Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Characteristics, Experimental Design and Agronomic Practices
2.2. Estimation of Weed Infestation
2.3. Estimation of Diseases Infestation
2.4. Wheat Canopy and Yield Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Łączyński, A. Land Use and Sown Area in 2018; Central Statistical Office: Warsaw, Poland, 2019; p. 74. Available online: http://www.stat.gov.pl (accessed on 20 May 2020).
- Food and Agriculture Organization of the United Nations. Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 May 2020).
- Vijaya Bhaskara, A.V.; Daviesa, W.P.; Cannona, N.D.; Conwaya, J.S. Organic wheat performance following conventional and non-inversion tillage systems. Biol. Agric. Hortic. 2013, 29, 236–243. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Jończyk, K. Weed suppression and yield of thirteen spring wheat (Triticum aestivum L.) varieties grown in an organic system. Acta Agrobot. 2017, 70, 1675. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Jończyk, K.; Stalenga, J. Assessment of the usefulness of new winter wheat varieties (Triticum aestivum L.) for cultivation in organic farming. J. Res. Appl. Agric. Eng. 2018, 63, 43–49. [Google Scholar]
- Feledyn-Szewczyk, B.; Kuś, J.; Jończyk, K.; Stalenga, J. The suitability of different winter and spring wheat varieties for cultivation in organic farming. In Organic Agriculture towards Sustainability; Pilipavicius, V., Ed.; InTech: Rijeka, Croatia, 2014; Volume 9, pp. 197–225. [Google Scholar]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Świeca, M.; Miś, A.; Różyło, R.; Jończyk, K. Physicochemical properties and milling characteristics of spring wheat from different farming systems. J. Agric. Sci. Technol. 2017, 19, 1253–1266. [Google Scholar]
- Cacak-Pietrzak, C.; Ceglińska, A.; Jończyk, K. Value of baking flour wheat variety with grain grown the organic system of production. Zesz. Probl. Postepow Nauk Rol. 2014, 576, 23–32. (In Polish) [Google Scholar]
- Hoad, S.; Topp, C.; Davies, K. Selection of cereals for weed suppression in organic agriculture: A method based on cultivar sensitivity to weed growth. Euphytica 2008, 163, 355–366. [Google Scholar] [CrossRef]
- Przystalski, M.; Osman, A.; Thiemt, E.M.; Rolland, B.; Ericsson, L.; Østergård, H.; Levy, L.; Wolfe, M.; Büschse, A.; Piepho, H.P.; et al. Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 2008, 163, 417–433. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; van Lamberts Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Van Bueren, E.L.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Tamm, I.; Tamm, Ü.; Ingver, A. Spring cereals performance in organic and conventional cultivation. Agron. Res. 2009, 7, 522–527. [Google Scholar]
- Wiebe, L.; Entz, M.H. Organic selection may improve yield efficiency in spring wheat: A preliminary analysis. Can. J. Plant Sci. 2017, 97, 298–307. [Google Scholar] [CrossRef]
- Carr, P.M.; Kandel, H.J.; Porter, P.M.; Horsley, R.D.; Zwinger, S.F. Wheat cultivar performance on certified organic fields in Minnesota and North Dakota. Crop Sci. 2006, 46, 1963–1971. [Google Scholar] [CrossRef] [Green Version]
- Kronberga, A. Selection criteria in triticale breeding for organic farming. Agron. Vestis (Latv. J. Agron.) 2008, 11, 89–94. [Google Scholar]
- Kronberga, A. Formation of triticale crop ideotype for organic farming. In Cereal Science and Technology for Feeding Ten Billion People: Genomics era and Beyond; Molina-Cano, J.L., Chistou, P., Graner, A., Hammer, K., Jouve, N., Keller, B., Lasa, J.M., Powell, W., Royo, C., Shewry, P., Eds.; CIHEAM: Zaragoza, Spain; IRTA: Zaragoza, Spain, 2008; pp. 391–393. [Google Scholar]
- Gońda-Skawińska, M.; Cacak-Pietrzak, G.; Jończyk, K. Estimation of possibility of use of flour from grain of common wheat winter cultivars from organic farming as raw material for pasta production. Acta Agroph. 2020, 27, 17–29. [Google Scholar] [CrossRef]
- Didon, U.M.E. Variation between barley cultivars in early response to weed competition. J. Agron. Crop Sci. 2002, 188, 176–184. [Google Scholar] [CrossRef]
- Bertholdsson, N.O. Early vigour and allelopathy—Two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res. 2005, 45, 94–102. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; Blackshaw, R.E.; Harker, K.N.; Clayton, G.W.; McKenzie, R. Variable plant establishment contributes to differences in competitiveness with wild oat among wheat and barley varieties. Can. J. Plant Sci. 2005, 85, 771–776. [Google Scholar] [CrossRef]
- Liatukas, Ž.; Leistrumite, A. Selection of winter wheat for organic growing. Agron. Res. 2009, 7, 381–386. [Google Scholar]
- Feledyn-Szewczyk, B. The influence of morphological features of spelt wheat (Triticum aestivum ssp. spelta) and common wheat (Triticum aestivum ssp. vulgare) varieties on the competitiveness against weeds in organic farming system. JFAE 2013, 11, 416–421. [Google Scholar]
- Feledyn-Szewczyk, B.; Jończyk, K. Assessment of the suitability of oat varieties (Avena sativa L.) for cultivation in organic system. J. Res. Appl. Agric. Eng. 2016, 61, 82–87. [Google Scholar]
- Feledyn-Szewczyk, B.; Jończyk, K. Differences between organically grown varieties of spring wheat, in response to weed competition and yield. J. Plant Prot. Res. 2015, 55, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy 2020, 10, 1144. [Google Scholar] [CrossRef]
- Kuś, J.; Mróz, A.; Jończyk, K. Intensity of fungal diseases of selected varieties of winter wheat cultivated in the organic crop production systems. J. Res. Appl. Agric. Eng. 2006, 51, 88–93. (In Polish) [Google Scholar]
- Wróbel, E.; Jabłoński, H. Effect of fungal diseases control methods on winter triticale yield. Acta Sci. Pol. Agric. 2004, 3, 55–61. (In Polish) [Google Scholar]
- Czajkowski, G.; Czembor, P. Pathogenicity of Blumeria graminis f. sp. tritici and Blumeria graminis f. sp. triticale the causal agents of wheat and triticale powdery mildew. Prog. Plant Prot. 2016, 56, 360–365. (In Polish) [Google Scholar] [CrossRef]
- EU Common Catalogue of Varieties of Agricultural Plant Species. Consolidated Version, 20.09.2019. 2019. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/plant_variety_catalogues_agricultural-plant-species.pdf (accessed on 28 May 2020).
- Council Regulation (EC) No 834/2007 of 28th June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=EN> (accessed on 28 May 2020).
- Tottman, D.R.; Broad, H. The decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 1987, 110, 441–454. [Google Scholar] [CrossRef]
- Rutkowski, L. Key to Identification of Vascular Plants in Lowland Poland; PWN: Warsaw, Poland, 2007; p. 822. [Google Scholar]
- EPPO Standards. Guidelines for the Efficacy Evaluation of Plant Protection Products: PP 1/26, PP 1/28; EPPO: Paris, France, 1999; Volume 1, pp. 187–195.
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO; Cambridge University Press: Cambridge, UK, 2003; 269p. [Google Scholar]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002; 55p. [Google Scholar]
- Finney, D.M.; Creamer, N.G. Weed Management on Organic Farms; The Organic Production Publication Series; Center for Environmental Farming Systems (CEFS), North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2008; pp. 1–34.
- Rasmussen, K.; Rasmussen, J. Barley seed vigour and mechanical weed control. Weed Res. 2000, 40, 219–230. [Google Scholar] [CrossRef]
- Baresel, J.P.; Zimmermann, G.; Reents, H.J. Effects of genotype and environment on N uptake and N partition in organically grown winter wheat (Triticum aestivum L.) in Germany. Euphytica 2008, 163, 347–354. [Google Scholar] [CrossRef]
- Barberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Mason, H.; Goonewardene, L.; Spaner, D. Competitive traits and the stability of wheat cultivars in differing natural weed environments on the northern Canadian Prairies. J. Agric. Sci. 2008, 146, 21–33. [Google Scholar] [CrossRef]
- Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; van Lammerts Bueren, E.T. Adapting spring wheat breeding to the needs of the organic sector. NJAS 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Worthington, M.; Reberg-Horton, C. Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. J. Chem. Ecol. 2013, 39, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombers, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Orchard, B. Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res. 2001, 41, 197–209. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Gill, G.S. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Aust. J. Agric. Res. 2004, 55, 855–861. [Google Scholar] [CrossRef]
- Frieben, B.; Köpke, U. Effect of farming systems on biodiversity. In Biodiversity and Land Use: The Role of Organic Farming, Proceedings of the First ENOF Workshop, Bonn, Germany, 8–9 December 1995; Isart, J., Llerenea, J.J., Eds.; Rheinische Friedrich-Wilhelms-Universität in Bonn: Bonn, Germany, 1995; pp. 11–21. [Google Scholar]
- Kuś, J.; Jończyk, K.; Stalenga, J.; Feledyn-Szewczyk, B.; Mróz, A. Yields of the selected winter wheat varieties cultivated in organic and conventional crop production systems. J. Res. Appl. Agric. Eng. 2011, 56, 18–23. (In Polish) [Google Scholar]
- Tyburski, J.; Rychcik, B. Weed infestation of winter wheat in conventional and organic farm on Elk Lake. District. Pam. Puł. 2007, 145, 233–241. (In Polish) [Google Scholar]
- Feledyn-Szewczyk, B. The effectiveness of weed regulation methods in spring wheat cultivated in integrated, conventional and organic crop production systems. J. Plant Prot. Res. 2012, 52, 486–493. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Feledyn-Szewczyk, B. Biodiversity of weeds and soil seed bank in organic and conventional farming systems. Res. Rural Dev. 2018, 2, 12–19. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Staniak, M.; Feledyn-Szewczyk, B.; Kocira, A.; Stalenga, J. Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals. Agriculture 2020, 10, 413. [Google Scholar] [CrossRef]
- Kapeluszny, J. Formation of the yield and field structure of spring barley and spring wheat depending on the degree of weed infestation. In Proceedings of the XVII National Conference on Causes and Sources of Weed Infestation in Arable Fields; Agricultural and Technical Academy, Publ.: Olsztyn-Bęsia, Poland, 1994; pp. 95–100. (In Polish). [Google Scholar]
- Fernandez, M.R.; Fox, S.L.; Hucl, P.; Singh, A.K. Leaf spotting reaction of spring common, durum and spelt wheat, and Kamut under organic management in western Canada. Can. J. Plant Sci. 2014, 94, 929–935. [Google Scholar] [CrossRef]
- Gosme, M.; de Villemandy, M.; Bazot, M.; Jeuffroy, M.-H. Local and neighbourhood effects of organic and conventional wheat management on aphids, weeds, and foliar diseases. Agric. Ecosys. Environ. 2012, 161, 121–129. [Google Scholar] [CrossRef]
- Koziara, W.; Panasiewicz, K.; Sulewska, H.; Sobieszczański, R. Effect of selected factors on yield and seed value of winter triticale var. Gniewko. Fragm. Agron. 2015, 32, 73–81. (In Polish) [Google Scholar]
Items | Experimental Organic Farms in Poland | ||
---|---|---|---|
Osiny | Chwałowice | Chomentowo | |
Province | Lublin | Masovian | Podlasie |
Type of organic farms | Experimental Station of the Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB) | Organic farm of Agricultural Advisory Centre in Radom, cooperating with IUNG-PIB | Individual organic farm cooperating with IUNG-PIB |
Soil type | Luvisol | Cambisol | leached Cambisol |
Texture | loamy sand | silt loam | silt on sandy loam |
pHKCl | 5.9 | 6.2 | 6.6 |
Soil abundance: | |||
humus (%) | 1.4 | 1.7 | 1.6 |
P2O5 (mg·100 g−1 soil) | 8.6 | 23.4 | 6.4 |
K2O (mg·100 g−1 soil) | 10.0 | 22.3 | 4.3 |
Mg (mg·100 g−1 soil) | 9.1 | 13.1 | 13.6 |
Forecrop | potato | potato | clover + grasses |
Variety | Yield (t·ha−1) | Crop Density (Plants·m2) | 1000 Grain Weight (TGW) (g) | Number of Weeds (Plants·m2) | Weed Dry Matter (g·m−2) | Infestation by Diseases (% Infested Leaves Area) |
---|---|---|---|---|---|---|
Arabella | 4.05 de 1 | 398 abc | 35.0 ab | 94 a | 31.4 a | 44.9 abcd |
Brawura | 3.80 abcde | 413 c | 34.7 ab | 104 a | 33.5 a | 57.1 cd |
Cytra | 3.60 abcd | 379 abc | 34.8 ab | 84 a | 28.7 a | 35.4 abc |
Ethos | 3.51 abc | 353 a | 33.6 a | 117 a | 39.4 a | 25.3 a |
Izera | 3.37 a | 388 abc | 33.5 a | 101 a | 34.2 a | 56.5 cd |
KWS Torridon | 4.10 e | 383 abc | 37.0 cde | 97 a | 34.0 a | 28.8 ab |
Kandela | 4.10 e | 389 abc | 35.7 bcde | 103 a | 34.0 a | 34.0 abc |
Katoda | 3.80 abcde | 377 abc | 37.6 e | 99 a | 32.3 a | 53.7 cd |
Koksa | 3.48 abc | 369 abc | 35.1 abc | 96 a | 29.2 a | 54.3 cd |
Korynta | 3.70 abcde | 362 ab | 35.5 abcd | 100 a | 36.0 a | 51.0 bcd |
Ostka Smolicka | 3.40 ab | 359 a | 34.6 ab | 101 a | 34.7 a | 61.7 d |
Waluta | 3.86 bcde | 407 bc | 37.3 de | 91 a | 31.2 a | 54.3 cd |
Zadra | 3.95 cde | 381 abc | 34.4 ab | 93 a | 34.4 a | 46.9 abcd |
Mean | 3.76 | 383 | 35.4 | 98 | 33.1 | 47.2 |
HSD0.05 | 0.47 | 47 | 1.96 | 34 | 13.5 | 24.8 |
Variety | Yield | Crop Density | 1000 Grain Weight (TGW) | Number of Weeds | Weed Dry Matter | Infestation by Diseases |
---|---|---|---|---|---|---|
Arabella | 30.4% | 14.9% | 10.9% | 45.6% | 50.2% | 48.2% |
Brawura | 24.9% | 17.0% | 10.2% | 41.5% | 64.1% | 51.7% |
Cytra | 26.7% | 12.9% | 10.0% | 45.2% | 65.7% | 48.8% |
Ethos | 44.6% | 17.7% | 12.5% | 40.0% | 73.5% | 15.8% |
Izera | 26.6% | 21.5% | 9.4% | 40.7% | 83.8% | 42.5% |
KWS Torridon | 29.3% | 17.8% | 11.2% | 45.7% | 79.3% | 79.0% |
Kandela | 28.4% | 17.7% | 12.7% | 47.0% | 79.6% | 64.4% |
Katoda | 23.7% | 19.7% | 9.5% | 44.6% | 92.6% | 58.1% |
Koksa | 27.5% | 20.2% | 9.1% | 57.3% | 76.3% | 48.1% |
Korynta | 27.8% | 21.7% | 8.5% | 42.6% | 90.4% | 56.7% |
Ostka Smolicka | 28.2% | 16.4% | 9.0% | 50.1% | 75.0% | 34.3% |
Waluta | 22.9% | 17.5% | 10.6% | 44.7% | 91.5% | 53.4% |
Zadra | 27.9% | 15.1% | 11.3% | 46.8% | 83.8% | 70.8% |
Mean | 28.4% | 17.7% | 10.4% | 45.5% | 77.4% | 51.7% |
Sources of Variability | Traits | |||||
---|---|---|---|---|---|---|
Yield | Crop Density | 1000 Grain Weight (TGW) | Number of Weeds | Dry Matter of Weeds | Infestation by Diseases | |
A: locations | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
B: years | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.968 | |
C: varieties | 0.000 * | 0.004 * | 0.000 * | 0.670 | 0.967 | 0.003 * |
AxB | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.022 * |
AxC | 0.139 | 0.077 | 0.022 * | 0.882 | 0.176 | 0.190 |
BxC | 0.083 | 0.446 | 0.101 | 0.448 | 0.315 | 0.105 |
Traits | Traits | |||||
---|---|---|---|---|---|---|
Yield | Crop Density | 1000 Grain Weight (TGW) | Number of Weeds | Dry Matter of Weeds | Infestation by Diseases | |
Yield | 0.223 * | 0.562 * | 0.024 | −0.092 | 0.115 | |
Plant density | 0.223 * | −0.199 * | −0.233 * | −0.496 | 0.607 * | |
TGW | 0.562 * | −0.199 * | 0.410 * | 0.182 | −0.023 | |
Number of weeds | 0.024 | −0.233 * | 0.410 * | 0.605 * | 0.018 | |
Dry matters of weeds | −0.092 | −0.496 * | 0.182 | 0.605 * | −0.256 * | |
Infestation with diseases | 0.115 | 0.607 * | −0,023 | 0.018 | −0.256 * |
Cluster | Cultivar | Yield (t·ha−1) | Crop Density (Plants·m2) | 1000 Grain Weight (TGW) (g) | Number of Weeds (Plants·m2) | Weed Dry Matter (g·m−2) | Infestation by Fungal Diseases (% Infested Leaves Area) |
---|---|---|---|---|---|---|---|
I | Arabella, KWS Torridon, Kandela, Katoda, Waluta, Zadra | 3.98 b 1 | 389.3 a | 36.2 a | 96 a | 32.9 b | 43.8 ab |
II | Brawura, Izera, Korynta Ostka Smolicka | 3.57 a | 380.6 a | 34.6 a | 101 ab | 34.6 b | 56.3 b |
III | Cytra, Koksa | 3.54 a | 374.0 a | 35.0 a | 90 a | 28.9 a | 44.9 ab |
IV | Ethos | 3.51 a | 353.5 a | 33.6 a | 117 b | 39.4 c | 25.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feledyn-Szewczyk, B.; Cacak-Pietrzak, G.; Lenc, L.; Stalenga, J. Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy 2020, 10, 1900. https://doi.org/10.3390/agronomy10121900
Feledyn-Szewczyk B, Cacak-Pietrzak G, Lenc L, Stalenga J. Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy. 2020; 10(12):1900. https://doi.org/10.3390/agronomy10121900
Chicago/Turabian StyleFeledyn-Szewczyk, Beata, Grażyna Cacak-Pietrzak, Leszek Lenc, and Jarosław Stalenga. 2020. "Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture" Agronomy 10, no. 12: 1900. https://doi.org/10.3390/agronomy10121900
APA StyleFeledyn-Szewczyk, B., Cacak-Pietrzak, G., Lenc, L., & Stalenga, J. (2020). Rating of Spring Wheat Varieties (Triticum aestivum L.) According to Their Suitability for Organic Agriculture. Agronomy, 10(12), 1900. https://doi.org/10.3390/agronomy10121900