L.; Yue, D.; Xu, Z.; Liang, G.; Zhang, Y.; Zhang, J.; Zhang, X.; Wang, Z. Fabrication, mechanical properties, and biocompatibility of reduced graphene oxidereinforced nanofiber mats. RSC Adv. 2014, 4, 35035–35041. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Mondal, B.; Kumar, S.; Sarkar, S.C. Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly(ε-caprolactone, PCL) composite meshes. Mater. Lett. 2016, 182, 194–197. [Google Scholar] [CrossRef]
- Patel, A.; Xue, Y.; Mukundan, S.; Rohan, L.C.; Sant, V.; Stolz, D.B.; Sant, S. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation. Ann. Biomed. Eng. 2016, 44, 2036–2048. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Shafiei, S.S.; Asadi-eydivand, M.; Ardeshir, M. Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. J. Bioact. Compat. Polym. Biomed. Appl. 2016. [Google Scholar] [CrossRef]
- Ramazani, S.; Karimi, M. Aligned poly(ε-caprolactone )/ graphene oxide and reduced graphene oxide nanocomposite nano fi bers: Morphological, mechanical and structural properties. Mater. Sci. Eng. C 2015, 56, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wong, H.M.; Yeung, K.W.K.; Tjong, S.C. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 2016, 8, 287. [Google Scholar] [CrossRef]
- An, X.; Ma, H.; Liu, B.; Wang, J. Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. J. Nanomater. 2013, 2013, 373414. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, H.; Fang, Y.; Cao, Y.; Huang, J.; Zhang, M.; Dai, J.; Shi, X.; Zhang, Z. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl. Mater. Interfaces 2015, 7, 6331–6339. [Google Scholar] [CrossRef]
- Shao, W.; He, J.; Sang, F.; Wang, Q.; Chen, L.; Cui, S.; Ding, B. Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid )—Tussah silk fi broin ultra fi ne nano fi ber scaffolds incorporated with graphene oxide. Mater. Sci. Eng. C 2016, 62, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zheng, H.; Liang, S.; Gao, C. Acta Biomaterialia Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016, 37, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Mi, H.; Salick, M.R.; Cordie, T.M.; Peng, X.; Turng, L. Electrospinning thermoplastic polyurethane / graphene oxide scaffolds for small diameter vascular graft applications. Mater. Sci. Eng. C 2015, 49, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Peng, S.Y.; Wang, Y.J.; Chen, W.C.; Lin, J.H. Microstructure and characterization of electrospun poly(vinyl alcohol) nanofiber scaffolds filled with graphene nanosheets. J. Appl. Polym. Sci. 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Tai, Z.X.; Sun, D.F.; Chen, J.T.; Ma, H.B.; Yan, X.B.; Liu, B.; Xue, Q.J. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J. Appl. Polym. Sci. 2013, 127, 1885–1894. [Google Scholar] [CrossRef]
- Jin, L.; Zeng, Z.; Kuddannaya, S.; Yue, D.; Bao, J. Synergistic effects of a novel free-standing reduced graphene oxide film and surface coating fibronectin on morphology, adhesion and proliferation of mesenchymal stem cells. J. Mater. Chem. B 2015, 3, 4338–4344. [Google Scholar] [CrossRef]
- Scaffaro, R.; Botta, L.; Maio, A.; Gallo, G. Incorporation of an antibiotic in poly(lactic acid) and polypropylene by melt processing. J. Appl. Biomater. Funct. Mater. 2016, 14, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Maio, A. Mechanical behavior of Polylactic acid/Polycaprolactone porous layered functional composites. Compos. Part B Eng. 2016, 98, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.A.; Renzing, A.; Douglas, T.E.L.; Liu, Q.; Wille, S.; Parizek, M.; Bacakova, L.; Kromka, A.; Jarosova, M.; Godier, G.; Warnke, P.H. Development of composite poly(lactide-co-Glycolide)-nanodiamond scaffolds for bone cell growth. J. Nanosci. Nanotechnol. 2015, 15, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Parizek, M.; Douglas, T.E.; Novotna, K.; Kromka, A.; Brady, M.A.; Renzing, A.; Voss, E.; Jarosova, M.; Palatinus, L.; Tesarek, P.; et al. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int. J. Nanomed. 2012, 7, 1931–1951. [Google Scholar]
- Mahdavi, M.; Mahmoudi, N.; Anaran, F.R.; Simchi, A. Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.A.S.; Salles, G.N.; Rodrigues, B.V.M.; Marciano, F.R.; Pacheco-soares, C.; Lobo, A.O. Diamond nanoparticles into poly(lactic acid) electrospun fibers: Cytocompatible and bioactive scaffolds with enhanced wettability and cell adhesion. Mater. Lett. 2016, 183, 420–424. [Google Scholar] [CrossRef]
- Liu, W.; Wei, J.; Chen, Y. Electrospun poly(l-lactide) nanofibers loaded with paclitaxel and water-soluble fullerenes for drug delivery and bioimaging. New J. Chem. 2014, 38, 6223–6229. [Google Scholar] [CrossRef]
Nanocarbons for TE | Mechanical properties | Electrical properties | Biological properties | |||||
---|---|---|---|---|---|---|---|---|
Class and Geometry | Type | E (TPa) | TS (GPa) | CCM (cm2/V·s) | Band gap (eV) | Conductivity (S/cm) | Cytotoxicity | Antibacterial activity |
CNT-family (1D) | SWCNTs | 1–1.3 [83] | 13–52 [83] | 1 × 105 [84] | 0.01–0.5 [84] | 102–103 [79] | Strong [85] | Strong [86] |
DWCNTs | 1.25 [83] | 45 [83] | 1 × 105 [84] | 0.01–0.5 [84] | 102–103 [79] | Strong [85] | Strong [87] | |
MWCNTs | 0.2–0.9 [88,89] | 1.7 [83] | 1 × 105 [84] | 0.01–0.5 [84] | 102–103 [79] | Moderate [85] | Moderate [87] | |
Graphene family (2D) | Graphene | ~1 [90] | 130 [91] | 2 × 105 [91] | 0 [91] | 104 [82] | High [92] | Moderate [93] |
GO | 0.25–0.4 [90,91,94] | 30–60 [90,91] | Var [95,96] | Var [95,96] | 10−1 [82] | Low [92] | Strong [97] | |
RGO | 0.1–0.4 [94] | 30–99 [90,91] | 1 × 105 [95] | 0.01–0.05 [95] | 102–104 [82] | Moderate [92] | Moderate [93] | |
Other nanocarbons (0D) | Fullerenes | N/A | N/A | 6 [98] | 1.5–2.3 [99,100] | 102–104 [100] | Moderate [85] | N/A |
NDs | 1–1.3 | N/A | 103–104 [101] | 5.5 [102,103] | 10−2 [102] | Low [104] | N/A |
Polymers (and additives) | Solvents | Nanocarbons | Nanocarbons loading (wt %) | Experimental setup | Structure | Main improvements | Target tissue | Refs. |
---|---|---|---|---|---|---|---|---|
CA/CS | Acetone/DMF (2:1) | MWCNT | N/A | electrospinning plus layer-by-layer self-assembly | Random, D = 305 ± 128 nm | Mechanical properties; cell attachment, spreading and proliferation | Not specified | [147] |
Gelatin | Water | MWCNT | N/A | Electrospinning followed by crosslinking with GA vapor | Aligned, D = 296 nm | Mechanical properties; cell alignment and differentiation | Muscle | [131] |
PANI/PNIPAm-co-MAA | HFIP/DMF (8:2) | PANI-MWCNT | N/A | Conventional electrospinning | Random , D = 500–600 nm | Cell growth and viability | Not specified | [145] |
PANI/PNIPAm | HFIP/DMF (8:2) | HOOC-MWCNT | N/A | Conventional electrospinning | Random , D = 400–500 nm | Cell proliferation and viability | Not specified | [146] |
PBAT | Chloroform/DMF (3:2) | MWCNT (plasma treated with O2) | 0.1%–0.5% | Conventional electrospinning | Random, D = 250 ± 52 nm–272 ± 79 nm | Mechanical properties | Bone | [133] |
PCL | DCM/methanol (3:1) | MWCNT (acid-treated) | 0.1%–5% | Conventional electrospinning | Random, D = 117±45–252 ± 146 nm | Accelerating degradation behavior; biocompatibility | Not specified | [137] |
PCL–PAA/PVA | DMF/DCM (1:1)–EtOH/H2O | MWCNT (acid-treated) | 0.05% | Coaxial electrospinning | Random, D = 1.861 ± 0.693 μm | Mechanical and electrical properties; biocompatibility | Skeletal muscle | [35] |
PELA | DMF/DCM | MWCNT | 0%–6% | Coaxial electrospinning | Aligned, D = 2–3 μm | Mechanical and electrical properties; cell morphology | Myocardial | [130] |
PLA | Chloroform/DMF | MWCNT | 0%–1% | Conventional electrospinning | Random, D = 0.55–0.96 μm | Mechanical and electrical properties | Not specified | [141] |
PLA | DCM/DMF (3:1) | MWCNT | 1% | Conventional electrospinning | Random, D = 2.08 ± 0.13 μm | Mechanical and electrical properties | Cartilage | [142] |
PLA | DMF/DCM | MWCNT (acid-treated) | 0%–5% | Conventional electrospinning | Random, D = 243–425 nm Aligned, D = 232–402 nm | Mechanical and electrical properties; cell morphology | Bone | [134] |
PLCL | DCM/EtOH (4:1) | MWCNT-tartrate | N/A | MWCNT coating on electrospun PLCL | Aligned, D = 1.30 ± 0.46 μm, | Cell adhesion, proliferation and neurite outgrowth | Nerve | [128] |
PLGA | DMF/THF (3:1) | MWCNT | 0.1%–1% | Conventional electrospinning | Random, D = 0.4–1.6 μm | Electrical properties; myotube formation | Skeletal muscle | [132] |
PLGA | DMFA | MWCNT | N/A | electrospinning onto MWCNT knitted scaffold | Random D = N/A | Cell spanning | Nerve | [126] |
PLGA/SF/catalpol | HFIP | MWCNT | N/A | Conventional electrospinning | Random, D = 577 ± 360–810 ± 270 nm | N/A | Nerve | [127] |
PLLA | Chloroform/DMF (9:1) | MWCNT-PhOMe | 0.25% | Conventional electrospinning | Random, D = 200–600 nm | Neurite outgrowth and neuronal cell differentiation | Nerve | [125] |
PLLA | Chloroform/DMF (8.5:1.5) | SWCNT | 3% | Conventional electrospinning | Aligned, D = 430 nm | Cell adhesion, growth, survival and proliferation | Nerve | [129] |
PLLA/HA | DCM/1,4-dioxane | MWCNT (anodic oxidated) | 0.3% | Conventional electrospinning | Random, D = 1 μm | Cell adhesion and proliferation. | Periodontal ligament | [143] |
PU | THF/DMF (1:1) | MWCNT | 0.1%–1% | Conventional electrospinning | Random, D = 600 ± 300–1000 ± 400 nm | Mechanical properties | Not specified | [138] |
PU | DMAc | MWCNT (acid-treated) | 3% | Conventional electrospinning | Random, D = 300–500 nm | Cell adhesion, proliferation, migration and aggregation | Not specified | [139] |
PU | DMAc | MWCNT (acid-treated) | 3% | Conventional electrospinning | Aligned, D = 300–500 nm | Cell proliferation, extracellular collagen secretion | Vascular | [140] |
PVA/CS | AA/water (70 wt %) | MWCNT | 0.99% | Electrospinning followed by crosslinking with GA vapor | Random , D = 157 ± 40 nm (non-crosslinked); 170 ± 43 nm (crosslinked) | Cell proliferation; protein adsorption capability | Not specified | [148] |
SF | Water | MWCNT (functionalized with SDBS) | 0.25%–1.5% | Conventional electrospinning | Random, D = 3 μm | Mechanical properties | Not specified | [136] |
SF | Formic acid | SWCNT | 1% | Co-electrospinning plus treatment with methanol and/or stretching | Random , D = 153 ± 99 nm Aligned, D = 147 ± 41 nm | Mechanical and electrical properties | Bone | [135] |
SEBS | Toluene/THF (1:1) | MWCNT | 1.5% | Conventional electrospinning | Random, D = 12.3 ± 3.6 μm Aligned, D = 10.2 ± 2.7 μm | Mechanical hysteresis and electrical conductivity | Not specified | [144] |
Polymers (and additives) | Solvents | Nanocarbons | Filler loading (wt %) | Structure | Main improvements | Target tissue | Refs |
---|---|---|---|---|---|---|---|
CS/GEL/HA | AA/H2O | GO; RGO | 2% | Random | Bioactivity, antibacterial and mechanical properties | Bone | [155] |
CS/PEO/BC | AA/H2O | GO | 0–2 | Random D = 145–254 nm | Mechanical properties | Skin | [153] |
CS/PVP/PEO | AA/H2O | GO | 0–2 | Random, D = 80–200 nm | Mechanical properties, bioactivity | Skin/bone | [152] |
GEL | DMSO | GO-g-[P(HEMA-g-CL)] | 2–3 | Random, D = 100–200 nm | Mechanical and electrical properties, wettability | Not specified | [151] |
PAN | DMF | GO; RGO | N/A | Random | Mechanical, electrical properties | Not specified | [157] |
PCL | CHCl3 | GO | N/A | Random, D = N/A | Mechanical, electrical, cell signaling | Skeletal muscle | [158] |
PCL | CHCl3 | GO | 0.3–2 | Random, D = 0.1–8 μm | Mechanical, electrical properties, bioactivity | Muscle | [159] |
PCL | DMF | GO | 0.3–0.5 | Random; D = 1–3 μm | Cell differentiation | Nerve/cartilage | [8] |
PCL | DMF | GO | 0.5–2 | Random, D = 0.2–2.5 μm | Mechanical properties, bioactivity, biodegradability | Bone | [160] |
PCL | DCM/EtOH 4:1 | GO; GO-g-PEG | 0.25–2 | Random, D = 200–1000 nm | Mechanical, wettability, cell adhesion | Osteochondral | [7] |
PCL | AA | GO; RGO | 0–1 | Aligned, D = 100–400 nm | Mechanical properties | Not specified | [161] |
PLA | CHCl3/DMF | GO; GO-g-PEG | 2 | Random, D = 500–1000 nm | Mechanical properties | Osteochondral | [28] |
PLA/HA | DCM/DMF | GO | 1–3 | D = 412–516 nm | Mechanical, bioactivity | Bone | [162] |
PLA/PU 4:1 | DMF/DCM 2:3 | GO | 5 | Random, D ~ 1 μm | Biocompatibility, antimicrobial properties | Cartilage | [163] |
PLGA | THF/DMF | GO | 1 | D = 783–1461 nm | Wettability, bioactivity | Bone | [164] |
PLGA/Col | HFIP | GO | 4 | Random, D = 100–950 nm | Cell proliferation, mechanical properties | Bone/muscle | [124] |
PLGA/RGD | HFIP | GO | N/A | Random, D = 200–1440 nm | myogenic differentiation | Bone/muscle | [123] |
PLGA/SF | HFIP | GO | 1 | Random, D = 130–280 nm | Mechanical, wettability, cell differentiation | Bone | [165] |
PLLA | HFIP | GO | N/A | Aligned; D = 680 nm | Cell differentiation and growth | Nerve | [166] |
PU | DMF | GO | 0.5-2 | D = 290–400 nm | Mechanical properties, bioactivity | Osteochondral | [167] |
PVA | H2O | GNS | 1%–7% | Random, D = 200-800 nm | Electrical properties | Cartilage | [168] |
PVA | H2O | GO | 0-5 | Random, D < 1 μm | Mechanical properties, bioactivity | Bone | [169] |
PVA/CS | AA/H2O | GO | 0.05–0.6 | D = 123–200 nm | Mechanical properties | Skin | [156] |
PVC; FN | THF/DMF (4:1) | GO; RGO | N/A | N/A | Mechanical, electrical properties, bioactivity | Nerve | [170] |
SF | H2O | GO; RGO | N/A | D = 3.9–5.2 μm | Electrical properties | Nerve | [154] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaffaro, R.; Maio, A.; Lopresti, F.; Botta, L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers 2017, 9, 76. https://doi.org/10.3390/polym9020076
Scaffaro R, Maio A, Lopresti F, Botta L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers. 2017; 9(2):76. https://doi.org/10.3390/polym9020076
Chicago/Turabian StyleScaffaro, Roberto, Andrea Maio, Francesco Lopresti, and Luigi Botta. 2017. "Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review" Polymers 9, no. 2: 76. https://doi.org/10.3390/polym9020076
APA StyleScaffaro, R., Maio, A., Lopresti, F., & Botta, L. (2017). Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers, 9(2), 76. https://doi.org/10.3390/polym9020076