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Abstract: The actual climate crisis scenario is aggravating the abiotic stress episodes that crop plants
have to face. Salinity is one of the most important abiotic stresses directly impairing plant growth
and productivity. Several strategies have been developed to minimize the negative effects of salinity
in agricultural industry, mainly at the plant level, while management strategies, such us the control of
microclimate conditions and light quality over plant canopy, have also been used. Indeed, shading
plants with photoselective nets has been considered an efficient management strategy to modulate
solar radiation to improve crop productivity. The aim of this work was to gain insights about the
physiological factors underlying the salinity-alleviating effect of using red shading nets. For that,
pepper plants (Capsicum annuum L.) were grown under control (0 mM NaCl) and moderate salinity
(35 mM NaCl) conditions, with half of the plants covered with a red net (30% shading). The shoot
growth impairment provoked by salinity was in part minimized by shading plants with red nets, which
can be explained by their higher capacity to exclude Na+, control of K+ homeostasis and regulation
of hormonal balance. Indeed, the concentrations of the most active cytokinin in pepper, trans-zeatin,
as well as its metabolic precursor, zeatin riboside, increased in shaded plants, associated to shoot
growth recovery and photosynthetic rate maintenance under salinity. Furthermore, the stress-related
hormone abscisic acid (ABA) increased with salinity but in a lower extend in the plants shaded with
red nets, suggesting a fine tune of stomata opening by ABA which, in crosstalk with salicylic acid
increment, improved plant water relations. Likewise, the concentrations of gibberellins and the
ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, also changed during salinity stress in
shaded plants but those changes were uncoupled of growth responses as indicated by the principal
component analysis and thus they seem to play a minor role. Our data demonstrate that shading
pepper plants with red nets is an efficient management strategy to modulate microclimate conditions
at crop level thus controlling the ion homeostasis and hormonal balance of the plant to cope with
salinity stress. This is especially important due to the actual and expected changes of the global
climatic conditions.
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1. Introduction

The need of feeding an increasing world’s population together with the environmental threatens
provoked by the climate change, have changed the actual cultivation paradigm, entailing crop
production in marginal soils with high salinity levels. This is contributing to maintain food supply
but has a very high environmental cost, aggravating water and soil salinity problems [1], especially
in the Mediterranean basin. In fact, salinity is one of the most important abiotic constrains in
arid and semiarid areas [2], provoking a high yield gap worldwide [3,4]. Plants are affected at
morphological, physiological and molecular levels during salinity stress, negatively affecting growth
and development and limiting plant productivity [5–8]. Different strategies have been established at
plant and/or agrotechnological levels to cope with salinity stress and improve crop productivity [9].
Shading has been used as an efficient technology to mitigate the extreme climatic fluctuations and pest
incidence in arid and semiarid areas and to improve water use efficiency (WUE) while maintaining
photosynthesis [10–13]. The use of novel shading nets, with specially-designed optical properties
that can alter both the quality and the quantity of the light intercepted in addition to providing
the desired protection, represents an efficient approach to manage solar radiation which has been
demonstrated to improve crop production [14,15]. Different studies have dealt with colored nets in
fruit crops (reviewed by Reference [13]) and vegetables (reviewed by Reference [15]). Colour shading
nets provoke differential stimulation of some physiological processes that are directly regulated by
light, such as photosynthesis and photomorphogenesis. Radiation characteristics are perceived by
biological photoreceptors, mainly phytochromes, phototropins and cryptochromes, and their effects on
different physiological and stress responses are largely driven by red/far-red (600–800 nm), green/yellow
(500–600 nm) and UV-A/UV-B/blue (280–500 nm) wavelengths of the electromagnetic spectrum [16].
Phytochrome mutants in the model plant Arabidopsis thaliana have reduced biomass due to lower CO2

assimilation but a higher adaptability to abiotic stress conditions [17,18]. Phototropins, activated by
blue light and UV receptors have also shown to play important roles in abiotic stress responses [19–21].
The primary photosynthetic pigments in higher plants, chlorophylls a and b, have different absorption
patters but both with peaks in the blue (430–470 nm) and red regions (660–680 nm) and have very little
absorption in the green region. Thus, photosynthesis and overall crop productivity could be enhanced
by increasing the amount of blue and red light present in the growth environment [15,22,23].

Considering the different types of colored nets, black nets have been demonstrated to improve
WUE and fruit quality in different fruit and vegetable crops, while pearl and yellow nets improved
antioxidant activity, fruit yield and quality [13,15]. Likewise, the use of red nets induced greater
fruit set in peach and apple, relative to other color nets and to un-netted controls [24], while a rapid
development of the root system of banana plug transplants during hardening has been associated
to the use of red net-covered plants when compared to the commercial black nets [25]. In ‘Valencia’
orange trees cultivated under top red netting, productivity was improved, as determined by fruit
number, fruit size and overall yield [26]. In vegetable crops, plant productivity and quality have
been also demonstrated to increase under shaded red nets [15,27,28]. In tomato, photoselective red
screen combined with optimum plant density promoted higher yield and commercial quality of the
fruits [29,30]. Importantly, previous works testing sweet pepper under different photoselective nets,
have shown that red nets produced the highest intrinsic WUE and reproductive-to-vegetative ratio [14]
and induced higher growth and development and whole productivity [28], while in bell pepper the
use of red net improved yield [27] and physical quality characteristics and the antioxidant contents
with respect to the black net [31].

Plant hormones regulate multiple physiological and regulatory processes in the plant as well as
responses to biotic and abiotic stresses. Pioneer studies regarding the modulation of hormonal balance
under salinity stress (apart from the “classical ABA”) have shown a complex regulatory network
among different hormonal classes in controlling growth and senescence [32–34]. Direct evidences of the
role of plant hormones in improving growth and yield stability under salinity have appeared in the last
years (reviewed by Albacete et al. [4]). For example, Ghanem et al. [35] demonstrated that enhancing
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root cytokinin (CK) synthesis in tomato plants modified both shoot hormonal and ionic status, thus
ameliorating salinity-induced decreases in growth and yield. Furthermore, the interaction of the active
CK, trans-zeatin (tZ), with ethylene through its precursor, 1-aminocyclopropane-1-carboxylic acid
(ACC), explained the strong increase in fruit yield of transgenic plants overexpressing CIN1 gene,
that encodes cell wall invertase, a key enzyme in controlling sucrose unloading in tomato fruits [36].
Recent studies have also demonstrated that gibberellins (GAs) play a critical role in regulating growth
under salinity conditions [37], while jasmonic acid (JA) and salicylic acid (SA) have been described to
play a role in the osmotic stress signaling responses, mainly in interaction with ABA [38,39].

By exogenous application of plant growth regulators, the plant-growth effect of photoselective nets
through the modulation of the hormonal balance have been evidenced. For example, Santos et al. [29]
showed that spraying paclobutrazol, which belongs to the triazole family and have been shown to
reduce GA and increase CK concentrations, impaired growth of tomato seedlings growing under red
nets. Also, it has been considered that colored nets are able to replace the effect of plant regulators
and other hormone analogues [40]. However, although controlling light intensity and quality through
photoselective nets could be an efficient management strategy to cope with salinity stress, so far,
there are no direct evidences in literature of the physiological and regulatory mechanisms implicated.
Furthermore, as stated before, shading red nets have been shown to be very effective in improving
growth and yield in different fruit and vegetable crops. Therefore, the aim of this work was to determine
whether red shading nets can improve growth and productivity under salinity stress in pepper plants,
through the regulation of the ionic homeostasis and hormonal balance of the plant.

2. Materials and Methods

2.1. Plant Material, Growth Conditions and Treatments

Seeds of the commercial pepper (Capsicum annuum L.) hybrid, Gacela F1 (Syngenta Seeds,
USA), were germinated and, two weeks after sowing, transferred to 10 L plastic pots (50% sand,
30% peat, 20% vermiculite) and disposed in an arch-shaped multispan greenhouse covered with
thermal polyethylene, located at the “Torreblanca” experimental field in Torre Pacheco, Murcia (latitude:
37◦45′ N; longitude: 0◦59′ W). Plants were distributed in rows, with a separation of 40 cm between
plants and 100 cm between rows. A standard Hoagland nutrient solution was used to irrigate the plants
and, 15 days after transplanting, half of the plants started to be irrigated with the Hoagland solution
supplemented with 35 mM NaCl, reaching an electrical conductivity of 5.5 mS·cm−1. We selected
this salinity treatment on the basis of a previous experiment with different salinity levels, considering
that pepper is a moderately sensitive crop to salinity [41,42]. Irrigation requirements were based on
the weekly crop evapotranspiration (ETc). The saline solution was drained (between 10% and 25%
according to solar radiation and evapotranspiration) to maintain a constant salinity level throughout
the experimental period.

At the time of the application of the salinity treatment, part of the assay area within the greenhouse
was covered with a red net (ChromatiNet® Raschel type, 30% shading, Polysack Plastic Industries
LTD, Nir-Yitzak, Israel) placed 50 cm over the plant canopy, that was periodically moved up as
plants grew. The covered area with red net enclosed a half of the plants subjected to optimal nutrient
irrigation and a half of the salinized plants. The assay lasted until all plants reached the fruiting
stage. Four experimental blocks with 10 plants per treatment were evaluated. The air temperature
and photosynthetically active radiation (PAR) in each experimental unit were monitored during
the growing cycle using a Testo 177-T4 temperature data logger (Testo SE & Co. KGaA, Lenzkirch,
Germany) and a quantum sensor (LI-COR Inc., Lincoln, NE, USA), respectively.

2.2. Plant Growth-Related Determinations

Plant growth-related parameters were recorded at the end of the experiment in 15 plants per
treatment. Plant height was determined with a measuring tape and then root, shoot and leaves within
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each shoot were separated to determine their fresh weight (FW). A part of each leaf and root was
oven-dried (60 ◦C under constant weight) to determine dry weight (DW).

2.3. Gas Exchange Measurements

Gas-exchange was monitored in fully expanded leaves at the plant vegetative stage. Measurements
were carried out at periodic time-points after starting the salinity stress treatment. Net CO2 fixation
rate (Amax, µmol CO2·m−2

·s−1), stomatal conductance to water vapor (gs, mmol H2O·m−2
·s−1) and

transpiration rate (E, mmol H2O·m−2
·s−1) were measured in steady-state under conditions of saturating

light (800 µmol·m−2
·s−1) and 400 ppm CO2 with a LI-6400 instrument (LI-COR, Lincoln, NE, USA).

2.4. Leaf Water Potential, Osmotic Potential and Relative Water Content

Water potential (Ψw) was determined in mature leaves using a Scholander type pressure chamber
(model 3000, Soil Moisture Equipment Co., Goleta, CA, USA), while osmotic potential (Ψs) was
analyzed in leaf extracts with an osmometer (model Vapro 5520, Wescor Inc., South Logan, UT, USA).
The relative water content (RWC) was measured using leaf discs of 1 cm2 and calculated according
to the following equation: RWC = [(FW −DW)/(TW −DW)] × 100, where FW is the fresh weight
recorded during collection, TW is the turgid weight and DW is the oven dry weight (60 ◦C until
constant weight). To determine TW, disc leaves were kept in distilled water in darkness at 4 ◦C to
minimize respiration losses until they reached a constant weight (full turgor, typically after 24 h).

2.5. Chlorophyll Analysis

Chlorophylls were extracted from 1 g of frozen pepper leaves (−80 ◦C) with 25 mL of acetone/hexane
(2/3, v/v) solvent. Samples were homogenized and centrifuged at 5000 g for 6 min at 4 ◦C. Subsequently,
the optical density of the supernatant was measured spectrophotometrically at wavelengths of 663 and
645 nm. The contents of chlorophylls a and b were calculated according to the Nagata and Yamashita
equations [43]:

Chlorophyll a
(
mg·100 mL−1

)
= 0.999·A663 − 0.0989·A645

Chlorophyll b
(
mg·100 mL−1

)
= −0.328·A663 + 1.77·A645

2.6. Ion Determinations

Mature leaves were oven-dried at 60 ◦C for 48 h and homogenized with a grinder. Fifty mg were
digested at 80 ◦C in a HNO3/H2O2 solution (5/3, v/v). Minerals were dissolved in 0.1 M HCl, diluted
with de-ionized water and filtered. Cation concentrations were analyzed using an inductively coupled
plasma optical emission spectrometer (ICP-OES, Vista-MPX, Varian, Belrose, Australia) calibrated with
certified standard solutions.

2.7. Hormone Extraction and Analysis

Cytokinins (trans-zeatin, tZ, zeatin riboside, ZR and isopentenyl adenine, iP), gibberellins (GA1,
GA3 and GA4), indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA)
and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were analysed according
to Albacete et al. [33] with some modifications. Briefly, 50 mg of freeze-dried plant material were
dropped in 0.5 mL of cold (–20 ◦C) extraction mixture of methanol/water (80/20, v/v). Then, 10 µL
of internal standard mix, composed of deuterated hormones ([2H5]tZ, [2H5]tZR, [2H6]iP, [2H2]GA1,
[2H2]GA3, [2H2]GA4, [2H5]IAA, [2H6]ABA, [2H4]SA, [2H6]JA, [2H4]ACC, Olchemim Ltd., Olomouc,
Czech Republic) at a concentration of 1 µg·mL−1 each, was added to the extraction homogenate.
Solids were separated by centrifugation (20,000 g, 15 min, 4 ◦C) and re-extracted for 30 min at 4 ◦C
in additional 0.5 mL of the same extraction solution. Pooled supernatants were passed through
Sep-Pak Plus C18 cartridges (SepPak Plus, Waters, Milford, MA, USA) to remove interfering lipids
and part of plant pigments and evaporated at 40 ◦C under vacuum to near dryness. The residue
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was dissolved in 0.5 mL methanol/water (20/80, v/v) solution using an ultrasonic bath. The dissolved
samples were filtered through 13 mm diameter Millex filters with 0.22 µm pore size nylon membrane
(Millipore, Bedford, MA, USA).

Ten µL of filtered extract were injected in a U-HPLC-MS system consisting of an Accela Series
U-HPLC (ThermoFisher Scientific, Waltham, MA, USA) coupled to an Exactive mass spectrometer
(ThermoFisher Scientific, Waltham, MA, USA) using a heated electrospray ionization (HESI) interface.
Mass spectra were obtained using the Xcalibur software version 2.2 (ThermoFisher Scientific, Waltham,
MA, USA). For the quantification of the plant hormones, calibration curves were constructed for
each analysed component (1, 10, 50 and 100 µg·L−1) and corrected for 10 µg·L−1 deuterated internal
standards. Recovery percentages ranged between 92 and 95%.

2.8. Statistical Analysis

The data were tested first for homogeneity of variance and normality of distribution. Analysis
of variance and principal component analysis (PCA) were performed using SPSS for Windows
(Version 25.0, SPSS Inc., Chicago, IL, USA). Means of different graft combinations were compared
using Tukey’s test at 0.05 of confidence level and the Varimax method was used for PCA.

3. Results

3.1. Microclimate Conditions

Shading pepper plants with red nets has a direct effect on microclimate conditions in the growing
area, especially temperature and PAR. Our study show that during growing period, the average
temperature in the area below the red net was 2.5 ◦C lower than in the non-shaded area at the central
hours of the day (Figure 1a). The PAR over the plant canopy of one representative day between 13:00
and 14:00 h had a value of 1904 µmol·s−1

·m−2 in the non-shaded area (Figure 1b). By shading the
pepper plants with red nets, the PAR was lowered to 1425 µmol·s−1

·m−2 (by 35%).Agronomy 2020, 10, x FOR PEER REVIEW 6 of 21 
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3.2. Plant Growth Parameters

Plant growth parameters were significantly affected by the use of red nets and salinity application
(Figure 2). Using red nets increased shoot FW under both control and salinity conditions but
this increment was only significant in salinized pepper plants (by 40%, Figure 2a). Other shoot
growth-related parameters were also affected. Leaf FW and plant height significantly increased
(by 64% and 29%, respectively) when using red nets under control and salinity conditions (Figure 2b,c).
In contrast, although salinity reduced root FW, the red nets did not have any significant effect in root
growth (Figure 2d).Agronomy 2020, 10, x FOR PEER REVIEW 7 of 21 
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Figure 2. (a) Shoot fresh weight (FW), (b) leaf FW, (c) plant height and (d) root FW of pepper plants
cultivated under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not with
red nets. Bars show the means of four plants with the standard error. Different letters among bars
indicate statistical differences according to Tukey’s test (p ≤ 0.05).

3.3. Leaf Gas Exchange Parameters

In general, all leaf gas exchange-related parameters decreased over the salinity period,
except intrinsic WUE, that is a derived parameter (Figure 3). Non-salinized pepper plants subjected
to red net shading presented the highest net CO2 assimilation over the whole experimental period,
while non-shaded plants grown under salinity conditions showed the lowest photosynthetic rate
(Figure 3a). Importantly, under salinity, the use of red nets maintained CO2 assimilation between 35%
and 50% higher than non-shaded pepper plants (Figure 3a).

Stomatal conductance also decreased over the experimental period. Interestingly, shaded plants
under control conditions kept significantly higher conductance than the other treatments, except at the
end of the assay (Figure 3b). A similar pattern was observed for the transpiration rate, but, in this case,
although not significant, both control treatments (netting and not-netting) separated from the salinized
ones (Figure 3c).
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Concerning intrinsic WUE, calculated as the ratio between photosynthetic rate and transpiration
rate, an increase over the assay was observed, with significant differences among treatments, especially
apparent at the end of the experimental period (Figure 3d). In fact, 50 days after starting the salinity
treatment, shaded plants under control and salinity conditions showed significantly higher WUE than
non-shaded plants (by 40% and 2-fold, respectively). Importantly, shaded pepper plants subjected to
salinity showed the highest intrinsic WUE (Figure 3d).Agronomy 2020, 10, x FOR PEER REVIEW 8 of 21 
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Figure 3. (a) Evolution of photosynthetic rate (A), (b) transpiration rate (E), (c) stomatal conductance
(gs) and (d) intrinsic water use efficiency (WUEi) in pepper plants cultivated under control (0 mM
NaCl) and salinity (35 mM NaCl) conditions and covered or not with red nets. Data are means of
four plants ± standard error. Different letters within each time-point indicate statistical differences
according to Tukey’s test (p ≤ 0.05).

3.4. Plant Water Relations

Leaf water potential decreased with salinity in both shaded and non-shaded plants (Table 1).
However, plants grown under red nets showed higher leaf water potential than non-covered pepper
plants under both control (by 27%) and salinity conditions (by 28%). Similarly, osmotic potential
decreased with salinity, being significantly lower in non-netted plants under salinity conditions with
respect to the other treatments (Table 1). Importantly, despite relative water content also decreased with
salinity, salinized pepper plants grown under red nets presented significantly higher values (Table 1).
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Table 1. Leaf water potencial (Ψw), osmotic potencial (Ψs) and relative water content (RWC) in pepper
plants cultivated under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not
with red nets.

Cover 1 Salt Treatment 1 Ψw (Mpa) Ψs (Mpa) RWC (%)

Non netting 0 mM −0.74 ab −1.76 b 88.80 a
35 mM −0.94 b −2.04 a 87.98 ab

Netting 0 mM −0.53 a −1.64 b 89.33 a
35 mM −0.68 ab −1.77 b 88.17 b

ANOVA 2

Cover * * *
Salinity ** ** *

C × S * * ns

Data are means of four plants. 1 Different letters within a column indicate significant differences among treatments
(p ≤ 0.05). 2 Analysis of variance: ns, not significant; * p ≤ 0.05; ** p ≤ 0.01.

3.5. Chlorophyll Content

Salinity significantly decreased chlorophyll a content only in non-shaded pepper plants, while the
concentrations of this pigment in salinized plants grown under red net were maintained at similar
levels to those of control conditions (Figure 4a). However, chlorophyll b and total chlorophyll
content (a + b) were significantly reduced by salinity in both shaded- and non-shaded-grown plants
(Figure 4b,c). Interestingly, this reduction was lower in plants grown under red net (by 33% and 15%
for chlorophyll b and total chlorophyll content, respectively) than in non-shaded pepper plants (45%
and 35%, respectively), thus shaded plants maintaining significantly higher chlorophyll a and total
chlorophyll concentrations under salinity (Figure 4b,c).
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Figure 4. (a) Chlorophyll a, (b) chlorophyll b and (c) total chlorophyll concentrations in leaves of pepper
plants cultivated under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not
with red nets. Bars show the means of four plants with the standard error. Different letters among bars
indicate statistical differences according to Tukey’s test (p ≤ 0.05).

3.6. Mineral Composition

Regarding macronutrients, salinity significantly reduced leaf K+, P5+ and Mg2+ concentrations
but no effect of netting was observed in P5+ and Mg2+, whereas Ca2+ was not affected by either salinity
or netting (Table 2). Furthermore, netting did not have any effect on K+ concentrations under control
conditions; however, under salinity, shaded plants presented significantly higher K+ concentrations
(by 40%) than non-shaded plants. For micronutrients, differential trends were observed among ion
concentrations. Fe2+ and B3+ concentrations in leaf decreased with salinity, while Cu2+ concentrations
were increased by netting under both control and salinity conditions but were not affected by netting
(Table 2). Surprisingly, Mn2+ and Zn2+ concentrations increased with salinity in both net treatments
but a positive effect of shading on leaf Mn2+ concentrations were observed under salinity. As expected,
leaf Na+ concentrations significantly increased with salinity in both shaded and net-grown pepper
plants (Table 2). Importantly, pepper plants covered with red nets presented significantly lower Na+

concentrations (by 27%) than non-netted plants under salinity conditions. Therefore, K+/Na+ ratio,
despite decreased under salinity, it was significantly higher in pepper plants grown under red nets,
especially in salinized plants (Table 2).

Table 2. Cation composition (macronutrients and micronutrients) in leaves of pepper plants cultivated
under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not with red nets.

Macronutrients (mg·g−1 DW) Micronutrients (mg·g−1 DW)

Cover 1 Salt
Treatment 1 K+ P5+ Ca2+ Mg2+ Fe2+ B3+ Cu2+ Mn2+ Zn2+ Na+ K+/Na+

Non
netting

0 mM 42.370 a 6.903 a 42.935 a 17.020 a 0.439 a 0.111 a 0.002 a 0.076 b 0.016 b 0.363 c 142.540 b
35 mM 24.617 c 3.403 b 42.849 a 14.522 c 0.321 b 0.096 a 0.002 a 0.079 b 0.033 a 7.365 a 3.441 a

Netting 0 mM 42.938 a 6.957 a 44.876 a 17.168 a 0.469 a 0.094 a 0.001 a 0.070 b 0.017 b 0.309 c 165.687 a
35 mM 34.728 b 3.464 b 40.578 a 12.978 bc 0.316 b 0.089 a 0.001 a 0.101 a 0.030 a 5.762 b 9.582 b

ANOVA 2

Cover * ns ns ns ns ns ns ns ns * *
Salinity *** *** ns * ns ns ns * ** ** ***

C × S * ns ns ns ns ns ns ns ns ns ns

Data are means of four plants. 1 Different letters within a column indicate significant differences among treatments
(p ≤ 0.05). 2 Analysis of variance: ns, not significant; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

3.7. Hormone Concentrations

Salinity significantly decreased the active CK, tZ, in both shaded and non-shaded plants, while its
metabolic precursor, ZR, decreased with salinity only in plants shaded pepper plants and the other
active CK, iP, was not affected by salinity (Figure 5a–c). Given that absolute concentrations of tZ
and ZR were much higher than those of iP, total CK concentrations, calculated as the sum of the
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three CKs analyzed, decreased with salinity in both netting treatments (Figure 5d). Importantly,
the concentrations of the three CKs and thus total CKs, were significantly superior in netted plants
under both control and salinity conditions (by 90 and 20%, respectively, as total CK concentrations,
Figure 5a–d).
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Another important hormonal class, the group of GAs, was also differentially affected in pepper
plants by salinity and netting. GA1 and GA3 decreased with salinity, particularly in non-netted plants
(Figure 6a,b), whereas GA4 significantly increased with salinity in netted plants (by 6-fold, Figure 6c)
but their absolute concentrations were lower. Therefore, total GAs, significantly decreased with salinity
in pepper plants grown without netting but did not changed in plants grown under red nets (Figure 6d).
Interestingly, all GAs analyzed and thus total GAs, increased in netted plants, with the only exception
of GA4 in plant grown under control conditions (Figure 6a–d).
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Figure 6. (a) Gibberellin A1 (GA1), (b) gibberellin A3 (GA3), (c) gibberellin A4 (GA4) and (d) total
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with the standard error. Different letters among bars indicate statistical differences according to Tukey’s
test (p ≤ 0.05).

The most active auxin form, IAA, was also analyzed and their concentrations significantly
increased by netting but were not affected by salinity (Figure 7a). In contrast, the classical abiotic
stress-related hormone, ABA, significantly augmented with salinity in both shaded and non-shaded
plants but it was kept at significantly lower levels in shaded plants (Figure 7b). The concentrations
of the ethylene precursor, ACC, also long considered as a “stress hormone,” dramatically increased
with salinity in plants grown without (by 12-fold) and with red nets (by 22-fold, Figure 7c). However,
netting did not affect ACC concentrations. We also analyzed, two hormones long associated to biotic
stresses, JA and SA. SA did not change by salinity treatment but increased in netted plants under both
control and salinity conditions (Figure 7d). In contrast, JA significantly decreased with salinity but was
not affected by the netting treatment (Figure 7e).
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Figure 7. (a) Indole acetic acid (IAA), (b) abscisic acid (ABA), (c) 1-aminocyclopropane-1-carboxylic
acid (ACC), (d) salicylic acid (SA) and (e) jasmonic acid (JA) concentrations in leaves of pepper plants
cultivated under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not with
red nets. Bars show the means of four plants with the standard error. Different letters among bars
indicate statistical differences according to Tukey’s test (p ≤ 0.05).

3.8. Principal Component Analysis

To identify important parameters associated to the variability factors used in this study, salinity
and red netting, in relation to pepper plant productivity, we performed a loading-PCA with all
variables evaluated and leaf mineral and hormonal traits analyzed (Figure 8a), as well as a score-PCA
showing the scores in the transformed coordinates of the 4 biological replicates for each treatment
(Figure 8b). The loading-PCA uses an orthogonal transformation to convert the evaluated physiological
parameters with high autocorrelation into a set of values of linearly uncorrelated variables called
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principal components (PCs). PC1 represented a 49% and PC2 a 15% of the population variability,
thus accounting both PCs for the largest part of the total variability (64%). The prevailing productivity
patterns, namely shoot FW and CO2 assimilation (A), are represented by eigenvectors indicating
the strength and direction of the parameter relative to both PCs (Figure 8a). Most growth-related
parameters and the photosynthetic rate clustered together with important ionic (K+ and K+/Na+ ratio)
and hormonal (tZ, ZR and total CKs, GA1 and JA) factors. In another cluster were associated those
parameters which co-varied in opposite direction to the productivity parameters, also involving ionic
(Na+, Mg2+, Fe2+, Mn2+ and Zn2+) and hormonal (ABA and ACC) leaf traits. (Figure 8a). Importantly,
the score-PCA clearly grouped the 4 biological replicates of each treatment combination obtained from
the two experimental factors (netting and salinity), leading to four differentiated clusters (Figure 8b).

 

Figure 8. (a) Two axes of a principal component (PC1, PC2) analysis showing the productivity 
trait vectors (shoot FW, SFW and photosynthetic rate, A) and the loadings of various growth-
related, ionic and hormonal variables (denoted by abbreviations) of pepper plants cultivated 
under control (0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not with red 
nets. (b) Bi-Plot representing the score values of each biological replicate in the four treatment 
combinations. Arrows indicate eigenvectors representing the strength and direction of the trait 
relative to the two PCs and circles enclose those variables/scores which cluster together. SFW: 
shoot fresh weigh; LFW: leaf fresh weight; PH: plant height; Chla: chlorophyll a; Chlb: chlorophyll 
b; Chls: total chlorophylls. 

 

Figure 8. (a) Two axes of a principal component (PC1, PC2) analysis showing the productivity trait
vectors (shoot FW, SFW and photosynthetic rate, A) and the loadings of various growth-related,
ionic and hormonal variables (denoted by abbreviations) of pepper plants cultivated under control
(0 mM NaCl) and salinity (35 mM NaCl) conditions and covered or not with red nets. (b) Bi-Plot
representing the score values of each biological replicate in the four treatment combinations. Arrows
indicate eigenvectors representing the strength and direction of the trait relative to the two PCs and
circles enclose those variables/scores which cluster together. SFW: shoot fresh weigh; LFW: leaf fresh
weight; PH: plant height; Chla: chlorophyll a; Chlb: chlorophyll b; Chls: total chlorophylls.
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4. Discussion

The agriculture industry is frequently affected by salinity which strongly limits plant productivity.
Salinity has been found to disrupt several physiological processes, namely CO2 assimilation, leading to
reduction in vegetative growth [44,45]. As stated previously, some agro-technological strategies,
such as protective and photoselective netting, have been used to cope with abiotic stresses in fruit
and horticultural crops and to improve growth performance [26,46,47]. Our study shows that salinity
reduced shoot growth-related parameters but shading plants with red nets significantly alleviated
salinity effects (Figure 2a–c). This can be in part explained by the reduced temperature and PAR
incidence under red nets in the central hours of the day during the growing period (Figure 1). In fact,
photoselective netting has proven to modify the micro-climate conditions (temperature, humidity and
wind velocity) leading to plant growth and productivity effects [48]. Low light intensities increased
stem elongation in tomato plants [49], whereas leaf area, plant growth and photosynthesis have been
found to increase with increased shade level in bell pepper due to the reduced leaf and root zone
temperatures [50,51]. Importantly, Rajapakse and Shahak [25] suggested a shading rate of 30% or less
as a way to limit thermal impacts on vegetable development, as we used in this study. Furthermore,
the use of shading screen alleviated heat stress in ‘Herminio’ sweet pepper in a winter–summer crop
cycle as reflected by better plant vegetative growth and leaf water status [46]. Light regime through
photoselective filtration by red netting can also explain the positive growth effects observed in the
pepper plants evaluated [25,30].

Additionally, shaded leaves generally have larger total chlorophyll content than leaves from control
plants, which can be associated to better photosynthetic status and improved growth. Chlorophyll
pigments absorb in the blue (~430 nm) and red regions (~660 nm) and thus red netting would
increase leaf chlorophyll status and capacity to capture light [16,22]. In this study, despite salinity
reduced chlorophyll concentrations, salinized pepper plants subjected to red net shading were less
affected than non-shaded pepper plants (Figure 4). In previous studies with lettuce, a strong positive
correlation of leaf total chlorophyll content with light deficiency was detected [52] and in interaction
with nitrogen nutrition [53]. As stated by Beneragama and Goto [54], in a study performed with the
shade tolerant algae Euglena gracilis, although shade-grown photosynthetic organs are not directly
exposed to sunlight, they produce additional chlorophyll a and b to capture diffuse radiation to
produce the carbohydrates needed for the plant to grow. Thus, the extent of modulation of these
pigments depends on the species, variety, light conditions and temperature, influencing growth and
productivity [15]. Sunlight captured by chlorophyll provides the energy for photosynthesis, thus higher
content of chlorophyll of shaded pepper plants under salinity conditions is directly associated to a
better performance of the photosynthetic apparatus, as demonstrated by their significantly higher CO2

assimilation with respect to non-shaded plants (Figure 3a). This can be explained by the temperature
reduction induced by shading, which might bring net CO2 assimilation rate closer to its optimal
temperature range, thus vapor pressure deficit at the leaf surface will decrease. This would lead to
increased photosynthesis and stomatal conductance, as proposed in the regulation of drought and
salinity stresses [10,45]. Indeed, protective netting have been demonstrated to improve leaf-level
photosynthetic light use efficiency, thus reducing photoinhibition symptoms, in ‘Honeycrisp’ apple
under heat stress [47]. Furthermore, light quality manipulation through red nets would help to adjust
photosynthesis to stress conditions [55]. Accordingly, sweet pepper leaves of the same age and position
were found to respond to light quality manipulation via red netting by increasing net assimilation and
stomatal conductance [23].

Increased photosynthetic rate under salinity conditions in shaded pepper plants while stomatal
conductance was unaffected resulted in an important improvement of intrinsic WUE (Figure 4a,b,d).
Previously, shaded young lemon and apricot trees have been shown to improve WUE through a better
control of leaf gas exchange parameters and water relations [10,12,56]. It has been long demonstrated
that nets reduce turbulence and produce a humid blanket, which contribute to decreasing environmental
evaporative demand, thus influencing WUE, which is especially relevant under drought and salinity
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conditions [57]. In fact, our study demonstrated that shading plants with red nets improved leaf water
and osmotic potentials as well as relative water content, especially under salinity conditions (Table 1).
This can be explained by a higher decoupling of the shaded plants from the atmosphere, particularly
under high evaporative demand [12], as shown in apple and peach orchards grown with protective
netting, which improved stem water potential with respect to non-shaded orchards [24].

The most detrimental ionic effect of salinity stress is the accumulation of Na+ in the plant tissues,
provoking severe ion imbalances and thus significant physiological disorders [58]. Although Na+

concentration increased under salinity conditions in the leaves of plants subjected to both netting
treatments, thus leading to growth inhibition (Table 2, Figures 1 and 8), shaded pepper plants presented
significantly lower leaf Na+ levels than the non-shaded ones. This can be explained by an efficient
Na+-exclusion mechanism in the roots [59] and/or a dilution effect because of the better water status
(Table 1) of pepper plants grown under red nets. Furthermore, high Na+ concentration inhibits
the uptake of K+, which is an essential mineral nutrient for plant growth and development [58].
This salinity-induced ion imbalance seems to be cushioned by shading salinized plants with red nets,
since K+ concentrations and the K+/Na+ ratio were significantly higher than those of non-shaded plants
(Table 2). Therefore, the increased shoot growth observed in shaded plants under salinity could be
partially explained by improved ion homeostasis, as suggests the close association of K+ and K+/Na+

with the growth related parameters in the PCA (Figure 8). Previously, it has been demonstrated, using
a recombinant tomato population, that productivity-related parameters under salinity were associated
to a better regulation of the ion balance of the plant [34], whereas increased K nutrition has been proven
to have ameliorative effects on salinized pepper plants [60,61].

In addition, the reduction in plant growth under salinity conditions could be an outcome of
altered hormonal balance. In fact, leaf growth inhibition and premature senescence in salinized tomato
plants have been previously associated to decreased bioactive CK concentrations and increased ABA
and ACC contents [32,33], as observed in this study. Thus, strategies to increase CK concentrations
have been considered to be effective to recover growth and productivity under salinity conditions.
For example, engineering tomato rootstocks with a gene encoding the key enzyme of CK biosynthesis,
isopentenyl transferase, thus increasing CK concentrations, improved growth and productivity of
salinized tomato plants [35]. Importantly, our results show that shading pepper plants significantly
increased the concentrations of all bioactive CKs analyzed (Figure 5), closely associated to shoot growth
improvement, as demonstrated by their strong linkage within the PCA (Figure 8). This is especially
relevant under saline conditions since CK-induced growth and productivity of salinized tomato plants
have been previously associated to improved ion homeostasis, particularly of K+ and K+/Na+ ratio,
stomatal regulation and CO2 assimilation [34,35], as also indicates the close association of these factors
with the CK content (Figure 8). GAs have been also studied in relation to their role in regulating
growth under salinity stress. In fact, exogenous GA application have been shown to improve growth
of tomato plants subjected to salinity through crosstalk with other hormones, particularly CKs [37].
However, in the present study, although GA concentrations of pepper plants showed an important
increment by shading, especially under salinity conditions (Figure 6), this was partially uncoupled of
shoot growth responses as indicated by the PCA (Figure 8).

The classical stress hormones, ABA and ethylene, have been associated to growth impairment
under drought and salinity [62–64]. In fact, our results show an increment in the concentrations of ABA
and the ethylene precursor, ACC, in pepper plants grown under salinity conditions (Figure 7b,c) linked
to growth reduction (Figure 2). However, while shading increased leaf ACC concentrations under
salinity, decreased ABA. This could explain the improved water status, gas exchange regulation and
thus efficiency in the use of water of salinized peppers plants grown under red nets, since ABA has been
long demonstrated to control stomatal opening and water relations under stress [65]. Furthermore,
SA and JA, despite classically implicated in the defense response of plants against pathogen attack,
they have been also considered to play an important role in controlling salinity and drought stress
responses in interaction with other hormones, namely ABA [38,39]. Our data revealed that SA
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accumulated in shaded plants under salinity conditions (Figure 7d), which could be an adaptive
response to salinity thus limiting ABA accumulation, as previously demonstrated by using tomato
mutants impaired in hormone biosynthesis [39]. However, SA did not cluster with shoot growth
parameters within the PCA (Figure 8), which limits their role in controlling growth under salinity
conditions. Concerning JA, an important drop was observed under salinity (Figure 7e), which would
explain their clustering very close to the shoot growth in the PCA (Figure 8). However, JA’s role in
controlling growth of shaded plants under salinity seems to be marginal, since its concentrations did
not vary by growing pepper plants under red nets (Figure 7e).

5. Conclusions

Salinity stress decreased shoot growth of pepper plants associated with leaf FW and plant height
reduction, whereas shading plants with red nets improved growth, especially under salinity conditions.
The growth recovery of shaded plants under salinity has been associated to better performance of
the photosynthetic apparatus due to improved chlorophyll content and CO2 assimilation. Likewise,
stomatal conductance, water relations and thus WUE notably improved by shading. The positive effect
of photoselective netting, particularly in salinized plants, can be explained by an efficient mechanism
of Na+ exclusion, control of ion homeostasis and hormonal balance regulation. A particularly relevant
role can be given to CKs, which have been associated to growth control and ion regulation and also to
ABA, a master regulator of stomatal opening, which, in crosstalk with SA, lead to a better regulation
of water relations in shaded plants. Our results show for the first time that shading plants with red
nets modifies plant ion homeostasis and hormonal balance, which could be a strategy to improve
growth and productivity under salinity conditions. This is especially important and urgent in the
actual scenario of climate crisis, since the most important horticultural areas of the world are suffering
severe stress episodes due to reduced quality of both water and soil.
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