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Abstract: Mussel-inspired polydopamine (PDA) chemistry and electroless deposition approaches
were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA
coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned
as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of
the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure
hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and
hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic
wood surfaces were characterized by scanning electron microscopy (SEM), Fourier transform infrared
(FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The PDA and octadecylamine
(OA) modified surface showed excellent superhydrophobicity with a water contact angle (CA) of
about 153◦ and a rolling angle (RA) of about 9◦. The CA further increased to about 157◦ and RA
reduced to about 5◦ with the Cu metallization. The superhydrophobic material exhibited outstanding
stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and
organic solvent immersion, and high-temperature water boiling. The results suggested that the
PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on
wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in
superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless
deposition technique may allow for a wide range of potential applications in biomimetic materials.

Keywords: electroless deposition; mussel-inspired polydopamine; wood surface; superhydrophobicity;
stability

1. Introduction

Superhydrophobic surfaces have recently attracted significant attention in both scientific and
industrial sectors for potential applications in nonwetting, self-cleaning, anti-fogging, anti-icing,
anti-corrosion, oil-water separation, and drag-reduction [1–7]. Artificial superhydrophobic surfaces
have been broadly designed and constructed by learning from examples in nature, such as lotus leaves
with superhydrophobicity. According to the classical theories (i.e., the Wenzel and Cassie-Baxter
models) [8], the combination of the surface chemical composition and the topographic structure are
responsible for the superhydrophobic property.
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Wood, as an environmentally friendly and aesthetically pleasing biopolymer material, is widely
used in the daily lives of humans for various applications, such as construction, furniture, and indoor
decoration. However, wood is susceptible to the absorbance of water and moisture, which renders
wood vulnerable to fungi and dimensional instability, strongly reducing the durability and service
lifetime [9]. The addition of superhydrophobic surfaces on a wood substrate has great potential to
address these problems and extend the service life of the resulting products [10].

Various methods have been developed to design and construct superhydrophobic wood surfaces
by creating lotus-leaf-like hierarchical structures, including the sol-gel technique, hydrothermal
method, solution-immersion, chemical vapor deposition, layer-by-layer assembly, and plasma
treatment [11–16]. However, these traditional methods have some limitations. For example,
some approaches are tedious, require specialized experimental equipment, or harsh processing
conditions. Furthermore, they limit the types, sizes, and shapes of substrates, or even degraded
the wood’s original components and structures. They may result in materials with poor environment
durability, limiting their practical applications [17].

A typical reduced copper nanoparticle approach was conducted under a weak alkaline and
ambient-temperature condition [18,19]. This method can be used for applying material to a wood
surface to construct a hierarchical roughness structure with slight degradation of the wood components
and structures, thus retaining the pristine strength of the wood. However, the formed Cu nanoparticles
likely bind with the hydroxyl groups of the wood cellulose through weak hydrogen bonding, which
may be lost from the wood substrate surfaces during the long-term service process, resulting in
unstable superhydrophobicity.

Inspired by the amazing adhesive ability of marine mussels, a novel method to metallize
nonconductive materials was proposed by Lee and co-workers. This method uses an intermediate,
polydopamine (PDA) coating to act as an “adhesive layer” between the substrate and a metallic film
by the metal chelating ability of the catechol moieties on PDA [20]. The combination of a PDA-based
functionalization together with electroless coating ensures a simple, versatile, scalable, and low-cost
metal coating strategy [21]. Compared to the electrochemical deposition or chemical/physical vapor
deposition processes, this method is easy to perform and does not depend on expensive instruments.
Most importantly, this approach is suitable for different kinds of substrates, irrespective of their shapes
or conductivities [22]. In addition, the free catechol groups on the PDA layer have diverse secondary
reactions, typically reacting with amino-containing molecules through Michael addition or Schiff base
reactions [23]. Accordingly, this method allows the design of hierarchical structures to mimic the
lotus-leaf-like surfaces with stable superhydrophobic properties.

In this paper, we propose a novel method to prepare superhydrophobic wood surfaces with
excellent environment durability. To the best of our knowledge, there are no previous reports on
the preparation of superhydrophobic wood surfaces through mussel-inspired dopamine chemistry
and electroless deposition methods, which use the PDA coating as an “adhesive layer” between the
wood surface and the metallic film. In this procedure, dopamine spontaneously self-polymerized
into PDA under basic conditions, and tightly adhered onto the wood surface. Then, copper was
electrolessly deposited onto PDA-modified wood surfaces via chelation between the catechol moieties
on PDA and the as-reduced copper species, resulting in the creation of micro/nano hierarchical
structures on wood surfaces. Finally, grafting of amine-containing hydrophobic groups onto as-formed
rough surfaces occurred through a Michael addition or a Schiff base reaction, and the lotus-leaf-like
superhydrophobic surfaces were successfully prepared. The electroless deposition method presents
the following points of innovation and significant advantages. (1) This is the first demonstration of the
preparation of superhydrophobic wood surfaces by a mussel-inspired dopamine chemistry and an
electroless deposition of a copper species method via PDA as an intermediate layer. (2) The whole
procedure was conducted under mild conditions without complex instruments, and did not destroy
the intrinsic structure of the wood. (3) The as-prepared superhydrophobic surfaces showed excellent
environmental durability in various harsh conditions, including strong acid/base, organic solvent,
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boiling water, ultrasonic washing, and UV radiation. (4) This surface modification method can be
applied to a wide range of material surfaces, irrespective of their scale and shapes, due to the strong
adhesive ability of the PDA layer.

2. Materials and Methods

2.1. Materials

Defect-free and straight-grained sapwood portions of fast-growing poplar wood (Populus
tomentosa Carr.) were manufactured into blocks with a dimension of 3 × 20 × 20 mm3

(radial × tangential × longitudinal). Dopamine hydrochloride (99% purity), tris (hydroxymethyl)
aminomethane (Tris, 99% purity), and octadecylamine (99% purity) were purchased from Tianjin
Heowns Biochem Co., Ltd (Tianjin, China). Cupric chloride dehydrate (CuCl2·2H2O, 99.99% purity)
and borane dimethylamine complex (DMAB, 96% purity) were purchased from Shanghai Macklin
Biochemical Co., Ltd (Shanghai, China). Ethylenediamine tetraacetic acid (EDTA, 99.5% purity), boric
acid (H3BO3, 99.5% purity), sodium hydroxide, anhydrous ethanol, toluene, acetone, hydrochloric
acid, sodium hydroxide, n-hexane, and N,N-Dimethylformamide (DMF) were purchased from Beijing
Chemical Works (Beijing, China).

2.2. Preparation of Superhydrophobic Wood Surfaces

All wood blocks were Soxhlet-extracted with a mixture of toluene/ethanol/acetone (4:1:1 v/v/v)
for 12 h, and dried in an oven at 103 ± 2 ◦C until a constant weight was reached. The immersion
solution (2.0 mg/mL) was prepared by dissolving dopamine in Tris-HCl (10 mM) buffer solution
with a pH value of 8.5. The wood blocks were immersed into the solution and stirred for 24 h at
60 ◦C, allowing for the deposit of a PDA layer on the surface of the wood blocks. The as-obtained
wood samples were washed with deionized water several times and then dried in an oven at 60 ◦C.
The PDA-coated wood samples were metallized by immersion into an electroless copper bath for
12 h. The bath consisted of 50 mM CuCl2, 50 mM EDTA, and 100 mM H3BO3, buffered to pH 7.0 with
NaOH, with the addition of 100 mM DMAB to initiate electroless deposition. The wood samples were
washed with distilled water several times and dried at 60 ◦C. The PDA-coated and PDA/Cu coated
wood samples were soaked in octadecylamine ethanol solution (1:100 v/v) for the reaction at 30 ◦C for
24 h, and then washed with ethanol several times and dried at 60 ◦C. The superhydrophobic wood
surfaces with a lotus-leaf-like hierarchical structure were prepared. The formed superhydrophobic
wood samples were labelled as PDA/Wood or PDA/Cu/Wood. The Octadecylamine modified wood,
labelled as OA/Wood, was used as a control sample.

2.3. Characterizations

Scanning electron microscopy (SEM) images were acquired using the Quanta FEG 650 instrument
(FEI, Hillsboro, OR, USA) operated at an accelerating voltage of 15 kV.

The X-ray photoelectron spectroscopy (XPS) with a K-Alpha X-ray photoelectron spectrometer
(Thermo Fisher Scientific Co., Ltd, Shanghai, China) was operated at room temperature with
monochromatic Al Kα radiation (1486.6 eV).

The superhydrophobic wood surfaces were milled to a 200-mesh particle size and embedded into
potassium bromide (KBr) pellets at a weight ratio of 1:70. The pellets were then analyzed with an FTIR
device (Nicolet 6700 Thermo Scientific, Madison, WI, USA) in a range of 4000 to 400 cm−1 at 4 cm−1

resolution for 32 scans.
Contact angles (CAs) were measured with a 3 µL deionized water droplet on a Dataphysics OCA

20 (Dataphysics, Filderstadt, Germany) instrument at room temperature. All the CAs were reported by
averaging the values obtained at six different points on the longitudinal surfaces of wood samples,
and the ellipse fitting modes were used to fit the shapes of water droplets.
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To examine macroscopically rough superhydrophobic wood surfaces, the rolling angles (RAs)
were measured following the procedure reported in the reference [24]. A water droplet of defined
volume (about 10 µL) was released onto the wood surface, and the critical angle of inclination at
which the wood samples needed to be tilted until the droplet rolled off the surface was recorded as the
rolling angle.

The surface free energy was calculated by the CAs of two test liquids, namely, distilled water, and
diiodomethane. The specifications of their surface tension and components are shown in Table 1.

Table 1. Surface Tension and Components of the Test Liquids.

Type of Liquid Reference
Surface Free Energy (mJ/m2)

γL γLW
L (γd

L) γAB
L (γP

L ) γ+
L γ−

L

Distilled Water 72.8 21.8 51.0 25.5 25.5
Diiodomethane 50.8 50.8 0 0 0

The geometric mean equation (OWRK method) based on Young’s equation γs = γLcosθ + γSL
was used to evaluate the surface free energy, where γs is the surface tension of a solid, γL is the surface
tension of the liquid, γSL is the surface tension of the solid-liquid interface, and θ is the CA between
the solid (S) and liquid (L).

The OWRK method [25] uses the following equation:

γL(1 + cosθ) = 2
√

γd
Sγ

d
L + 2

√
γ

p
Sγ

p
L (1)

where γL is the surface tension of the liquid, and θ is the CA between the solid (S) and the liquid (L).
γd

S and γ
p
S are the dispersion and polar components in the surface free energy of the solid (mJ/m2),

respectively, and γd
L and γ

p
L are the dispersion and polar components in the surface free energy of the

liquid (mJ/m2), respectively.
Environmental durability test:
Ultrasonic washing test: the superhydrophobic wood samples were submerged in distilled

water six times for a total of 1 h under ultrasonication (40 kHz frequency, 100 W). The samples were
collected at certain intervals and dried in an oven at 100 ◦C for 3 h followed by the CA measurement.
Water boiling test: the wood samples were boiled with water for 2 h, oven-dried, and then the CAs
were measured. Chemical durability test: the wood samples were immersed into an HCl solution
(pH = 2), NaOH solution (pH = 12), and various organic solvents for 24 h, and the CAs were measured.
UV radiation test: the superhydrophobic wood samples were placed in an ultraviolet aging test
chamber (Beijing Beifang Lihui Instrument Equipment. Co., Ltd, Beijing, China) for a week (power:
40 W; radiation wavelength: 340 nm).

3. Results and Discussion

3.1. Preparation Process and Reaction Mechanism

The typical procedure of preparing the superhydrophobic surface is shown in Scheme 1. In an
alkalescent environment, dopamine spontaneously polymerized into PDA, and strongly adhered on the
wood substrate surface. As shown in the Wang and co-workers study [26], the surfaces of PDA coatings
became rougher since the PDA particles grew faster and formed bigger nodules when increasing
the reaction temperature to accelerate the reaction. Based on this, the dopamine self-polymerization
reaction was conducted at 60 ◦C, which formed a micro/nano hierarchical roughness structure on wood
surface, and further modified by grafting long-chain alkyls, resulting in a stable superhydrophobicity.
In the aqueous solution of CuCl2, EDTA, H3BO3, and DMAB, Cu2+ was reduced to Cu0 through
the reaction:
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2(CH3)2NHBH3 + 6H2O + 3Cu2+ → 2(CH3)2NH + 2H3BO3 + 6H+ + 3Cu + 3H2

The catechol groups in the PDA coating exhibited a strong chelating capacity towards copper
species, which promoted metal deposition on the wood substrate surfaces during the electroless
metallization. The PDA/Cu hybrid coating endowed wood surfaces with a well-developed
micro/nano hierarchical roughness. Then, grafting long-chain alkyls onto as-formed hierarchical
surfaces through a Michael-addition and Schiff-base reactions achieved lotus-leaf-like surfaces
with superhydrophobicity.

Chang et al. prepared superhydrophobic coatings on wood surfaces using silica-polymer
nanocomposites, and the resultant CAs showed a decreasing tendency from about 148◦ to 135◦

with increased leaching cycles [10]. Liu et al. constructed superhydrophobic wood surfaces
via a hydrothermal process; however, this approach damaged the wood substrate structure and
components due to the harsh environment [12]. In the present study, the whole process of electroless
deposition-based PDA chelation was conducted under mild conditions, avoiding damaging the
intrinsic structure of the wood substrate. The as-prepared superhydrophobic wood surfaces showed
excellent stability in harsh conditions due to the strong chelating force formed between the PDA layers
and the Cu films.
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Scheme 1. Preparation for the superhydrophobic surface and reaction mechanism. 1© Dopamine
oxidation polymerization process; 2© Electroless metallization process: the catechol groups chelating
copper species; 3© Grafting NH-terminated long-chain alkyls (octadecylamine) onto as-formed PDA
coating through a Michael-addition and Schiff-base reactions.
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3.2. Micromorphology and Chemical Component Analysis

Figure 1 shows the surface morphologies of the control wood, PDA/Wood, and PDA/Cu/Wood
samples at different magnifications. The avulsed lamellar structures of the wood cell walls were
apparent in the control wood, forming a roughness structure at the microscale level (Figure 1a).
After coating with dopamine in a mildly alkaline environment at 60 ◦C for 24 h, a much rougher
PDA layer composed of aggregated PDA particles was observed on the wood surface (Figure 1b).
The excellent adhesion ability and reactivity of PDA allowed the electroless deposition of copper species
by dipping the PDA-coated wood samples into the electroless bath. After the Cu metallization, a slight
change but still rough micro/nano hierarchical structures were observed on the PDA-coated wood
surfaces (Figure 1c). The surface morphology models of the two kinds of superhydrophobic samples
are illustrated in Scheme 1. The PDA assemblies and deposited Cu nanoparticles and aggregates served
as building blocks to create micro/nano multiscale hierarchical structures on wood substrate surfaces.
After grafting long-chain alkyl groups, the mimetic lotus leaf surface with superhydrophobicity was
successfully prepared.
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Figure 1. SEM observations of tangential sections of (a) control wood; (b) PDA/Wood; and (c)
PDA/Cu/Wood at different magnifications.

The FTIR spectra of the control wood, PDA/Wood, and PDA/Cu/Wood samples are shown in
Figure 2a. For the control wood, the prominent band at 3411 cm−1 was assigned to the stretching
vibration of the OH groups, and the band at 2902 cm−1 was assigned to C–H stretching vibrations.
The bands at 1738, 1593, 1505, and 1240 cm−1 were assigned to the C=O stretching of the acetyl groups,
the aromatic skeletal vibration of lignin, and C–O stretching of the guaiacyl ring, respectively [27].
For the PDA-coated wood samples, the characteristic peak at 3411 cm−1 for the OH groups shifted
to 3354 cm−1, likely because of the hydrogen bond formation between PDA and wood hydroxyl
groups [28,29]. Two prominent peaks at 2920 cm−1 and 2852 cm−1 for the PDA/Wood and
PDA/Cu/Wood were assigned to –CH3 and –CH2 asymmetrical stretching vibrations and symmetrical
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stretching vibrations from long alkyl chains, respectively [30]. According to previous studies [31,32],
the PDA prominent peaks at 1510, 1600, and 1274 cm−1 were assigned to the N–H scissoring
vibrations, stretching from the indole ring, and C–O stretching from phenolic moieties, respectively.
However, the FTIR spectroscopy did not provide clear evidence of the presence of PDA, and even less
evidence of Cu on the coated samples was observed. This was probably because wood is a complex
polymer containing, among others, polyphenolic moieties, which likely shared many signals with
(poly)dopamine. Furthermore, PDA layers deposited from tris buffers and aerobic oxidation were
usually just a few nanometers thick, so, they were likely negligible as a weight fraction of the sample
analyzed by FTIR. The surface elemental analysis for the wood samples was conducted by XPS, as
shown in Figure 2b. The control wood only showed C and O signals, but the N signal appeared after
PDA coating of wood surfaces. As expected, the characteristic Cu peak appeared in the spectrum of
the PDA/Cu/Wood, (the inserted picture for a blow-up of the Cu2p peak region) and the at. % was
1.08%, indicating that Cu particles were successfully deposited on the PDA coated wood surfaces.
These results indicate that the PDA was successfully coated to the wood substrate surfaces, and the
Cu was subsequently immobilized onto the PDA layer by the electroless deposition process, and the
long-chain alkyl groups were grafted onto the PDA coating.
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Figure 2. FTIR spectrum (a), and XPS spectra (b) for the control wood, PDA/Wood, and
PDA/Cu/Wood samples, the inset picture is the Cu2p core-level spectra for PDA/Cu/Wood.

3.3. Superhydrophobic Property and Stability

Figure 3a shows the changes in CAs on the surface of the wood samples over time. The CAs of
the control wood decreased rapidly in 30 s, and the CAs of OA/Wood decreased from about 117◦

to 100◦ in 180 s, which shows hydrophobic property. In contrast, the CAs on the PDA/Wood and
PDA/Cu/Wood surfaces showed no obvious change for this time period, and all remained over 150◦

after 180 s. The mean CAs values of PDA/Cu/Wood samples (157◦) were slightly larger than those
of PDA/Wood (153◦). Figure 3b displays the change of RAs for PDA/Wood and PDA/Cu/Wood,
which decreased from 9◦ to 5◦. The slight change of CAs and RAs of PDA/Wood and PDA/Cu/Wood
were likely assigned to the different surface micromorphologies. However, the CAs significance tests
between PDA/Wood and PDA/Cu/Wood samples were conducted, and its p-value was 0.09, which
showed that the change was not statistically significant. Therefore, it was enough for PDA/OA layers
to endow with superhydrophobic performance on wood surfaces, and the Cu metallization only
slightly changed the micro/nano hierarchical roughness structures. However, it is likely unnecessary
to provide significant improvements in superhydrophobicity.

Figure 4a shows the superhydrophobic stability under long exposure to UV light. The CAs
of the PDA/Wood and PDA/Cu/Wood surfaces remained about 150◦ after 168 h of UV radiation,
indicating that the samples had outstanding ability to withstand UV radiation. The CAs changes
of superhydrophobic wood surfaces after ultrasonic washing (40 kHz, 100 W) within 60 min were
evaluated (Figure 4b). All were maintained above 150◦ after the ultrasonic washing, demonstrating
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the excellent adhesive property of the PDA layer. The observed CA changes were characterized after
the immersion of superhydrophobic wood samples into various chemical reagents (separate solutions
of HCl, pH = 2, NaOH, pH = 12, n-hexane, acetone, ethanol, and DMF) for 24 h, and 100 ◦C boiling
water for 2 h. The CAs all remained above 150◦, indicating great chemical resistance. All these results
demonstrated that the as-prepared bionic superhydrophobic wood surfaces all exhibited excellent
stability under harsh environments.
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Wang et al. fabricated superhydrophobic wood surfaces by drop-coating a mixed solution
comprising of modified silica particles and polystyrene emulsion. The CAs of wood sample showed a
slight decrease from 153◦ to 148◦ after undergoing 25 min ultrasonic washing [33]. Liu et al. used a
convenient solution-immersion method to prepare superhydrophobic wood surfaces from potassium
methyl siliconate, and found that the CAs decreased dramatically after the wood was soaked in
a strong alkali solution [13]. Cai et al. fabricated a superhydrophobic wood surface through a
solution-immersion process with γ-aminopropyltriethoxysilane and lauric acid. The CAs decreased
to 0◦ after treatment with acetone, chloroform, and DMF [34]. Although these methods can achieve
superhydrophobicity on wood surfaces, the produced materials showed poor environmental durability.
In the present study, the mussel-inspired dopamine chemistry and electroless deposition process can
both form stable and durable superhydrophobic coatings, with outstanding performance for resisting
various harsh environments.

Since the standard deviations of the determined CAs were small and the surface free energy
reduction from the control wood to the modified wood was significant, the initial CAs were used
to replace the equilibrium CAs for the calculation of the surface free energy [30]. The surface free
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energy results with the OWRK method are provided in Figure 5. The surface free energy of the
control wood was 45.35 mJ/m2, which was in accordance with the reported values ranging from 40 to
60 mJ/m2 [35]. The surface free energy (including the polar and dispersion components) remarkably
decreased from 45.35 to 3.76 mJ/m2 for PDA/Wood, and to 3.10 mJ/m2 for PDA/Cu/Wood,
indicating that the PDA/Cu/Wood sample surface had lower free energy, due to the as-constructed
micromorphology differences between PDA/Wood and PDA/Cu/Wood. However, the significance
tests results (p-values was 0.08) of surface free energy between PDA/Wood and PDA/Cu/Wood
samples indicated that the electroless deposition process did not significantly decrease the surface
free energy. The superhydrophobicity can be explained by the as-constructed hierarchical roughness
surfaces as well as the reduced free energy.

To further understand the effect of as-prepared micro/nano hierarchical structure for PDA/Wood
and PDA/Cu/Wood samples on their superhydrophobic performance, the Cassie-Baxter equation
was employed, which is generally applicable to a hierarchical or heterogeneous substrate [36].

cosθa = f (cosθ+ 1)− 1 (2)

where θ and θa represent the CAs on smooth and rough surfaces, respectively, f is the apparent area
fraction of the solid surface in contact with liquid, and 1− f is the fraction of trapped air in contact with
liquid at the surface. In this equation, θ is a constant value for a certain material, and the CA of water
on a long-chain alkyl modified smooth surface was 94.8◦ [37]. By calculation, the trapped air fraction
in contact with water for PDA/Wood was 0.88 and for PDA/Cu/Wood was 0.91. A higher air fraction
contributed to larger CAs and smaller RAs. Nevertheless, the statistical tests of trapped air fraction
between PDA/Wood and PDA/Cu/Wood was carried out, and the p-value was 0.09, indicating
that there was not a statistical significance between them. Microstructure models were proposed as
shown in Scheme 1 based on the slight difference of the surface micromorphologies for PDA/Wood
and PDA/Cu/Wood samples, as shown in Figure 1. After wood samples were immersed into the
dopamine, a thin and rough PDA layer was coated onto wood surfaces with aggregated PDA particles,
which formed a hierarchical roughness. With the deposition of Cu particles on the PDA-coated wood
surfaces, the micro/nano hierarchical structures were further well-developed. These two kinds of
roughness surfaces were both suitable for a stable superhydrophobic property on wood surface after
grafting hydrophobic groups. However, the PDA/OA layers on wood surfaces were good enough
to confer robust, degradation-resistance superhydrophobicity, while the Cu metallization was likely
unnecessary to provide any significant improvements in this respect. In terms of the electroless
deposition approach based on the outstanding adhesion ability and reactivity of the mussel-inspired
PDA coating, it is efficient, simple, and mild, allowing for extensive applications.
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4. Conclusions

In this study, the novel and simple mussel-inspired dopamine chemistry and electroless deposition
approach was developed to prepare superhydrophobic surfaces. The as-formed PDA coatings
acted as an intermediate layer that joined the substrate and metallic film, synergistically formed
well-developed micro/nanostructure hierarchical roughness and also bridged the hydrophobic groups
on the as-formed surfaces. The superhydrophobic surfaces showed excellent stability against various
harsh environments including ultraviolet aging, ultrasonic washing, strong acid/base, organic solvent,
and high-temperature water boiling. It is worth mentioning that the PDA/OA layers are good enough
to confer robust, degradation-resistant superhydrophobicity to wood substrates. The Cu metallization
is likely unnecessary to provide any significant improvement in superhydrophobic performance.
However, the electroless deposition approach based on the outstanding adhesion ability and reactivity
of the mussel-inspired PDA coating is efficient, simple, mild, does not require specialized instruments,
and can be used for many different materials, irrespective of the styles, shapes, and sizes of substrates,
allowing for extensive applications.
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