Identifying the Critical Stage Near Anthesis for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Waterlogging Treatments and Water Drainage Condition
2.3. Experimental Design
2.3.1. Experiment 1
2.3.2. Experiment 2
2.4. Measurements
2.5. Statistical Analyses
3. Results
3.1. Meteorological Conditions and Phenology
3.2. Grain Yield
3.3. Yield Components
3.4. Relationships between the Determination Coefficients of Yield Components and %RGY
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Allan, R.P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 2013, 8, 034002. [Google Scholar] [CrossRef]
- Setter, T.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 2003, 253, 1–34. [Google Scholar] [CrossRef]
- Cheng, S.; Guo, W.; Wang, L. Wheat in South China; Jiangsu Science and Technology Press: Nanjing, China, 2012. [Google Scholar]
- Araki, H.; Hamada, A.; Hossain, A.; Takahashi, T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res. 2012, 137, 27–36. [Google Scholar] [CrossRef]
- Arguello, M.N.; Mason, R.E.; Roberts, T.L.; Subramanian, N.; Acuña, A.; Addison, C.K.; Lozada, D.N.; Miller, R.G.; Gbur, E. Performance of soft red winter wheat subjected to field soil waterlogging: Grain yield and yield components. Field Crops Res. 2016, 194, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Uddin, S.N. Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 2011, 5, 1094–1101. [Google Scholar]
- Ma, J.; Huang, G.B.; Yang, D.L.; Chai, Q. Dry Matter Remobilization and Compensatory Effects in Various Internodes of Spring Wheat under Water Stress. Crop Sci. 2014, 54, 331–339. [Google Scholar] [CrossRef]
- Shao, G.C.; Lan, J.J.; Yu, S.E.; Liu, N.; Guo, R.Q.; She, D.L. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. Photosynthetica 2013, 51, 429–437. [Google Scholar] [CrossRef]
- Tan, W.; Liu, J.; Dai, T.; Jing, Q.; Cao, W.; Jiang, D. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica 2008, 46, 21–27. [Google Scholar] [CrossRef]
- Dickin, E.; Bennett, S.; Wright, D. Growth and yield responses of UK wheat cultivars to winter waterlogging. J. Agric. Sci. 2009, 147, 127–140. [Google Scholar] [CrossRef]
- Haque, E.; Oyanagi, A.; Kawaguchi, K. Aerenchyma Formation in the Seminal Roots of Japanese Wheat Cultivars in Relation to Growth under Waterlogged Conditions. Plant Prod. Sci. 2012, 15, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.D.; Li, J.C.; Wei, F.Z.; Wang, C.Y.; Zhang, Y.; Sun, G. Effects of nitrogen spraying on the post-anthesis stage of winter wheat under waterlogging stress. Acta Physiol. Plant. 2014, 36, 207–216. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 2014, 378, 265–277. [Google Scholar] [CrossRef]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.Z.; Dong, S.T.; Zhao, B.; Liu, P.; Zhang, J.W. Responses of Nitrogen Metabolism, Uptake and Translocation of Maize to Waterlogging at Different Growth Stages. Front. Plant Sci. 2017, 8, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Li, J.; Bi, W.; Zuo, S.; Li, L.; Li, W.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Wollmer, A.C.; Pitann, B.; Mühling, K.H. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. J. Agron. Crop Sci. 2018, 204, 165–174. [Google Scholar] [CrossRef]
- Wang, X.S.; Deng, Z.; Zhang, W.Z.; Meng, Z.J.; Chang, X.; Lv, M.C. Effect of Waterlogging Duration at Different Growth Stages on the Growth, Yield and Quality of Cotton. PLoS ONE 2017, 12, e0169029. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Tang, Y.L.; Li, C.S.; Wu, C.; Huang, G. Chlorophyll Fluorescence and Yield Responses of Winter Wheat to Waterlogging at Different Growth Stages. Plant Prod. Sci. 2015, 18, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Araki, H.; Hossain, M.A.; Takahashi, T. Waterlogging and Hypoxia have Permanent Effects on Wheat Root Growth and Respiration. J. Agron. Crop Sci. 2012, 198, 264–275. [Google Scholar] [CrossRef]
- Condon, A.G.; Giunta, F. Yield response of restricted-tillering wheat to transient waterlogging on duplex soils. Aust. J. Agric. Res. 2003, 54, 957–967. [Google Scholar] [CrossRef]
- Zhang, H.; Turner, N.C.; Poole, M.L.; Asseng, S. High ear number is key to achieving high wheat yields in the high-rainfall zone of south-western Australia. Aust. J. Agric. Res. 2007, 58, 21–27. [Google Scholar] [CrossRef]
- Trought, M.C.T.; Drew, M.C. Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different soil temperatures. Plant Soil 1982, 69, 311–326. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Xuan, S.; Wei, X.; Shi, Y.; Luo, Z. Effects of Waterlogging and Shading at Jointing and Grain-Filling Stages on Yield Components of Winter Wheat. In IFIP International Federation for Information Processing; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 479, pp. 1–14. [Google Scholar]
- Arduini, I.; Orlandi, C.; Pampana, S.; Masoni, A. Waterlogging at tillering affects spike and spikelet formation in wheat. Crop Pasture Sci. 2016, 67, 703–711. [Google Scholar] [CrossRef]
- Malik, A.I.; Setter, T.L.; Schortemeyer, M.; Colmer, T.D.; Lambers, H. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002, 153, 225–236. [Google Scholar] [CrossRef]
- Martí, J.; Savin, R.; Slafer, G.A. Wheat Yield as Affected by Length of Exposure to Waterlogging During Stem Elongation. J. Agron. Crop Sci. 2015, 201, 473–486. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Ding, J.F.; Liang, P.; Wu, P.; Zhu, M.; Li, C.Y.; Zhu, X.K.; Gao, D.R.; Chen, Y.L.; Guo, W.S. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Res. 2020, 246, 107695. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.H. A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Dickin, E.; Wright, D. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur. J. Agron. 2008, 28, 234–244. [Google Scholar] [CrossRef]
- Hayashi, T.; Yoshida, T.; Fujii, K.; Mitsuya, S.; Tsuji, T.; Okada, Y.; Hayashi, E.; Yamauchi, A. Maintained root length density contributes to the waterlogging tolerance in common wheat (Triticum aestivum L.). Field Crops Res. 2013, 152, 27–35. [Google Scholar] [CrossRef]
- Dai, X.L.; Zhou, X.H.; Jia, D.Y.; Xiao, L.L.; Kong, H.B.; He, M.R. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 2013, 154, 100–109. [Google Scholar] [CrossRef]
- Huang, B.; Johnson, J.W.; Nesmith, S.; Bridges, D.C. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J. Exp. Bot. 1994, 45, 193–202. [Google Scholar] [CrossRef]
- Hossain, A.; Araki, H.; Takahashi, T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan. Field Crops Res. 2011, 123, 100–108. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Brihet, J.M.; Miralles, D.J. Waterlogging affects leaf and tillering dynamics in wheat and barley. J. Agron. Crop Sci. 2016, 202, 409–420. [Google Scholar] [CrossRef]
- Collaku, A.; Harrison, S.A. Losses in wheat due to waterlogging. Crop Sci. 2002, 42, 444–450. [Google Scholar] [CrossRef]
- Tian, Z.; Jing, Q.; Dai, T.; Jiang, N.; Cao, W. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res. 2011, 124, 417–425. [Google Scholar] [CrossRef]
- Ding, J.F.; Zi, Y.; Li, C.Y.; Peng, Y.X.; Zhu, X.K.; Guo, W.S. Dry Matter Accumulation, Partitioning, and Remobilization in High-Yielding Wheat under Rice-Wheat Rotation in China. Agron. J. 2016, 108, 604–614. [Google Scholar] [CrossRef]
Sources | 2015 | 2016 | ||||||
---|---|---|---|---|---|---|---|---|
Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight | Grain Yield | Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight | Grain Yield | |
Variety (V) | <0.001 | <0.001 | <0.001 | <0.001 | 0.780 | <0.001 | <0.001 | 0.015 |
S 1 | 0.633 | <0.001 | <0.001 | <0.001 | 0.758 | <0.001 | <0.001 | <0.001 |
V × S | 0.982 | <0.001 | <0.001 | <0.001 | 0.992 | 0.913 | 0.343 | 0.867 |
Treatments | 2015 | 2016 | |||||
---|---|---|---|---|---|---|---|
Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | Kernels Spike−1 | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | |
Variety | |||||||
Yangmai 1 | 3.8 a 1 | 33.8 c | 33.8 c | 4.3 b | 37.3 c | 36.3 c | 5.6 b |
Yangmai 158 | 3.9 a | 37.1 b | 38.0 b | 5.5 a | 38.4 b | 38.2 b | 5.9 ab |
Yangfumai 4 | 3.2 b | 39.2 a | 43.2 a | 5.4 a | 39.0 a | 39.4 a | 6.3 a |
Soil water treatment | |||||||
Control | 3.6 a | 39.4 a | 41.9 a | 6.0 a | 39.9 a | 40.8 a | 6.7 a |
Waterlogging at S1 | 3.6 a | 32.5 c | 39.0 b | 4.6 c | 35.8 c | 38.8 b | 5.6 c |
Waterlogging at S2 | 3.6 a | 35.6 b | 36.6 c | 4.6 c | 38.1 b | 37.4 c | 5.9 b |
Waterlogging at S3 | 3.6 a | 39.4 a | 35.8 d | 5.1 b | 39.3 a | 34.9 d | 5.5 c |
Varieties | Soil Water Treatments | Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | %RGY |
---|---|---|---|---|---|---|
Yangmai 1 | Control | 3.8 a 1 | 35.3 d | 36.4 f | 4.9 c | |
Waterlogging at S1 | 3.8 a | 31.3 g | 34.1 g | 4.0 d | 18.6 | |
Waterlogging at S2 | 3.7 a | 33.6 ef | 33.0 g | 4.1 d | 16.3 | |
Waterlogging at S3 | 3.8 a | 35.1 de | 31.7 h | 4.2 d | 14.2 | |
Yangmai 158 | Control | 3.9 a | 40.1 b | 42.2 c | 6.5 a | |
Waterlogging at S1 | 3.9 a | 32.6 fg | 38.4 e | 4.9 c | 25.7 | |
Waterlogging at S2 | 3.8 a | 35.5 d | 36.0 f | 4.9 c | 25.0 | |
Waterlogging at S3 | 3.9 a | 40.3 b | 35.6 f | 5.6 b | 15.0 | |
Yangfumai 4 | Control | 3.2 b | 42.9 a | 47.3 a | 6.5 a | |
Waterlogging at S1 | 3.2 b | 33.6 ef | 44.5 b | 4.8 c | 26.2 | |
Waterlogging at S2 | 3.2 b | 37.6 c | 40.7 d | 4.8 c | 25.5 | |
Waterlogging at S3 | 3.2 b | 42.8 a | 40.2 d | 5.4 b | 16.4 | |
Mean | 3.6 | 36.7 | 38.3 | 5.1 | 20.3 |
Varieties | Soil Water Treatments | Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | %RGY |
---|---|---|---|---|---|---|
Yangmai 1 | Control | 4.2 a 1 | 38.6 bcd | 38.8 de | 6.3 bc | |
Waterlogging at S1 | 4.2 a | 35.3 f | 37.3 f | 5.4 de | 12.1 | |
Waterlogging at S2 | 4.1 a | 37.2 de | 35.6 gh | 5.5 de | 12.2 | |
Waterlogging at S3 | 4.0 a | 38.0 acd | 33.7 i | 5.1 e | 17.6 | |
Yangmai 158 | Control | 4.0 a | 40.0 ab | 41.0 b | 6.5 b | |
Waterlogging at S1 | 4.0 a | 36.0 ef | 39.2 cd | 5.6 cde | 13.4 | |
Waterlogging at S2 | 4.1 a | 38.2 cd | 37.9 ef | 5.9 bcd | 9.4 | |
Waterlogging at S3 | 4.0 a | 39.6 abc | 34.9 h | 5.5 de | 15.3 | |
Yangfumai 4 | Control | 4.1 a | 40.8 a | 42.7 a | 7.2 a | |
Waterlogging at S1 | 4.1 a | 36.0 ef | 40.0 bc | 5.8 cd | 18.6 | |
Waterlogging at S2 | 4.1 a | 38.8 bcd | 38.6 de | 6.2 bc | 13.8 | |
Waterlogging at S3 | 4.0 a | 40.4 ab | 36.1 g | 5.8 cd | 19.4 | |
Mean | 4.1 | 38.3 | 38.0 | 5.9 | 14.6 |
Sources | Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight | Grain Yield |
---|---|---|---|---|
Growth Stage (S) | 0.165 | 0.029 | <0.001 | 0.128 |
Waterlogging Duration (D) | 0.959 | <0.001 | <0.001 | 0.003 |
S × D | 0.978 | 0.536 | <0.001 | 0.409 |
Growth Stages at Waterlogging | Waterlogging Durations | Spikes Plant−1 | Kernels Spike−1 | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | %RGY |
---|---|---|---|---|---|---|
Waterlogging at S1 | 5-day | 4.0 a 1 | 38.0 bc | 40.8 a | 6.3 a | 12.4 |
10-day | 4.1 a | 36.0 c | 40.0 a | 5.8 ab | 18.6 | |
15-day | 4.2 a | 33.7 d | 38.3 b | 5.5 bc | 23.7 | |
Mean | 4.1 | 35.9 | 39.7 | 5.9 | ||
Waterlogging at S3 | 5-day | 3.9 a | 40.7 a | 38.2 b | 6.1 ab | 14.8 |
10-day | 4.0 a | 40.3 ab | 36.1 c | 5.8 ab | 19.3 | |
15-day | 4.0 a | 37.4 c | 32.1 d | 4.8 c | 33.4 | |
Mean | 4.0 | 39.5 | 35.5 | 5.6 |
Variables | Experiment 1 (2015) | Experiment 1 (2016) | Experiment 2 (n = 7) | ||||
---|---|---|---|---|---|---|---|
YM1 1 (n = 4) | YM158 (n = 4) | YFM4 (n = 4) | YM1 (n = 4) | YM158 (n = 4) | YFM4 (n = 4) | ||
Correlation coefficient | |||||||
Spikes per plant | 0.672 | 0.480 | 0.372 | 0.719 | −0.332 | 0.687 | 0.264 |
Kernels per spike | 0.698 | 0.810 | 0.793 | 0.421 | 0.498 | 0.550 | 0.552 |
1000-kernel weight | 0.738 | 0.722 | 0.627 | 0.910 | 0.795 | 0.832 | 0.891 ** 2 |
Direct path coefficient | |||||||
Spikes per plant | 0.248 | ||||||
Kernels per spike | 0.672 | 0.703 | 0.779 | 0.409 | 0.593 | 0.542 | 0.601 |
1000-kernel weight | 0.712 | 0.596 | 0.608 | 0.904 | 0.860 | 0.827 | 0.676 |
Coefficient of determination | |||||||
Spikes per plant | 0.062 | ||||||
Kernels per spike | 0.451 | 0.494 | 0.607 | 0.167 | 0.352 | 0.294 | 0.361 |
1000-kernel weight | 0.507 | 0.355 | 0.370 | 0.818 | 0.740 | 0.684 | 0.457 |
Other variables | 0.035 | 0.149 | 0.022 | 0.011 | −0.113 | 0.008 | 0.182 |
Total | 0.994 | 0.999 | 0.999 | 0.996 | 0.979 | 0.986 | 0.999 |
Residual | 0.0056 | 0.0001 | 0.0008 | 0.0050 | 0.0213 | 0.0137 | 0.0006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Liang, P.; Wu, P.; Zhu, M.; Li, C.; Zhu, X.; Guo, W. Identifying the Critical Stage Near Anthesis for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China. Agronomy 2020, 10, 130. https://doi.org/10.3390/agronomy10010130
Ding J, Liang P, Wu P, Zhu M, Li C, Zhu X, Guo W. Identifying the Critical Stage Near Anthesis for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China. Agronomy. 2020; 10(1):130. https://doi.org/10.3390/agronomy10010130
Chicago/Turabian StyleDing, Jinfeng, Peng Liang, Peng Wu, Min Zhu, Chunyan Li, Xinkai Zhu, and Wenshan Guo. 2020. "Identifying the Critical Stage Near Anthesis for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China" Agronomy 10, no. 1: 130. https://doi.org/10.3390/agronomy10010130
APA StyleDing, J., Liang, P., Wu, P., Zhu, M., Li, C., Zhu, X., & Guo, W. (2020). Identifying the Critical Stage Near Anthesis for Waterlogging on Wheat Yield and Its Components in the Yangtze River Basin, China. Agronomy, 10(1), 130. https://doi.org/10.3390/agronomy10010130