Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview
Abstract
:1. Introduction
2. Biofuels
2.1. Worldwide Scenario of Biofuel Production
2.2. Challenges to Biofuel Production
2.2.1. Policy Initiatives
2.2.2. Market Challenges
2.2.3. Social and Socio-Economic Issues
2.2.4. Sustainability
2.2.5. Biorefineries
2.3. Generations of Biofuels: A Brief Review
- First-generation. 1G biofuels are produced from specific parts (usually edible) of oil-based plants and starch and sugar crops. Initially, 1G biofuels showed a promising capability to reduce fossil fuel combustion and lower atmospheric levels of CO2, which is consumed by crops as they grow [39,40]. Ethanol represents the most common biofuel produced to date. Nowadays, 78% of biofuel’s total production contributed by bioethanol produced around 28 billion gallons per year from central corn in the U.S.A. and sugarcane in Brazil [38,41]. However, this generation’s biofuels increased production by raising questions due to its production-generating competition food production vs. fuels, arable lands, and biodiversity loss, in addition to being responsible for ecological degradation [37,42]. Studies have shown that biofuels obtained in this manner frequently do not contribute to greenhouse gas reduction, and they require a large amount of energy for their production [43].
- Second generation. 2G biofuels, known as “advanced biofuels,” overcome the problem of competition “food versus fuels” by using inedible raw materials, in addition the net carbon (emitted–consumed) from combusting second-generation biofuels is neutral or even negative [42]. Innovative processes producing 2G biofuels from non-food feedstocks sources of biomass included: residues produced by agricultural and food processing systems (discarded biomass), manure, used cooking oil, wood and sawdust to garbage, food waste, and energy crops [35,36,38,42].Among these sources, the lignocellulosic residues of crops would more likely to be the primary candidates for its abundance, wide availability throughout the world and at times of the year, and its low cost [1,41]. However, the structural heterogeneity in these residues’ composition requires more complex production processes, making 2G biofuels not industrially profitable [39,41,42].Today, the estimated production of 2G biofuels is around 0.4 billion liters/year, i.e., <0.4% of the overall ethanol production. IEA for advanced biofuels estimates a cellulosic ethanol production increase to 0.8 billion liters in 2023 [44].
- Third generation. According to the IEA definition, third-generation biofuels are bio-based fuels produced from aquatic feedstock (usually algae) [36]. Algae are a promising alternative feedstock due to their high lipid and carbohydrate contents, increased carbon dioxide absorption, and the possibility of cultivating wastewater and seawater. Unproductive drylands and marginal farmlands do not compete with food crops on arable land or in freshwater environments [36,38]. Another characteristic that makes algae interesting for biofuels is the low level of lignin. The growth rate is high [38,42] and the possible production of biodiesel, butanol, and methane ethanol. Some green algal species can photolyze mediated biohydrogen (H2) production [35,45].However, this type of biomass has disadvantages such as its high initial investment for its production. The biofuel produced from algae is less stable than that produced from other sources, mainly because the oil generated by the algae is highly unsaturated, which means it is more volatile at high temperatures, so it is more likely to degrade. Furthermore, the high water quantity is also a problem when lipids have to be extracted from the algal biomass, requiring dewatering via either centrifugation or filtration before extracting lipids [46].
- Fourth generation. These biofuels, which are still in the developmental stage, use bioengineered microorganisms as microalgae, yeast, fungi, and cyanobacteria. Genetically altered crops used to consume more CO2 from the environment than they emit. These microorganisms are used to produce different fuels, including ethanol, butanol, hydrogen, methane, vegetable oil, biodiesel, isoprene, gasoline, and jet fuel [39]. Fourth-generation biofuel research started in 2006, and significant results have not been published yet in peer-review journals [35]. Figure 1 shows the schematic representation of the integrated biorefinery for 1G to 4G.
2.4. Scale-Up
Bioprocessing Techniques
3. Consolidated Bioprocessing
3.1. Strategies for Development Ideal Consolidated Bioprocessing-Enabling Microorganisms
3.1.1. Native Strategy
3.1.2. Recombinant Strategy
3.2. Aspects of Consolidated Bioprocessing
3.2.1. Economic Viability of Consolidated Bioprocessing
3.2.2. Long Term Economics of Consolidated Bioprocessing
3.2.3. Consolidated Bioprocessing (CBP) and Some Case Studies
3.2.4. Physiochemical Conversion Routes in CBP with Pretreatment Process
3.2.5. Integrated Technologies Based on Hydrolysis for Biofuel (Ethanol) Production
Simultaneous Saccharification and Fermentation (SSnF)
Simultaneous Saccharification and Co-Fermentation (SSCF)
4. Concluding Remarks and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.; Saleem, M.; Khan, Z.; Watson, I.A. The use of crop residues for biofuel production. In Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D., Fortunati, E., Jain, S., Zhang, X., Eds.; Woodhead Publishing: Oxford, UK, 2019; pp. 369–395. [Google Scholar]
- Taghizadeh-Alisaraei, A.; Motevali, A.; Ghobadian, B. Ethanol production from date wastes: Adapted technologies, challenges, and global potential. Renew. Energy 2019, 143, 1094–1110. [Google Scholar] [CrossRef]
- Nargotra, P.; Sharma, V.; Bajaj, B.K. Consolidated bioprocessing of surfactant-assisted ionic liquid-pretreated Parthenium hysterophorus L. biomass for bioethanol production. Bioresour. Technol. 2019, 289, 121611. [Google Scholar] [CrossRef]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fari, M. The effect of bioenergy expansion: Food, energy, and environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, M.L.; Wicke, B.; Faaij, A.P.; Van Der Hilst, F. Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods. Renew. Sustain. Energy Rev. 2019, 115, 109352. [Google Scholar] [CrossRef]
- Rajarathinam, R.; Rajarathinam, R.; Kanagaraj, L.P.; Ranganathan, R.V.; Dhanasekaran, K.; Manickam, N.K. Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag. 2019, 87, 368–374. [Google Scholar]
- Carrillo-Nieves, D.; Alanís, M.J.R.; Quiroz, R.D.L.C.; Ruiz, H.A.; Iqbal, H.M.N.; Parra, R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energy Rev. 2019, 102, 63–74. [Google Scholar] [CrossRef]
- Debnath, D.; Giner, C. Interaction between biofuels and agricultural markets. In Biofuels, Bioenergy and Food Security; Debnath, D., Babu, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 61–76. [Google Scholar]
- Antonopoulou, G.; Kampranis, A.; Ntaikou, I.; Lyberatos, G. Enhancement of liquid and gaseous biofuels production from agro-industrial residues after thermochemical and enzymatic pretreatment. Front. Sustain. Food Syst. 2019, 3, 92. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, B.; Feng, Y.; Cui, Q. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 2020, 40, 107535. [Google Scholar] [CrossRef]
- Go, A.W.; Conag, A.T.; Igdon, R.M.B.; Toledo, A.S.; Malila, J.S. Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energy Strat. Rev. 2019, 23, 100–113. [Google Scholar] [CrossRef]
- Bernal-Lugo, I.; Jacinto-Hernandez, C.; Gimeno, M.; Montiel, C.C.; Rivero-Cruz, F.; and Velasco, O. Highly efficient single-step pretreatment to remove lignin and hemicellulose from softwood. BioResources 2019, 14, 3567–3577. [Google Scholar]
- Yan, Q.; Fong, S.S. Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing. Front. Microbiol. 2017, 8, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brethauer, S.; Studer, M.H. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ. Sci. 2014, 7, 1446. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Singh, A.; Korres, N.E.; Rathore, D.; Sevda, S.; Pant, D. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 2020, 303, 122964. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Caspeta, L.; Caro-Bermúdez, M.A.; Ponce-Noyola, T.; Martinez, A. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl. Energy 2014, 113, 277–286. [Google Scholar] [CrossRef]
- Collier, Z.A.; Connelly, E.B.; Polmateer, T.L.; Lambert, J.H. Value chain for next-generation biofuels: resilience and sustainability of the product life cycle. Environ. Syst. Decis. 2016, 37, 22–33. [Google Scholar] [CrossRef]
- Birur, D.; Chapagain, A.; Devadoss, S.; Krishna, P. Assessing sustainability of biofuels production in china. In Proceedings of the 19th Annual Conference on Global Economic Analysis, Washington, DC, USA, 15–17 June 2016. [Google Scholar]
- Lara-Flores, A.A.; Araújo, R.G.; Rodríguez-Jasso, R.M.; Aguedo, M.; Aguilar, C.N.; Trajano, H.L.; Ruiz, H.A. Bioeconomy and biorefinery: Valorization of hemicellulose from lignocellulosic biomass and potential use of avocado residues as a promising resource of bioproducts. In Waste to Wealth; Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R., Eds.; Springer: Singapore, 2018; pp. 141–170. [Google Scholar]
- Morais, A.R.; Bogel-Lukasik, R. Green chemistry and the biorefinery concept. Sustain. Chem. Process. 2013, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Dalvand, K.; Rubin, J.; Gunukula, S.; Wheeler, M.C.; Hunt, G. Economics of biofuels: Market potential of furfural and its derivatives. Biomass Bioenergy 2018, 115, 56–63. [Google Scholar] [CrossRef]
- Singh, A.; Adsul, M.; Vaishnav, N.; Mathur, A.; Singhania, R.R. Improved cellulase production by Penicillium janthinellum mutant. Indian J. Exp. Biol. 2017, 55, 436–440. [Google Scholar]
- Singh, A.; Jasso, R.M.R.; Gonzalez-Gloria, K.D.; Rosales, M.; Cerda, R.B.; Aguilar, C.N.; Singhania, R.R.; Ruiz, H.A. The enzyme biorefinery platform for advanced biofuels production. Bioresour. Technol. Rep. 2019, 7, 100257. [Google Scholar] [CrossRef]
- Khajeeram, S.; Unrean, P. Techno-economic assessment of high-solid simultaneous saccharification and fermentation and economic impacts of yeast consortium and on-site enzyme production technologies. Energy 2017, 122, 194–203. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Romero-García, J.M.; Martínez-Patiño, J.C.; Ruiz-Ramos, E.; Castro-Galiano, E.; Cardona, C.A. Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renew. Sustain. Energy Rev. 2019, 107, 587–601. [Google Scholar] [CrossRef]
- Avramović, J.; Veličković, A.; Veljković, V. Challenges in biodiesel industry: Socio-economic, occupational health, and policy issues. Saf. Eng. 2018, 8, 79–83. [Google Scholar] [CrossRef]
- Baudry, G.; Delrue, F.; Legrand, J.; Pruvost, J.; Vallée, T. The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case. Renew. Sustain. Energy Rev. 2017, 69, 933–947. [Google Scholar] [CrossRef]
- Stephen, J.L.; Periyasamy, B. Innovative developments in biofuels production from organic waste materials: A review. Fuel 2018, 214, 623–633. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Cherubini, F.; Mandl, M.; Philips, C.; Wellisch, M.; Jørgensen, H.; Skiadas IV, B.L.; Dohy, M.; Pouet, J.C.; Wilke, T.; Walsh, P.; et al. IEA bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. In IEA Bioenergy Task; IEA Bioenergy: Copenhagen, Denmark, 2007; pp. 1–37. [Google Scholar]
- Aguilar-Reynosa, A.; Romaní, A.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Garrote, G.; Ruiz, H.A. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 2017, 243, 273–283. [Google Scholar] [CrossRef]
- Maity, S.K. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 2015, 43, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Hossain, A.; Roy, S. An overview on biofuels and their advantages and disadvantages. Asian J. Chem. 2019, 31, 1851–1858. [Google Scholar] [CrossRef]
- Saladini, F.; Patrizi, N.; Pulselli, F.M.; Marchettini, N.; Bastianoni, S. Guidelines for emergy evaluation of first, second and third generation biofuels. Renew. Sustain. Energy Rev. 2016, 66, 221–227. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Jambo, S.A.; Abdulla, R.; Azhar, S.H.M.; Marbawi, H.; Gansau, J.A.; Ravindra, P. A review on third generation bioethanol feedstock. Renew. Sustain. Energy Rev. 2016, 65, 756–769. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A. Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar] [CrossRef]
- Zentou, H.; Rosli, N.S.; Wen, C.H.; Abdul Azeez, K.; Gomes, C. The viability of biofuels in developing countries: Successes, failures, and challenges. Iran. J. Chem. Chem. Eng. 2019, 38, 173–182. [Google Scholar]
- Boboescu, I.Z.; Chemarin, F.; Beigbeder, J.B.; De Vasconcelos, B.R.; Munirathinam, R.; Ghislain, T.; Lavoie, J.M. Making next-generation biofuels and biocommodities a feasible reality. Curr. Opin. Green Sustain. Chem. 2019, 20, 25–32. [Google Scholar] [CrossRef]
- Chowdhury, H.; Loganathan, B. Third-generation biofuels from microalgae: A review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Łuczyński, M.; Załuski, D.; Szczukowski, S.; Tworkowski, J.; Gołaszewski, J. Lignocellulosic biomass from short rotation woody crops as a feedstock for second-generation bioethanol production. Ind. Crop. Prod. 2015, 75, 66–75. [Google Scholar] [CrossRef]
- Sydney, E.B.; Letti, L.A.J.; Karp, S.G.; Sydney, A.C.N.; Vandenberghe, L.P.D.S.; De Carvalho, J.C.; Woiciechowski, A.L.; Medeiros, A.B.P.; Soccol, V.T.; Soccol, C.R. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour. Technol. Rep. 2019, 7, 100234. [Google Scholar] [CrossRef]
- Khan, S.; Fu, P. Biotechnological perspectives on algae: A viable option for next generation biofuels. Curr. Opin. Biotechnol. 2020, 62, 146–152. [Google Scholar] [CrossRef]
- Lee, R.A.; Lavoie, J.M. From first to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Singh, P. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 2013, 3, 597–611. [Google Scholar]
- Palmqvist, B.; Kadić, A.; Hägglund, K.; Petersson, A.; Lidén, G. Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: The effects of reactor flow conditions. Biomass Convers. Biorefinery 2015, 6, 173–180. [Google Scholar] [CrossRef]
- Saini, R.; Saini, J.K.; Adsul, M.; Patel, A.K.; Mathur, A.; Tuli, D.; Singhania, R.R. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour. Technol. 2015, 188, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bedade, D.K.; Singhal, R.S.; Turunen, O.; Deska, J.; Shamekh, S. Biochemical characterization of extracellular cellulase from tuber maculatum mycelium produced under submerged fermentation. Appl. Biochem. Biotechnol. 2016, 181, 772–783. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 2016, 86, 656–669. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym. Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Leite, P.; Salgado, J.M.; Venâncio, A.; Domínguez, J.M.; Belo, I. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour. Technol. 2016, 214, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.K.; Khoo, C.G.; Lee, K.T. Scale-up and commercialization of algal cultivation and biofuels production. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 475–506. [Google Scholar]
- Jouzani, G.S.; Taherzadeh, M.J. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: A comprehensive review. Biofuel Res. J. 2015, 2, 152–195. [Google Scholar] [CrossRef]
- Olson, D.G.; E McBride, J.; Shaw, A.J.; Lynd, L.R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 2012, 23, 396–405. [Google Scholar] [CrossRef]
- Zuroff, T.R.; Xiques, S.B.; Curtis, W.R. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels 2013, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int. J. Hydrog. Energy 2019, 44, 14362–14379. [Google Scholar] [CrossRef]
- Liu, J.; Shi, P.; Ahmad, S.; Yin, C.; Liu, X.; Liu, Y.; Zhang, H.; Xu, Q.; Yan, H.; Li, Q.X. Co-culture of Bacillus coagulans and Candida utilis efficiently treats Lactobacillus fermentation wastewater. AMB Express 2019, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.C.; Paulson, S.D.; Carlson, R.P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 2012, 157, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z. Consolidated bioprocessing for ethanol production. In Biorefineries; Qureshi, N., Hodge, D.B., Vertès, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 141–160. [Google Scholar]
- Ábrego, U.; Chen, Z.; Wan, C. Consolidated bioprocessing systems for cellulosic biofuel production. In Advances in Bioenergy; Li, Y., Ge, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 143–182. [Google Scholar]
- Hasunuma, T.; Kondo, A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process. Biochem. 2012, 47, 1287–1294. [Google Scholar] [CrossRef]
- Chinn, M.S.; Mbaneme, V. Consolidated bioprocessing for biofuel production: Recent advances. Energy Emiss. Control Technol. 2015, 3, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Devarapalli, M.; Atiyeh, H.K. A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res. J. 2015, 2, 268–280. [Google Scholar] [CrossRef]
- Olguin-Maciel, E.; Larqué-Saavedra, A.; Lappe-Oliveras, P.E.; Barahona-Pérez, L.F.; Alzate-Gaviria, L.; Chablé-Villacis, R.; Maldonado, J.A.D.; Pacheco-Catalán, D.; Ruiz, H.A.; Tapia-Tussell, R. Consolidated bioprocess for bioethanol production from raw flour of brosimum alicastrum seeds using the native strain of trametes hirsuta Bm-2. Microorganisms 2019, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Raftery, J.P.; Karim, M.N. Economic viability of consolidated bioprocessing utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol production. Biomass Bioenergy 2017, 103, 35–46. [Google Scholar] [CrossRef]
- Saldarriaga-Hernandez, S.; Hernandez-Vargas, G.; Iqbal, H.M.; Barceló, D.; Parra-Saldívar, R. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci. Total Environ. 2020, 715, 136978. [Google Scholar] [CrossRef]
- Parisutham, V.; Kim, T.H.; Lee, S.K. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour. Technol. 2014, 161, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.J.; Feng, Y.; Li, B.; Cui, Q. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization. Biotechnol. Biofuels 2019, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Farinas, C.S.; Vitcosque, G.L.; Fonseca, R.F.; Neto, V.B.; Couri, S. Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind. Crops Prod. 2011, 34, 1186–1192. [Google Scholar] [CrossRef]
- Lynd, L.R.; Van Zyl, W.H.; E McBride, J.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef]
- Okamoto, K.; Uchii, A.; Kanawaku, R.; Yanase, H. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Althuri, A.; Mohan, S.V. Sequential and consolidated bioprocessing of biogenic municipal solid waste: A strategic pairing of thermophilic anaerobe and mesophilic microaerobe for ethanol production. Bioresour. Technol. 2020, 308, 123260. [Google Scholar] [CrossRef]
- Amoah, J.; Ishizue, N.; Ishizaki, M.; Yasuda, M.; Takahashi, K.; Ninomiya, K.; Yamada, R.; Kondo, A.; Ogino, C. Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse. Bioresour. Technol. 2017, 245, 1413–1420. [Google Scholar] [CrossRef]
- Althuri, A.; Gujjala, L.K.S.; Banerjee, R. Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production. Bioresour. Technol. 2017, 245, 530–539. [Google Scholar] [CrossRef]
- Cunha, J.T.; Romaní, A.; Inokuma, K.; Johansson, B.; Hasunuma, T.; Kondo, A.; Domingues, L. Consolidated bioprocessing of corn cob-derived hemicellulose: Engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnol. Biofuels 2020, 13, 1–15. [Google Scholar] [CrossRef]
- Singh, N.; Mathur, A.S.; Tuli, D.K.; Gupta, R.P.; Barrow, C.J.; Puri, M. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Mathur, A.S.; Gupta, R.P.; Barrow, C.J.; Tuli, D.; Puri, M. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Bioresour. Technol. 2018, 250, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Vaid, S.; Nargotra, P.; Bajaj, B.K. Consolidated bioprocessing for biofuel-ethanol production from pine needle biomass. Environ. Prog. Sustain. Energy 2017, 37, 546–552. [Google Scholar] [CrossRef]
- Lu, J.; Lv, Y.; Jiang, Y.; Wu, M.; Xu, B.; Zhang, W.; Zhou, J.; Dong, W.; Xin, F.; Jiang, M. Consolidated bioprocessing of hemicellulose enriched lignocellulose to succinic acid through a microbial co-cultivation system. Authorea 2019, 8, 9035–9045. [Google Scholar]
- Froese, A.G.; Nguyen, T.N.; Ayele, B.T.; Sparling, R. Digestibility of wheat and cattail biomass using a co-culture of thermophilic anaerobes for consolidated bioprocessing. BioEnergy Res. 2020, 13, 325–333. [Google Scholar] [CrossRef]
- Morales-Martínez, T.K.; Medina-Morales, M.A.; Ortíz-Cruz, A.L.; La Garza, J.A.R.-D.; Moreno-Dávila, I.; López-Badillo, C.M.; Rios-González, L.J. Consolidated bioprocessing of hydrogen production from agave biomass by Clostridium acetobutylicum and bovine ruminal fluid. Int. J. Hydrogen Energy 2020, 45, 13707–13716. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Conrad, M.; Sun, S.L.; Sanchez, A.; Rocha, G.J.; Romaní, A.; Castro, E.; Torres, A.; Rodríguez-Jasso, R.M.; Andrade, L.P.; et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 2020, 299, 122685. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew. Sustain. Energy Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.A.; Thomsen, M.H.; Trajano, H.L. Hydrothermal Processing in Biorefineries, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yao, K.; Wu, Q.; An, R.; Meng, W.; Ding, M.; Li, B.-Z.; Yuan, Y. Hydrothermal pretreatment for deconstruction of plant cell wall: Part I. Effect on lignin-carbohydrate complex. AIChE J. 2018, 64, 1938–1953. [Google Scholar] [CrossRef]
- Canilha, L.; Chandel, A.K.; Milessi, T.S.D.S.; Antunes, F.A.F.; Freitas, W.L.D.C.; Felipe, M.D.G.A.; Da Silva, S.S. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J. Biomed. Biotechnol. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Dahnum, D.; Tasum, S.O.; Triwahyuni, E.; Nurdin, M.; Abimanyu, H. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 2015, 68, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.; Fell, J.W.; Boekhout, T. The Yeasts. A Taxonomic Study, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Bhatia, L.; Johri, S. Optimization of simultaneous saccharification and fermentation parameters for sustainable ethanol production from sugarcane bagasse by pachysolen tannophilus MTCC 1077. Sugar Tech. 2015, 18, 457–467. [Google Scholar] [CrossRef]
- Koppram, R.; Nielsen, F.; Albers, E.; Lambert, A.; Wännström, S.; Welin, L.; Zacchi, G.; Olsson, L. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol. Biofuels 2013, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Advantages of CBP | Disadvantages of CBP |
---|---|
|
|
Microorganism | Substrate | Enzyme | Operational Conditions | Reference |
---|---|---|---|---|
S. cerevisiae MT8-1 | Laubholz unbleached kraft pulp and ionic liquid pre- treated bagasse | Cellulolytic enzymes | Incubation time 72–96 h | [76] |
Saccharomyces cerevisiae | Ricinus communis and Saccharum spontaneum and top portions of Saccharum officinarum | Laccase, Holo-cellulase | Substrate loading-10% to 30% (v/v), incubation time (12–24 h), temperature 30–37 °C. | [77] |
Thermophilic bacterium Clostridium sp. DBT-IOC-C19 | Rice straw, crystalline cellulose | Cellulosomes | Temperature 55 to 65 °C, pH-7 to 8, time-96 h | [79] |
C. thermocellum strain ATCC 31,924, | Cellulose | Cellulosomes | pH-8, temperature-55 °C, inoculum size 4% (v/v) & 0.5% (w/v) substrate concentration | [80] |
B. subtilis G2, S. cerevisiae and P. stipitis. | Pine needle biomass | Cellulase, Xylanase | pH-5.6, inoculum size-1.5% (v/v), temperature-30–37 °C, incubation time 24–72 h | [81] |
Thermoanaerobacterium thermosaccharolyticum M5 & Actinobacillus succinogenes 130Z | Corn cob | Xylanase & β-Xylosidase | Temp-55 °C & 37 °C, pH-6 to 7, incubation time-24 h to 48 h | [82] |
CBP thermophile, Clostridiumthermocellum ATCC-27405 with mesophilic microaerobe, Pichia stipitis NCIM-3498 | Biogenic municipal solid waste (BMSW) | Xylanase | Temp (45–70°C), initial pH (6–8), inoculum volume (4–12% v/v), pretreated BMSW Loading (10–80 g/L cellulose equivalent) | [75] |
Clostridiumthermocellum, C. stercorarium, and Thermoanaerobacter thermohydrosulfuricus | cattail (Typha spp.) and wheat straw | Cellulase & Hemicellulase | 10% (v/v, monoculture), 5/5% (v/v, dual cultures), or 3.3/3.3/3.3% (v/v, tri-culture), temp-45 °C, incubation-4 days | [83] |
Clostridium acetobutylicum | Agave biomass | Enzymatic commercial complex Cellic CTec3® Novozymes (Bagsvaerd, Denmark) | 10% solid loading, pH-5.5, temp-35 °C, incubation-264 | [84] |
Industrial S. cerevisiae strains | Corn cob | Hemicellulolytic enzymes | pH-5, temp-35 °C, incubation time-48 h | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olguin-Maciel, E.; Singh, A.; Chable-Villacis, R.; Tapia-Tussell, R.; Ruiz, H.A. Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy 2020, 10, 1834. https://doi.org/10.3390/agronomy10111834
Olguin-Maciel E, Singh A, Chable-Villacis R, Tapia-Tussell R, Ruiz HA. Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy. 2020; 10(11):1834. https://doi.org/10.3390/agronomy10111834
Chicago/Turabian StyleOlguin-Maciel, Edgar, Anusuiya Singh, Rubi Chable-Villacis, Raul Tapia-Tussell, and Héctor A. Ruiz. 2020. "Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview" Agronomy 10, no. 11: 1834. https://doi.org/10.3390/agronomy10111834
APA StyleOlguin-Maciel, E., Singh, A., Chable-Villacis, R., Tapia-Tussell, R., & Ruiz, H. A. (2020). Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy, 10(11), 1834. https://doi.org/10.3390/agronomy10111834