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Abstract: Small-scale farms represent about 80% of the farming area of China, in a context where they
need to produce economic and environmentally sustainable food. The objective of this work was to
define management zone (MZs) for a village by comparing the use of crop yield proxies derived from
historical satellite images with soil information derived from remote sensing, and the integration of
these two data sources. The village chosen for the study was Wangzhuang village in Quzhou County
in the North China Plain (NCP) (30◦51′55” N; 115◦02′06” E). The village was comprised of 540 fields
covering approximately 177 ha. The subdivision of the village into three or four zones was considered
to be the most practical for the NCP villages because it is easier to manage many fields within a few
zones rather than individually in situations where low mechanization is the norm. Management
zones defined using Landsat satellite data for estimation of the Green Normalized Vegetation Index
(GNDVI) was a reasonable predictor (up to 45%) of measured variation in soil nitrogen (N) and organic
carbon (OC). The approach used in this study works reasonably well with minimum data but, in order
to improve crop management (e.g., sowing dates, fertilization), a simple decision support system
(DSS) should be developed in order to integrate MZs and agronomic prescriptions.

Keywords: site-specific nutrient management; soil brightness; satellite remote sensing; crop yield;
soil fertility; spatial variability

1. Introduction

Small scale farms represent about 80% of the farming area of China. Given the need to produce
more food on the same amount (or less) of land while also reducing environmental pollution, such areas
are faced with tough challenges. Farmers manage their fields by experience and need science-based
evidence to make the system more efficient. The mismanagement of nitrogen (N) fertilizer is a known
problem in the smallholder farming systems of China [1].

Precision nutrient management can be achieved either through a sensor-based or a map-based
approach. The former uses sensors to guide site-specific N management based on the quantification
of crop reflectance. However, a sensor-based approach is affected by the inter-annual interactions
between soil and weather. Colaço & Bramley [2] demonstrated how the sensor-based approach could
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be improved by also considering the impact of other environmental covariates. The latter approach
consists of using multiple images (e.g., soil, remote sensing, yield monitor) with the aim of dividing
the fields into management zones (MZs). MZs are defined as sub-regions within the field that have
similar combinations of yield-limiting factors and are managed accordingly [3,4]. Basso et al. [5] stated
that understanding the factors that lead to the spatial and temporal variability of a crop within the field
is the first step for optimal agronomic management. In addition, the delineation of fields into MZs
helps with obtaining soil/crop samples cost-effectively and applying site-specific agronomic input [4–7].

Several approaches have been proposed to define MZs at the field level. One approach is based
on gathering soil or landscape information, such as sampling the soil using electrical conductivity (EC)
sensor, sampling for soil physical and chemical properties or using remotely sensed data for estimating
soil and landscape properties [8–12]. Another approach uses yield maps or remotely sensed images to
reconstruct spatial and temporal patterns of crop growth within the field to define a given number of
MZs [13–16]. Finally, the integrated approach uses both soil-landscape and crop information to define
MZs at field level [4,17].

However, the small size of single farms in the North China Plain (NCP) does not allow for
cost-effective on-farm management using farm-scale MZs. Moreover, yield maps are not available
in most small-scale farming systems and, in such systems, farmers do not measure field-level yield
at harvest [18], but measure total grain that they sell from all of their fields. Jin et al. [19] combined
a crop simulation model with remotely sensed data to map yield heterogeneity on smallholder farms
in East Africa. High-resolution satellite images were used to define a smallholder farming system,
but the prevalence of small field size was one of the challenges in improving the performance of
the approach proposed [19]. In addition, high-resolution satellite data usually has to be purchased
from a private provider (e.g., RapidEye) or obtained from a contemporary open-source sensor such
as Sentinel-2, which does not yet have enough years available to capture the long-term inter-annual
variability. A practical strategy is to divide fields in a village into several MZs disregarding the current
field management structure. Some of the common open-source satellites, such as Landsat that has
a long time-series of data, may allow the mapping of fields in a village for MZ delineation purposes;
therefore, each field can be classified in a given MZ, maintaining the existing boundary structure.
Fields in the same MZ could then use similar management practices or inputs optimised for their
particular conditions and requirements regardless of their geographical proximity.

The objective of this work was to integrate soil information derived from remote sensing with
crop yield proxies derived from historical satellite images to define MZs at the village scale.

2. Materials and Methods

2.1. Site Description

The village chosen for the study was Wangzhuang village in Quzhou County in the NCP
(36◦51′55” N; 115◦02′06” E). The cropped area of the village covered approximately 177 ha and
comprised a total of 540 fields, with an average farm size of 0.33 ha (Figure 1). The village is part
of the Science and Technology Backyards (STB) initiative. The STB was established originally in
Quzhou County in 2009 by China Agricultural University to carry out specific research and extension
services aimed at transferring research technology to smallholder farmers [18]. The main cropping
system of the village was winter wheat (Triticum aestivum L.) (sown in October) and summer maize
(Zea mays L.) (sown in mid-June), with irrigation used by farmers on both crops. The soil was classified
as silty-loam [20] and no significant slopes were present. The 2008–2018 weather had a mean, maximum
and minimum air temperature during the growing season of 9.7, 15, and 4.3 ◦C, respectively.
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Figure 1. Location of the Wangzhaung village in China (red mark), the area occupied by the village 
(white polygon), and an image of the typical field layout in Wangzhuang village, China. The fields 
were separated only by a thin bare patch of soil. The similar growth stages of the wheat plants suggest 
that planting occurred at the same time in the different fields. 

2.2. Overall Methodological Approach 

Satellite data for the village were obtained from the Landsat satellites (30 m pixels) for 2008–2018 
using the USGS explorer website [21]. Level 2 processed imagery was requested and analyzed 
following the protocols described on the Landsat Explorer [21]. The Landsat data came from 2 
different sensors having a different wavelength range in the near-infrared bands; one was used from 
2008 to 2011 (Landsat 5 with 0.76–0.90 µm with Landsat Thematic Mapper - TM sensor [21]) and 
another from 2013 to 2018 (Landsat 8 with 0.85–0.88 µm with Operational Land Imager - OLI sensor 
[21]). Atmospherically-corrected cloud-free scenes from the end of April/beginning of May were 
selected to coincide with flowering in winter wheat. The choice of using images at that particular 
developmental stage was justified by the strong correlation between remote sensing data and grain 
yield [22–24]. In addition, in Northern China, the use of proximal and/or remote sensing as a proxy 
of canopy N and yield has been validated on several crops and in different geographical regions [25–
28]. The Green Normalized Difference Vegetation Index (GNDVI) [29] was calculated for each scene. 
The GNDVI is more closely related to the photosynthetically absorbed radiation than NDVI and has 
shown a linear correlation with the Leaf Area Index (LAI) and biomass [29]. This makes the GNDVI 
more sensitive to changes in biomass and chlorophyll concentration compared to the NDVI. It was 
calculated as follows: 

𝐺𝑁𝐷𝑉𝐼 =  
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Soil Brightness (SOB) data at 3 m spatial resolution were purchased from Courtyard Agriculture 

Ltd. in the UK and were derived from RapidEye optical satellite images at a time in the season when 
the land was un-cropped (bare soil). Most of the fields were contiguous, with ‘boundaries’ being 
narrow ridges of bare soil. There was little other vegetation or paths/roads present. Therefore, most 
of the pixels corresponded to cropland (Figure 1). 

Prior to sowing of wheat in 2015, soil sampling was carried out in the village. For each field, 10 
samples were collected at 0–20 cm depth following “S” patterns. The samples were pooled together, mixed 
thoroughly and divided into four subsamples. One subsample of about 1–2 kg was kept for determining 
inorganic soil N and soil organic carbon (OC). The soil samples were later dried, ground to powder and 
analyzed for total soil N concentration using the Kjeldahl digestion method [30]. Soil OC was analyzed 
following the wet combustion method [31]. Soil texture information was also available at selected points 
and used for this study and additional information is available elsewhere [32]. 

Figure 1. Location of the Wangzhaung village in China (red mark), the area occupied by the village
(white polygon), and an image of the typical field layout in Wangzhuang village, China. The fields
were separated only by a thin bare patch of soil. The similar growth stages of the wheat plants suggest
that planting occurred at the same time in the different fields.

2.2. Overall Methodological Approach

Satellite data for the village were obtained from the Landsat satellites (30 m pixels) for 2008–2018
using the USGS explorer website [21]. Level 2 processed imagery was requested and analyzed
following the protocols described on the Landsat Explorer [21]. The Landsat data came from 2 different
sensors having a different wavelength range in the near-infrared bands; one was used from 2008 to
2011 (Landsat 5 with 0.76–0.90 µm with Landsat Thematic Mapper - TM sensor [21]) and another
from 2013 to 2018 (Landsat 8 with 0.85–0.88 µm with Operational Land Imager - OLI sensor [21]).
Atmospherically-corrected cloud-free scenes from the end of April/beginning of May were selected to
coincide with flowering in winter wheat. The choice of using images at that particular developmental
stage was justified by the strong correlation between remote sensing data and grain yield [22–24].
In addition, in Northern China, the use of proximal and/or remote sensing as a proxy of canopy N and
yield has been validated on several crops and in different geographical regions [25–28]. The Green
Normalized Difference Vegetation Index (GNDVI) [29] was calculated for each scene. The GNDVI is
more closely related to the photosynthetically absorbed radiation than NDVI and has shown a linear
correlation with the Leaf Area Index (LAI) and biomass [29]. This makes the GNDVI more sensitive to
changes in biomass and chlorophyll concentration compared to the NDVI. It was calculated as follows:

GNDVI =
ρNIR − ρGreen

ρNIR + ρGreen
(1)

where ρNIR and ρGreen are the reflectance in the Near Infrared and Green bands, respectively.
Soil Brightness (SOB) data at 3 m spatial resolution were purchased from Courtyard Agriculture

Ltd. in the UK and were derived from RapidEye optical satellite images at a time in the season when
the land was un-cropped (bare soil). Most of the fields were contiguous, with ‘boundaries’ being
narrow ridges of bare soil. There was little other vegetation or paths/roads present. Therefore, most of
the pixels corresponded to cropland (Figure 1).

Prior to sowing of wheat in 2015, soil sampling was carried out in the village. For each field,
10 samples were collected at 0–20 cm depth following “S” patterns. The samples were pooled together,
mixed thoroughly and divided into four subsamples. One subsample of about 1–2 kg was kept for
determining inorganic soil N and soil organic carbon (OC). The soil samples were later dried, ground to
powder and analyzed for total soil N concentration using the Kjeldahl digestion method [30]. Soil OC
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was analyzed following the wet combustion method [31]. Soil texture information was also available
at selected points and used for this study and additional information is available elsewhere [32].

Spatial and temporal variability in GNDVI were quantified following the method of Basso et al.
(2012). The spatial variability of GNDVI from 2008 to 2018 was calculated from the relative percentage
difference of GNDVI at each 30 m pixel from the average GNDVI obtained for the whole cropped area
of the village, according to Equation (2) [13]:

σ2
si =

1
n

n∑
k=1

[
yi,k − yk

yk
× 100

]
(2)

where n is the total number of available years, k = 1, . . . , n is the integer corresponding to every year,
σ2

si is the average percentage difference at location i, yk is the average of the variable obtained for
the whole village at year k, yi,k is the variable monitored at location i at year k. Pixels that have high
values of σ2

si are associated with high yield (under the assumption that GNDVI is directly proportional
to yield) and pixels with low values are lower yielding.

The temporal variability, which is a measure of stability, was calculated as temporal variance
to overcome the issues with varying stability over time [33]. The temporal variance of patterns in
the GNDVI data was calculated using Equation (3):

σ2
ti =

1
n

n∑
k=1

(
yi,k − yi,n

)2
(3)

where σ2
ti is the temporal variance value at location i, yi,k is the value of the variable monitored at location

i at year k, yi,n is the average variable value at location i over the n years. The higher the temporal
variance, the more unstable the GNDVI measurement (and thus the yield) at that particular location
over time. Threshold values have previously been used to identify stable zones within fields, however,
the choice of the threshold for determining the stable zone can affect the result considerably [13].
To overcome this problem, a clustering algorithm was applied to the spatial and temporal variability
layers, which is further described below. The GNDVI variability metrics and the soil brightness images
were summarized at the field scale for consistency with the measured soil variables that were used for
evaluation purposes.

For site-specific agronomic management of any input, there is the need to develop MZs that will
be subject to a unique combination of potential yield-limiting factors [12]. Management zones are most
effective if the variation (of the factors under consideration) within them is minimized, and there are
a manageable number of zones. Clustering is an important method in precision agriculture [34–38].
In all these studies it was found that the k-means was not among the best methods to define MZs,
but the best algorithm differed. For example, in smallholder farming systems, Possiblistic Fuzzy C
Mean worked best but in other conditions, the McQuitty method seemed to give more consistent
results [36,37]. Although the k-means is still widely adopted, it was decided to use the partitioning
around medoids (PAM) method [39] to derive the MZs. The PAM is a clustering algorithm that,
like k-means clustering, aims to minimize the distances between points within a cluster and the point
at the center of the cluster. It is a more robust alternative to k-means clustering when noisy data are
expected, as is the case in this study due to unmeasured variation in growing conditions due to the soil
spatial variability. The term medoid refers to an observation within a cluster for which the sum of
the distances between it and all the other members of the cluster is a minimum. PAM requires a priori
information of the number of clusters, but it does more computation than the more commonly used
k-means clustering to ensure that the medoids that it finds are truly representative of the observations
within a given cluster. It has been found that the PAM showed better results than the k-means in terms
of execution time, sensitivity towards outliers, reduction of noise in the data due to minimization of
the sum of dissimilarities within the dataset [36]. Field-scale variables for (i) spatial and temporal
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variability in GNDVI; and (ii) mean soil brightness were normalised and used as variables with
the PAM method, using R software, to define clusters.

Soil N and soil OC were used for MZ evaluation as reported in [4]. Relative variance (RV)
of measured soil properties at the field scale was used to evaluate the accuracy of this approach for
delineating MZs given by Equation (4):

RV = 1−
S2

w

S2
T

× 100 (4)

where S2
w is the total within-zone variance of the soil property and S2

T is the total village-level
variance of the corresponding property. RV approximates the amount of variability explained by
the MZ delineation and can be interpreted similarly to the R2 value in regression analysis in terms of
the percentage of variation explained. RV was calculated on a per-field basis for measured total N and
OC because they best characterise areas that would benefit from differential management.

3. Results

The maximum and minimum air temperatures from Jan to mid-May from 2008 to 2018 are shown
in Figure 2. Overall, there is inter-annual variability in amplitudes and patterns of maximum and
minimum air temperature. For example, in 2011 the minimum air temperatures were the lowest
recorded during the period of study. The spatial patterns of the Landsat GNDVI images for a period of
10 years, each around the time of flowering, are shown in Figures 3 and 4. Overall, GNDVI was generally
more variable for the earlier years, with values ranging between 0.1 and 0.8 for the 2008–2011 period
(Landsat 5) and the majority of values over 0.6 from 2013 to 2018 (Landsat 8). The years 2010 and 2011
showed higher spatial variability than other years.
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the Wangzhaung village from 2008 to 2018 from January to mid-May. The horizontal dotted line
represents the 0 ◦C threshold while the vertical grey box represents the time when satellite images
were acquired.
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growing season (a) 2008; (b) 2009; and (c) 2011. LANDSAT 5 scenes were obtained for late April/early 
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Figure 3. Calculated Green Normalized Vegetation Index (GNDVI) for LANDSAT 5 scenes for the growing
season (a) 2008; (b) 2009; and (c) 2011. LANDSAT 5 scenes were obtained for late April/early May every
year from 2008 to 2011.

The soil brightness resampled to 30 m resolution to match the Landsat data is shown in Figure 5a
and the original soil brightness data at a 3 m resolution is shown in Figure 5b. The mean soil brightness
was lower in the North-East portion of the village where the values ranged between 3 and 7. Areas with
the highest soil brightness values were in the north-western and south-western portions of the village.

The spatial distributions of measured soil N and OC throughout the village are shown in Figure 6a,b
respectively. Soil N varied between 0.68 and 1.37 g/kg (Figure 6a). Low values of soil N were located
mainly on the North-West portion of the village and the highest values were located across the village
without any clear spatial patterns (Figure 6a). The soil OC varied between 0.52 and 1.2% and its spatial
variability matched the soil N content (Figure 6b). Therefore, there was not any clear spatial clustering
of its value across the village.

The spatial and temporal decomposition of the GNDVI is shown in Figure 7. No obvious spatial
clustering was found in the spatial variability metric (Figure 7a). The temporal variability of the GNDVI
was higher in the eastern half of the village and also tended to coincide with areas of low GNDVI
(Figure 7b).
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Figure 7. Ten-year time-series of GNDVI decomposed into (a) spatial variance and (b) temporal variance.

Using soil brightness to define the zones resulted in the three and four zones shown in Figure 8a,b.
Using the GNDVI variability metrics to define the zones resulted in the three and four zones shown in
Figure 8c,d. Using a combination of soil brightness and GNDVI variability metrics to define the zones
resulted in the three and four zones shown in Figure 8e,f.

The RV of measured soil variables total N and OC within these clusters compared to the village
mean is shown in Table 1. Soil brightness alone was a fairly poor predictor of measured N and OC in
this study, explaining only up to 9% of the variability. The GNDVI variability metrics were a reasonable
predictor (up to 39%) of variability in measured N and OC. The three-cluster solution in the combined
model (soil brightness + GNDVI) was the best predictor of N and OC variability at up to 45%.
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Table 1. Relative variance of measured soil variables total N and organic carbon at the field scale for
three and four cluster solutions using (i) soil brightness; (ii) the spatial and temporal variability in
GNDVI and (iii) a combination of both.

Clustering Approach Relative Variance (RV)
Total N Organic Carbon

Soil brightness 3 zones 7.5 7.3
Soil brightness 4 zones 9.3 9.5

GNDVI variability metrics 3 zones 35.8 37.3
GNDVI variability metrics 4 zones 35.8 38.1

Combined 3 zones 43.9 44.9
Combined 4 zones 36.1 37.9

4. Discussion

Overall, the GNDVI derived from remote sensing allowed for the discrimination of zones within
the village, with a reasonably good explanation of the variability in measured N and OC. The GNDVI
values were low in years in which the minimum growing season temperatures were higher than in
other years (e.g., 2008 c.f. 2011). This may have resulted in m the crop developing faster, meaning
that by the time the satellite data were acquired (grey box in Figure 2) the crops might have been at
an advanced developmental stage i.e.past flowering, meaning higher senescence rates causing lower
GNDVI values. For years when minimum growing season temperatures were lower, meaning a longer
wheat growing season, by the time our images were acquired, the wheat would still be at the flowering
stage and therefore with less senesced material. In addition, there were differences in GNDVI index
values between TM and OLI because of the differences in the wavelengths for each of the band that
the sensor collected. The image data were not corrected for this. There was a very narrow range of
the measured N and OC within the village along with the unmeasured variability in field management
and inputs, both of which would have affected the relationships. From a statistical point of view,
the soil N and OC showed a narrow range of values. However, from an agronomic point of view,
the values of OC ranging between 0.5 and 1.2% have big differences in terms of impact on soil chemical
processes and impacts on yield. In fact, soil organic matter is a reserve for nutrients and an agent
that improves soil structure. It is a storage pool of plant nutrients. In addition, the humus (which is
the stable fraction of the soil organic matter) adsorbs and holds nutrients in a plant-available form.
Soil organic matter also releases nutrients in a plant-available form upon decomposition [40].

Satellite images of crops provide an indirect tool to obtain spatial information of crop growing
conditions for a given year and therefore are a good tool to quantify spatial field variability [26,41].
The use of a longer remotely sensed time-series enabled the quantification of temporal stability within
the spatial context of the village. Satellite images of the bare soil also provide an indirect method to
obtain spatial information about the variability in soil conditions, in particular soil moisture, which
affects crop growth. However, one limitation of the soil brightness is that it is a weak proxy of soil
moisture because the soil–plant relationship is deeper than the first few cm of soil. In addition, whilst
there was a significant correlation between soil brightness and measured soil OC, this relationship was
not strong (0.19). The soil brightness was reconstructed by a private company and it is not a good
proxy of the soil samples measured in the field during the study. This is because the resulting soil
brightness image is captured by the company on a given date at a time when the soil is bare (it could
have been many months before the soil sampling), and given the high temporal variability in soil
nitrogen concentration the time when soil samples were collected do not reflect the spatial variability
of the brightness map.

The subdivision of the village into 3–4 zones improved the explanation of the variability in
measured soil parameters. However, there is a trade-off between the number of zones and site-specific
management. The spatial coherence of the zones also needs to be considered, since it is likely to be
more economically and practically efficient to zone the village fields into “blocks” rather than by
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individual field. It has been found in the literature that three zones are a common number adopted in
commercial precision agriculture solutions regardless of the size of the field [42]. More zones could
have been defined, but this would translate into more management recommendations and organisation
of farmers into more co-operative “clusters”, which would add to the complexity and time commitment
for co-operative leads.

The results of this study can be considered as a preliminary method based on the integration
of different remotely sensed data to delineate MZs at the village scale. More studies are needed to
further refine them for guiding site-specific management in small scale farming systems. In addition,
incorporating measurements of field level yields would aid in validating this approach in the future.

The main limitation of this study is in the spatial resolution of the satellite data. If a higher
resolution and consistently measured dataset had been available over a similar timescale, a more
accurate measurement of spatial and temporal variability at the field scale would have been detected.
However, recent advancements in sensors on free satellite products (e.g., Sentinel-2) will make
the acquisition of a long temporal series of images with higher resolution easier in the future.
In addition, the MZ approach could be improved with data on historic management (e.g., timing of
key operations) and crop yields. The lack of mechanization and extension services at the village level
might hamper the application of modern technologies. Even the subdivision of a village into zones
might be of no help if it is not coupled with additional information on how to translate this information
into agronomic management.

The approach used in this study was developed considering the limited data availability in
small scale farming systems used in the NCP. Therefore, it may not be the best approach if more
data are available. In order to improve crop management (e.g., sowing dates, fertilizer amount
and timing), a decision support system (DSS) should be developed in order to integrate MZs and
agronomic prescriptions. The design of a DSS should provide a science-based approach to quantify
the optimal practices that can evaluate the trade-off between economic and environmental benefits.
The DSS should be system-based in order to take into account the dynamic interactions between
soil–plant–atmosphere–agronomy continuum [5,16]. Future research is therefore needed to overcome
the limits highlighted in [19] for a better link between the remotely-sensed approach to define zones and
crop models. It is likely that the development of simplified crop growth models will be a step forward
for better integration. In this regard, [43] developed simplified models that are less data-intensive.
In particular, [44] developed a simple scalable and satellite-based yield model to predict yield for canola
(Brassica Napus L.) and wheat (Triticum spp.) at different regional scales. The results of this study
could be integrated within the modelling approach highlighted in [44] to provide the system-based
DSS approach. Future research would also be needed to concentrate the efforts to consider the impacts
of other agronomic practices such as crop rotation (wheat–maize), the use of manure and tillage on
the zoning.

5. Conclusions

Spatial and temporal data of remotely estimated crop growth or soil variation measurements
from satellites can be used to delineate zones at the village level that explain a reasonable amount of
the variation in measured soil variables. In this study on winter wheat, the GNDVI was collected around
flowering for 10 years in order to identify spatial and temporal patterns of crop yield. The subdivision
of the village into three zones will be optimal for the NCP villages because it tends to cluster many
fields into few zones that are easy to manage in situations where low mechanization is the norm.
The next step is to develop a system-based DSS that will help to translate the zoning into site-specific
agronomic management prescriptions in terms of planting dates and fertilizer amount and timing.
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