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Abstract: Alkaloids produced by endophytic fungi can have an important influence on agricultural
ecology, and can often be affected by climatic factors. At present, there are no studies that have assessed
the relationship between alkaloid production and elevation or climatic factors in the Qinghai-Tibetan
Plateau. To address this knowledge gap, we explored ergot alkaloid and peramine production in
Epichloë-infected (E+) Elymus tangutorum collected from the Qinghai-Tibetan plateau and assessed the
relationship between the concentration of these alkaloids and elevation. The effects of temperature
and precipitation on these relationships were also investigated. The concentrations of ergonovine,
ergine, and peramine ranged from 0.47–0.84, 0.35–1.72 and 9.18–13.00 µg·g−1, respectively. Fitted cubic
regression curves describing an arc-pattern across the elevational series were statistically significant
for ergine and peramine concentrations. The elevational trend in peramine concentration was linked
to mean daily temperature, while the ergine elevational trend was linked to mean precipitation.
Our results provide a new understanding of the climatic factors that influence the alkaloid production
of endophytic fungi at different elevations in the Qinghai-Tibetan plateau.
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1. Introduction

Interactions between plants and endophytes are a widespread phenomenon in nature and are
crucial to the establishment and maintenance of populations, influencing community dynamics and
even ecosystem function, particularly under environmental stress [1–4]. Between 20–30% of cool-season
grass species can form symbiotic associations with Epichloë endophytes [5]. Asexual endophyte species
of the genus Epichloë, formerly known as Neotyphodium, usually form symbioses with cool-season
grasses [6]. Asexual Epichloë are vertically transmitted through host plant seeds, and do not normally
cause symptoms in the host grass [7–9].

The association between cool-season grasses and Epichloё endophytes can promote host plant
growth [10,11], increase plant nutrient uptake [12,13], inhibit plant pathogen growth [14–16], increase
host fitness and improve host tolerance to biotic (e.g., pests, disease, animal grazing) [15–18], and abiotic
factors (e.g., waterlogging, drought, cold, soil acidity, mineral imbalance stresses) [13,19–22]. There are
four major classes of alkaloids produced by this symbiosis; indole-diterpenoids (e.g., lolitrem B),
pyrrolizidine (e.g., lolines), pyrrolopyrazine (e.g., peramine) and ergot alkaloids [23]. The ergot
alkaloid, ergovaline is responsible for “fescue toxicosis” in livestock [24,25]. The main symptoms
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of fescue toxicosis are reduced feed intake, excessive salivation, reduced reproductive performance,
tissue necroses of the feet and tail, and high mortality [26–28]. The presence of peramine is a significant
deterrent to feeding for the Argentine stem weevil (Listronotus bonariensis), and is viewed as a desirable
alkaloid due to its insect-resistance activity. It also has benign effects on grazing animals [29]. Lolitrem
B is responsible for “ryegrass staggers”, and symptoms range from mild neck tremors following
strenuous exercise to severe tetanic spasms and collapse [30]. The activity of lolines against insects has
been reported in a number of studies [31–35], and lolines also have harmful effects on mammals [34].

Elymus spp. not only provide high quality herbage for livestock grazing [36], but they are also
important grass species for ecological restoration of grasslands and for reducing land desertification
in western China [22,37]. They often contain the endophytic fungus Epichloёbromicola [38], and the
E. bromicola associations with Elymus spp. are host specific [39]. Endophyte-infected Elymus dahuricus
was found to produce peramine in 21 sites across China [40]. No cases of toxicity to livestock
grazing on Elymus spp. have been reported, although ergot alkaloid gene sets have been identified
in E. bromicola [41]. There are many Elymus spp. in China and little is known concerning their ergot
alkaloid and peramine production potential, especially in the Qinghai-Tibetan plateau (QTP) where
natural grasslands play an important role in the ecology and economy of the region.

The QTP covers a large area that includes complex landscapes, climatic gradients and different
elevations, and contains rich biodiversity [42]. Elevation often has an influence on the ecosystems
of the QTP because it alters a range of climate factors including temperature, precipitation and
atmospheric pressure that shape the evolutionary adaptation of plant species. [43,44]. Prior research
on the QTP has investigated the effects of elevational gradients on diversity [45], evolutionary
history [44,46], underlying adaptation [47], geographical distribution [48] and the chemical composition
of plants [49,50], and fungal assemblages [51,52]. However, there are no studies that assess the
relationship between the alkaloid production of endophyte-infected cool-season grasses and elevation
and climate factors across the QTP.

Interestingly, previous studies have reported that climate factors (mainly temperature, precipitation
and CO2) affect fungal alkaloid concentration [53–62]. For example, McCulley et al. [56] found that ergot
alkaloids of tall fescue (Festuca arundinacea) significantly increased at higher temperature in transition
zone pastures in the U.S. Drought stress can increase the production of ergovaline in Epichloë-infected
grass [54,59]. Ryan et al. [58] found that the alkaloid concentration of endophyte-infected tall fescue
decreased under elevated CO2. The majority of studies on the influence of climate factors on the alkaloid
production of Epichloë endophytes have been conducted under controlled conditions, and relevant
studies conducted in natural conditions are lacking.

To address this knowledge gap, we explored ergot alkaloid and peramine production in
Epichloë-infected (E+) E. tangutorum collected from 25 sites across the QTP and assessed the relationship
between the concentration of these alkaloids and elevation. The climate factors that affect the
relationships were also investigated.

2. Materials and Methods

2.1. Characterization of the Study Area

The QTP ranges from the eastern edge of the Hengduan Mountains to the western boundary of
the Pamir Mountains, and from the northern edge of the Kunlun Mountains to the southern edge of the
Himalayan Range [63], with latitude 26◦00′–39◦47′ N and longitude 73◦19′–104◦47′ E. Our sampling
sites were all distributed on permanent grassland of the QTP in Qinghai and Gansu Provinces;
the elevation ranged from 2100 m to 3920 m, and the longitude ranged from 99◦21′47′’ to 102◦07′19”,
while the latitude ranged from 34◦32′56” to 38◦57′35” (Figure 1). A highland cold climate prevails
in this region [64]. In winter, the mean daily temperature remains below 0 ◦C for nearly six months,
while the mean daily temperature in summer typically ranges from 10–20 ◦C [65]. The mean annual
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precipitation is about 410 mm, with approximately 140 mm in the cold months (November–January),
90 mm in early spring (February–April), and the remainder from May to October [66].
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2.2. Plant Material

From late August to early October in 2017, mature individual plants of E. tangutorum with fully
ripened seed-heads were collected from the 25 different sites distributed on permanent grassland of the
QTP in Qinghai and Gansu Provinces (Figure 1). For sites located at lower altitude (below ca. 3800 m),
20–40 plants were sampled at each site. Fewer plants (7–12) were sampled at the remaining sites
due to low E. tangutorum abundance. For each site, tillers of individual plants were cut approximately
3 cm from the soil surface. Each plant sample was packed separately into envelopes and returned to
the laboratory for analysis. The geographic coordinates and altitude of each site were taken during
sampling. The endophyte-infected (E+) E. tangutorum was identified from populations by using the
aniline blue staining method of Cheplick [67] on culms of each individual plant. E+ E. tangutorum
plants were identified in each of the 25 sites.

2.3. Determination of Ergot Alkaloid and Peramine Concentration

Standards of ergonovine, ergine and peramine were provided by Dr Wade Mace, AgResearch
Limited, Grasslands Research Centre in New Zealand. Aboveground parts of individual plants were
used to determine the alkaloid concentration.

A 200 mg subsample of dried plant material collected from each site was used to measure the
ergot alkaloid concentration. Ergot alkaloid concentrations were determined by using a HPLC method
adapted from Zhang et al. [68]. An Agilent 1100 HPLC (Agilent, Santa Clara, CA 95051, USA), fitted with
a C18 column (Eclipse XDB-C18, 250 mm × 4.6 mm, 5 µm) was used to quantify the ergot alkaloids.
The mobile phases used were (A) 0.1 M NH4OAc, and (B) CH3CN: 0.1 M NH4OAc, 3:1. The flow
rate was 1 mL·min−1. Detection was performed with an ultraviolet wavelength spectrophotometric
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detector (Agilent G1314A, Santa Clara, CA, USA) set to 312 nm. The quantity of extracted sample
injected into the injection port was 20 µL. Ergot alkaloid concentration was quantified using external
standard curves.

For peramine analysis, a 50 mg subsample of freeze-dried plant material was used. Peramine was
extracted following the methods of Zhang and Nan [40]. The HPLC machine, column, flow rate and
detector used to quantify the peramine concentration were as described above for the determination of
ergot alkaloids. For peramine detection, the mobile phases were (A) 1.8 g L−1 guanidine carbonate
and (B) acetonitrile, and the spectrophotometric detector was set to 280 nm. The quantity of extracted
sample was 25 µL. Peramine concentration was quantified using an external standard curve.

2.4. Collection of Climate Data

Climatic data was collected from the National Meteorological Data Center (http://data.cma.cn).
According to the latitude, longitude, and elevation of the sampling sites, we used the thin-plate
smoothing spline algorithm implemented in the Anusplin package (Version 4.4, Canberra, Australia;
http://fennerschool.anu.edu.au/files/anusplin44.pdf) for interpolation to obtain the mean daily
temperature (MDT) and mean precipitation (PCP) in the growing season of each site for the
period 2006–2015.

2.5. Statistical Analysis

Concentrations (average ± standard error) of the Epichloë alkaloids ergonovine, ergine and
peramine were calculated using SPSS (Version 24.0, Chicago, IL, USA). Regression analysis was
employed to assess the relationships between the elevation and ergot alkaloid and peramine
concentrations. The Pearson correlation coefficients were determined as a first assessment of the
relationship between elevation, MDT and PCP. Canonical correlation analysis (CCA) using SPSS 24.0
was used to further explore the relationship between these three measures of plant environment and
to examine their association with the observed concentrations of Epichloë alkaloids in the foliage of
the E. tangutorum host. CCA explores the relationship between two groups of variables, in this case
the concentration of ergonovine, ergine and peramine on the one hand, and the site environment
factors, elevation, mean daily temperature and mean precipitation, on the other hand. With three input
variables in each group, three canonical correlations with progressively decreasing information content
are available. Each of these canonical correlations is for a pair of canonical variates that are linear
functions of the alkaloid and environment variables, respectively, formed from canonical coefficients
identified in the CCA. Here we refer to the three canonical variates derived from the alkaloid data by
CCA as v1, v2, and v3; and the three canonical variates derived from the environment data as u1, u2,
and u3. Data were standardized prior to performing CCA.

3. Results

3.1. Climate Factors and Relationships with Elevation

The latitude, longitude and elevation of the 25 sampling sites, and the interpolated mean daily
temperature and mean precipitation are presented in Table 1. In general, across the sampling sites,
precipitation was lower in the east, while altitude was higher to the south. Within the elevation range of
the study (2100–3920 m), the mean daily temperature and mean precipitation ranged from 9.1–15.6 ◦C
and 182–471 mm, respectively. Not unexpectedly, mean daily temperature was significantly negatively
correlated with elevation (r = −0.715, p < 0.001), while precipitation displayed a marginally significant
positive correlation with elevation (r = 0.392, p = 0.053) (Table 2).

http://data.cma.cn
http://fennerschool.anu.edu.au/files/anusplin44.pdf
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Table 1. Co-ordinates of longitude and latitude, elevation and the interpolated growing season mean
daily temperature and mean precipitation (average ± standard error (SE)).

Site Longitude
(E)

Latitude
(N)

Elevation
(m)

Mean Daily
Temperature (◦C)

Mean Precipitation
(mm)

Gansu Minle 100◦49′58” 38◦25′50” 2313 13.9 ± 0.79 247 ± 40.70
Gansu Minle 100◦56′09” 38◦12′02” 2922 13.0 ± 0.95 256 ± 46.93
Gansu Sunan 99◦26′27” 38◦46′12” 2546 10.0 ± 0.38 225 ± 23.94
Gansu Sunan 99◦21′47” 38◦47′32” 2740 9.4 ± 0.32 269 ± 23.69
Gansu Sunan 99◦32′15” 38◦57′35” 2892 11.8 ± 0.97 186 ± 19.41
Gansu Sunan 99◦53′27” 38◦54′05” 2240 14.5 ± 0.77 182 ± 25.28

Qinghai Gonghe 100◦52′18” 36◦20′17” 3230 10.4 ± 0.49 339 ± 32.47
Qinghai Guide 101◦29′42” 36◦21′56” 3351 9.8 ± 0.51 342 ± 45.18

Qinghai Guinan 100◦56′03” 36◦53′58” 2842 11.0 ± 0.45 405 ± 37.88
Qinghai Guinan 101◦09′12” 35◦51′53” 3383 11.1 ± 0.56 362 ± 40.94
Qinghai Guinan 101◦13′43” 35◦44′36” 3392 10.9 ± 0.76 350 ± 46.79
Qinghai Guinan 101◦47′41” 35◦20′17” 3920 9.9 ± 0.40 387 ± 51.98

Qinghai Huangzhong 101◦53′17” 36◦56′01” 2384 10.8 ± 0.76 418 ± 43.16
Qinghai Maqin 100◦31′20” 34◦32′56” 3620 9.1 ± 0.35 471 ± 55.35

Qinghai Ping’an 102◦07′19” 36◦29′36” 2100 15.0 ± 0.85 366 ± 52.01
Qinghai Tongde 100◦43′38” 35◦35′42” 3125 10.7 ± 0.58 404 ± 46.04
Qinghai Tongren 102◦01′25” 35◦58′25” 2230 14.7 ± 0.83 350 ± 58.55
Qinghai Tongren 102◦04′01” 35◦56′31” 2416 15.3 ± 0.76 347 ± 56.09
Qinghai Tongren 102◦05′07” 35◦57′58” 2438 15.3 ± 0.76 347 ± 56.09
Qinghai Tongren 102◦03′28” 35◦33′47” 2462 14.6 ± 0.70 375 ± 50.30
Qinghai Tongren 102◦04′12” 35◦56′50” 2707 15.6 ± 0.99 278 ± 49.85
Qinghai Xinghai 101◦32′05” 35◦55′32” 2765 13.7 ± 0.50 354 ± 45.97
Qinghai Xinghai 100◦47′51” 35◦14′31” 3321 11.2 ± 0.59 418 ± 49.32

Qinghai Zeku 101◦55′44” 35◦32′33” 2876 11.0 ± 0.55 378 ± 52.14
Qinghai Zeku 101◦56′23” 35◦33′24” 3012 11.0 ± 0.55 378 ± 52.14

Table 2. Pearson correlation (R) between elevation and mean temperature and rainfall during the
growing season across the 25 sites in Figure 1.

Correlation of Elevation with R Significance, p

Mean daily temperature −0.715 <0.001
Mean precipitation 0.392 0.053

p denotes statistical significance of the correlations.

3.2. Alkaloid Concentration of E+ E. tangutorum

Ergonovine, ergine and peramine concentrations were determined for E+ E. tangutorum for the
25 sampling sites and arranged in order of ascending elevation (Figure 2; Table S1). The concentrations of
ergonovine, ergine and peramine alkaloid ranged from 0.47–0.84, 0.35–1.72, 9.18–13.00 µg·g−1, respectively.
The concentration of peramine was much higher than that of ergonovine and ergine alkaloids (Figure 2),
and peramine accounted for more than 84% of the total Epichloë alkaloid detected (Table 1).

3.3. The Relationship between Alkaloid Concentration and Elevation

Ergine concentrations were highest at mid altitudes (Figure 2b), while peramine concentration
was observed to decline with increasing elevation above 3000 m (Figure 2c). Both of these patterns
were found to be statistically significant on fitting of cubic regression curves across the elevational
series (r2

ergine = 0.482, p = 0.003; r2
peramine = 0.726, p < 0.001). The respective equations were:

Ergine concentration = (3.57281E − 10) × E3 - (4.03444E − 6) × E2 + 0.01407 × E − 14.29452 (1)

Peramine concentration = (−5.40925E − 10) × E3 + (2.78539E − 6) × E2
− 0.00334 × E + 11.67137 (2)
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where E is elevation.
In contrast, ergonovine concentration displayed no elevational trends (r2

ergonovine = 0.018,
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Figure 2. Elevational trends in the Epichloë alkaloid concentrations (average ± SE; the average number
of samples per site was 6) of Elymus tangutorum foliage collected from 25 different sites in Qinghai and
Gansu provinces: (a) ergonovine; (b) ergine; (c) peramine.

3.4. The Relationship between Alkaloid Concentration and Climatic Factors

When the data were submitted to CCA, the first two of the three available pairs of canonical
variates (designated here as Canonical 1 and Canonical 2) displayed statistically significant canonical
correlations (r = 0.690, p = 0.006; r = 0.603, p = 0.038, respectively), and between them explained 97.2%
of the data variation (Table 3). Hence, these first two canonical correlations are reported in the results
that follow and the third canonical correlation was discarded.

Table 3. Overview of canonical correlations between ergine, ergonovine and peramine concentrations
and climate variables.

Canonical Canonical Correlation Eigenvalue % Variance Explained # F (d.f.) * p

1 0.690 0.908 59.6/22.7 3.08 (9,46) 0.006
2 0.603 0.573 37.6/8.7 2.91 (4,40) 0.038
3 0.203 0.043 2.8/1.2 0.90 (1,21) 0.354

# The number on the left is the % of canonical variance as determined from the canonical eigenvalue; the number
on the right is the % of standardized variance of alkaloid variables explained by the canonical variates of the
environmental data. * d.f. denotes the numerator and denominator degrees of freedom, respectively, in brackets.
p denotes statistical probability of the canonical correlations.
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Inspection of the canonical coefficients (Table 4) and the correlations between the original variables
and their canonical variates (Table 5) shows that the first pair of canonical variates identifies a tendency
for all three alkaloids (but especially ergine and peramine) to be present at higher concentrations at
sites with lower elevation and precipitation (with correlations between the original data and canonical
variate of −0.696 and −0.527, respectively). Temperature is not involved in this relationship as the
correlation between mean daily temperature and the first climate canonical variate (designated u1
in Table 5) is only 0.034. Meanwhile, the second pair of canonical variates identifies a tendency for
peramine in particular (r = 0.604) to be present at higher concentrations at sites of lower elevation
(r = −0.710) with a higher mean daily temperature (r = 0.912).

Table 4. Canonical coefficients for derivation of canonical variates from standardized data.

Canonical 1 Canonical 2

v1 v2
Ergonovine 0.329 −0.539

Ergine 0.562 −0.637
Peramine 0.529 0.909

u1 u2
Elevation −1.256 −0.291

Mean daily temperature −0.948 0.825
Mean precipitation −0.300 0.437

The first two canonical variates of the alkaloid data are designated v1 and v2; the first two canonical variates of the
climate data are designated u1 and u2.

Table 5. Correlation coefficients between the original variables and their canonical variates (canonical loadings).

Canonical 1 Canonical 2

v1 v2
Ergonovine 0.375 −0.534

Ergine 0.814 −0.256
Peramine 0.793 0.604

u1 u2
Elevation −0.696 −0.710

Mean daily temperature 0.034 0.912
Mean precipitation −0.527 0.093

The first two canonical variates of the alkaloid data are designated v1 and v2; canonical variates of the climate data
are designated u1 and u2.

4. Discussion

The production of ergot alkaloids in a number of Epichloë-infected grass species, throughout
the world, is responsible for mammalian toxicoses [26]. In China, endophytic fungus-infected
drunken horse grass (Achnatherum inebrians) can produce ergonovine and ergine, which can lead to
livestock toxicity. The ergonovine and ergine concentrations in drunken horse grass can be as high
as 120–280 µg·g−1 and 45–170 µg·g−1, respectively [68]. In this study, the total ergonovine and ergine
alkaloid concentration was less than 2.30 µg·g−1 (Figure 2). In the QTP, the absence of toxicity to
livestock grazing on E. tangutorum may be due to the low level of ergot alkaloid production in the grass,
although the toxicity threshold of ergine and ergonovine remains undefined in the literature. In this
study, ergonovine, ergine and peramine were detected in Epichloë-infected E. tangutorum collected from
different elevations. Peramine concentration in endophyte-infected E. tangutorum was much higher
than that of ergonovine and ergine alkaloids (Figure 2, Table 1).

Superficially, ergine and peramine concentrations displayed a statistically significant arc-shaped
trajectory along the elevational gradient with the highest concentrations in E. tangutorum foliage
observed at mid-elevation and the lowest concentrations at higher elevation (p < 0.05) (Figure 2).
An elevation gradient involves associated changes in various climatic factors, especially temperature
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and moisture [69]. A highland cold climate prevails [64] in our sampling sites on the QTP, and the
mean daily temperature during the growing season ranged from 9.1–15.6, while the mean precipitation
ranged from 182–471 mm in the growing season (Table 1). These two climate factors were significantly
correlated to elevation (Table 2). Canonical correlation analysis was able to resolve the superficial
relationship between alkaloid concentration and elevation into two independent linear components that
together explain 97.2% of the canonical data variation, with 31.4% of the standardized variance in the
alkaloid data explained by the environment canonical variates (Tables 3–5). The first pair of canonical
variates linked the increased concentration of all three alkaloids to sites at lower elevation with lower
precipitation, independently of temperature. The second pair of canonical variates linked the increased
peramine concentration to sites at lower elevation with a higher mean daily temperature, independently
of precipitation. Many previous studies have examined the association between temperature and
precipitation (an index of plant water supply) and alkaloid production (for example, [53–62,70,71]).
In particular, the studies conducted by Repussard et al. [71] and Żurek et al. [62] were also carried out in
natural grassland areas. Repussard et al. [71] found that ergovaline concentration of endophyte-infected
Festuca arundinacea was positively correlated to cumulative temperature in the south of France. A similar
conclusion was found in our study, in that peramine concentration was positively correlated to mean
daily temperature. However, among the studies to date, there is no consensus as to the effects
of the environment on Epichloë alkaloid concentration in the host grass. Zhou et al. [61] analyzed
the relationship between temperature and the ergot alkaloid concentrations of Festuca sinensis and
showed that ergot alkaloids significantly increased as temperature decreased. Interestingly, McCulley
et al. [56] found ergot alkaloid concentration increased (by 30–40%) in Epichloë-infected tall fescue
(F. arundinacea) under higher temperature in transition zone pastures of the U.S., but loline alkaloid
concentration was not affected. Many studies have indicated that sufficiency of water is not conducive
to the production of alkaloids [54,59,60,62]. Żurek et al. [62] found that higher amounts of ergovaline
produced by endohyte-infected tall fescue were much more frequent in regions of lower summer
precipitation. Similar conclusions with regard to precipitation were also reached by Vazquez-de-Aldana
et al. [60], who suggested that lower ergovaline production can be linked to higher precipitation.
However, McCulley et al. [56] and Bourguignon et al. [53] concluded that precipitation had no effect
on alkaloid levels.

To resolve the conflicting conclusions of various studies cited above, we hypothesize that the
Epichloë-host relationship has evolved alkaloid concentration responses that maximize protection to the
host from biotic stressors such as insect predation and attack by pathogenic fungi, while minimizing
the metabolic cost of alkaloid production by limiting alkaloid synthesis when the plant is less exposed
to biotic stress. Under this hypothesis, the findings from the present study that more ergine and
peramine were produced at lower elevation sites with lower mean precipitation, and more peramine
was produced at lower elevation sites with higher mean daily temperature are intuitively sensible
and align with a number of the studies cited above. The results also indicate that future studies
could include the collection of data on fungal pathogen and insect predation loads with a view to
clarifying whether such factors are mechanisms by which climate factors influence Epichloë alkaloid
concentrations in the host grass. Also, factors such as the effect of winter cold at higher elevations on
the biotic stress load of the plant population could be assessed. Interestingly, a recent global analysis
found that insect herbivory is reduced with increasing elevation [72,73], which could, in turn, select for
reduced need for defense in high elevation plants [73]. Reduced insect herbivory might be a factor in
the decreased concentration of peramine in host plants at high elevation sites.

Previous studies have indicated that in addition to temperature and precipitation,
CO2 concentration is also an important factor affecting alkaloid concentration [58,74,75]. CO2 affects
alkaloid production by producing carbohydrates for plant growth and the synthesis of alkaloids [75].
Elevated CO2 reduces the concentrations of ergot alkaloid and loline produced by E+ tall fescue [74].
A similar result was found by Ryan et al. [58], where the alkaloid concentration of E+ tall fescue
decreased under elevated CO2. However, Hunt et al. [75] found that elevated CO2 had only a marginally
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positive effect on peramine and ergovaline production under high N conditions. Low air pressure is
one of the plant environment characteristics of the QTP [63], with the air pressure at 3500 m elevation
being approximately 70% of that at sea level. Carbon may be preferentially allocated to plant growth
due to the carbon limited biosynthesis (under ambient CO2) [75]. Therefore, reduced atmospheric
partial pressure of CO2 may be a possible explanation for the lower ergot alkaloid and peramine
concentrations at higher elevation in this study. The impact of CO2 concentration on ergot alkaloid
and peramine concentration at high elevation could be assessed in the future in studies specifically
designed for that purpose.

Beyond climate factors, soil nutrient status and symbiont genotype also have an influence on
alkaloid production, and regional genetic variation in the host grass or Epichloë endophyte may also be
responsible for alkaloid variation [75–78]. Further possible explanations for the different responses
of the three measured alkaloids to different combinations of elevation, mean daily temperature and
mean precipitation include differences in soil nutrient status, and genotype or genetic variation in the
Epichloë symbiont or the E. tangutorum host. While further exploration of these factors is obviously
highly relevant to building an improved understanding of the factors driving alkaloid production in
the Epichloë-Elymus symbiosis, the present study did not collect relevant data so these must remain as
points for future study.

To our knowledge, this is the first study to evaluate the elevational trends in alkaloid production
in the native cool-season grass, E. tangutorum, on the QTP. There are a number of factors that co-vary
with elevation in the QTP and cannot be easily disentangled. In this study, our main findings were
that ergine alkaloid and peramine concentrations in endophyte-infected E. tangutorum were highest at
mid-elevation and lowest at high elevation and that the peramine elevational trend in the QTP was
driven by mean daily temperature while the ergine elevational trend was driven by mean precipitation.
These results suggest that the different alkaloid profiles relate to different climate factors at the different
sites, and increased peramine at warmer sites may reflect greater insect challenge. Our study not
only addresses the knowledge gap relating to climate and elevation effects on alkaloid production
by Elymus-Epichloë in the QTP, but also provides a new understanding of the alkaloid production
of endophytic fungi under varying climatic conditions with different elevations in the QTP. Further
research to explore how other environment factors such as soil nutrient status impact on alkaloid
production by Epichloë symbionts could be worthwhile.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/11/1812/s1,
Table S1: Ergonovine, ergine and peramine concentrations within endophyte-infected Elymus tangutorum from
25 sites, expressed as a proportion (%) of the total Epichloë alkaloid detected. The sites are listed in order of
increasing elevation.
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