The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Types of Biochar
2.2. Pot Experiment
2.3. Plant Analyses
2.3.1. Study of Wheat Germination and Biomass
2.3.2. Chemical Plant Analysis
2.4. Soil Analysis
2.4.1. Preparation of Soil Samples
2.4.2. Physicochemical Properties of Soil
2.4.3. Soil Organic Carbon
Soil Humic Acids
Soil Free Phenolic Acids
Glomalin Concentration
Water Extractable Carbon
Enzymatic Activity
2.5. Statistical Analysis
3. Results
3.1. Germination and Yield of Winter Wheat Seedlings
3.2. The Amount of Macro- and Micronutrients and Heavy Metals in Winter Wheat Seedlings
3.3. The Physicochemical Parameters of Soil
3.4. Soil Organic Carbon
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Chibuike, G.; Burkitt, L.; Bretherton, M.; Camps-Arbestain, M.; Singh, R.; Bishop, P.; Hedley, C.; Roudier, P. Dissolved organic carbon concentration and denitrification capacity of a hill country sub-catchment as affected by soil type and slope. N. Z. J. Agric. Res. 2019, 62, 354–368. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Laird, D.A. The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar systems. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 147–168. [Google Scholar]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Shang, J.; Liu, K.; Irshad, M.K.; Hu, K.; Arthur, E. Effect of Biochar Application on Hydraulic Properties of Sandy Soil under Dry and Wet Conditions. Vadose Zone J. 2018, 17, 180101. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Lal, R. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The Global Stoichiometry of Litter Nitrogen Mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, J.; Dippold, M.; Gao, Y.; Blagodatskaya, E.; Kuzyakov, Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci. Total Environ. 2016, 556, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 2012, 87, 151–157. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Prommer, J.; Wanek, W.; Hofhansl, F.; Trojan, D.; Offre, P.; Urich, T.; Schleper, C.; Sassmann, S.; Kitzler, B.; Soja, G.; et al. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE 2014, 9, e86388. [Google Scholar] [CrossRef]
- Gaskin, W.J.; Steiner, C.; Harris, K.; Das, C.K.; Bibens, B. Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Elzobair, K.A.; Stromberger, M.E.; Ippolito, J.A. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere 2016, 142, 114–119. [Google Scholar] [CrossRef]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 2011, 43, 296–301. [Google Scholar] [CrossRef]
- Foster, E.J.; Fogle, E.J.; Cotrufo, M.F. Sorption to Biochar Impacts β-Glucosidase and Phosphatase Enzyme Activities. Agriculture 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Baran, A. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield. Int. Agrophys. 2017, 31, 367–375. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Chmiel, M.J.; Dziedzic, K.; Taras, H. Assessment of soil quality after biochar application based on enzymatic activity and microbial composition. Int. Agrophys. 2019, 33, 331–336. [Google Scholar] [CrossRef]
- Oladele, S.O. Effect of biochar amendment on soil enzymatic activities, carboxylate secretions and upland rice performance in a sandy clay loam Alfisol of Southwest Nigeria. Sci. Afr. 2019, 4, e00107. [Google Scholar] [CrossRef]
- Vithanage, M.; Bandara, T.; Al-Wabel, M.I.; Abduljabbar, A.; Usman, A.R.A.; Ahmad, M.; Ok, Y.S. Soil Enzyme Activities in Waste Biochar Amended Multi-Metal Contaminated Soil; Effect of Different Pyrolysis Temperatures and Application Rates. Commun. Soil Sci. Plant Anal. 2018, 49, 635–643. [Google Scholar] [CrossRef]
- Bushell, A. A Pricing Model and Environmental Impact Analysis for Manure-Based Biochar as a Soil Amendment. Master’s Thesis, The Nicholas School of the Environment of Duke University, Durham, NC, USA, 2018. [Google Scholar]
- Schmidt, H.; Shackley, S. Biochar Horizon 2025. In Biochar in European Soils; Shackley, S., Ruysschaert, G., Zwar, K., Glaser, B., Eds.; Routledge: London, UK, 2016; pp. 281–289. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.-P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.-W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application of Urine-Enhanced Biochar to a Fertile Tropical Soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil 2012, 350, 35–42. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.; Shao, H.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Ferlito, F.; Torrisi, B.; Allegra, M.; Stagno, F.; Caruso, P.; Fascella, G. Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery. Appl. Sci. 2020, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Butters, B.; Chenery, E.M. A rapid method for the determination of total sulphur in soils and plants. Analyst 1959, 84, 239–245. [Google Scholar] [CrossRef]
- Egner, H.; Riehm, H. Doppellaktatmethode. In Methodenbuch Band I. Die Untersuchung von Boden; Thun, R., Hersemann, R., Knickmann, E., Eds.; Neumann Verlag: Radebeul, Germany; Berlin, Germany, 1955; pp. 110–125. [Google Scholar]
- Schachtschabel, P. Das pflanzenverfügbare Magnesium des Boden und seine Bestimmung. Z. Pflanz. Düngung Bodenkd. 1954, 67, 9–23. [Google Scholar] [CrossRef]
- Rinkis, G.J. Оптимизация Минерального Питания Растений. [Optimalisation of Mineral Nutrition of Plants]; Zinātne: Riga, Latvia, 1972; pp. 1–350. (In Russian) [Google Scholar]
- Swift, R.S. Organic Matter Characterization. In Methods of Soil Analysis. Part 3. Chemical Methods; SSSA Book Series no. 5; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar] [CrossRef]
- Krygier, K.; Sosulski, F.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 1982, 30, 330–334. [Google Scholar] [CrossRef]
- Gałązka, A. Charakterystyka glomalin i oddziaływania różnych systemów uprawy na ich zawartość w glebie. [Characteristics of glomalin and impact of different tillage systems on their content in the soil]. Pol. J. Agron. 2013, 15, 75–82. (In Polish) [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Haynes, R.J.; Francis, G.S. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. J. Soil Sci. 1993, 44, 665–675. [Google Scholar] [CrossRef]
- Schinner, F.; von Mersi, W. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 1990, 22, 511–515. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.r-project.org/index.html (accessed on 6 July 2020).
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. Tehran 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Campillo, M.d.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management. Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Q.; Jin, X.; Dong, X.; Peng, J.; Wu, M.; Liang, N.; Pan, B.; Xing, B. Negative Impacts of Biochars on Urease Activity: High pH, Heavy Metals, Polycyclic Aromatic Hydrocarbons, or Free Radicals? Environ. Sci. Technol. 2018, 52, 12740–12747. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Graber, E.R.; Tsechansky, L.; Lew, B.; Cohen, E. Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur. J. Soil Sci. 2014, 65, 162–172. [Google Scholar] [CrossRef]
- Pushnik, J.C.; Miller, G.W.; Manwaring, J.H. The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. J. Plant Nutr. 1984, 7, 733–758. [Google Scholar] [CrossRef]
- Raymond, J.; Blankenship, R.E. The origin of the oxygen-evolving complex. Coord. Chem. Rev. 2008, 252, 377–383. [Google Scholar] [CrossRef]
- Yan, B.; Hou, Y. Effect of Soil Magnesium on Plants: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022168. [Google Scholar] [CrossRef]
- Zemanova, V.; Břendová, K.; Pavlíková, D.; Kubátová, P.T.; Lustoš, P. Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant Soil Environ. 2017, 63, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Waqas, M.; Kim, Y.-H.; Khan, A.L.; Shahzad, R.; Asaf, S.; Hamayun, M.; Kang, S.-M.; Khan, M.A.; Lee, I.-J. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J. Zhejiang Univ. Sci. B 2017, 18, 109–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Marschner, B.; Itanna, F.; Gebrekidan, H. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. SpringerPlus 2016, 5, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brantley, K.E.; Savin, M.C.; Brye, K.R.; Longer, D.E. Nutrient availability and corn growth in a poultry litter biochar-amended loam soil in a greenhouse experiment. Soil Use Manag. 2016, 32, 279–288. [Google Scholar] [CrossRef]
- Ohno, T.; Grunes, D.L. Potassium-Magnesium Interactions Affecting Nutrient Uptake by Wheat Forage. Soil Sci. Soc. Am. J. 1985, 49, 685–690. [Google Scholar] [CrossRef]
- Rhodes, R.; Miles, N.; Hughes, J.C. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Res. 2018, 223, 1–11. [Google Scholar] [CrossRef]
- Angst, T.E.; Sohi, S.P. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Wu, P.; Ata-Ul-Karim, S.T.; Singh, B.P.; Wang, H.; Wu, T.; Liu, C.; Fang, G.; Zhou, D.; Wang, Y.; Chen, W. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 2019, 1, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tu, Q.; Dong, D.; Strong, P.J.; Wang, H.; Sun, B.; Wu, W. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 2014, 280, 409–416. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Luo, C.; Shao, L.; He, P. Humification characterization of biochar and its potential as a composting amendment. J. Environ. Sci. China 2014, 26, 390–397. [Google Scholar] [CrossRef]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and Humic Acid Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef]
- Hartley, R.D.; Whitehead, D.C. Phenolic Acids in Soils and their Influence on Plant Growth and Soil Microbial Processes. In Soil Organic Matter and Biological Activity. Developments in Plant and Soil Sciences; Vaughan, D., Malcolm, R.E., Eds.; Springer: Dordrecht, The Netherlands, 1985; Volume 16. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants; Elsevier Ltd.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- MacKenzie, M.D.; DeLuca, T.H. Charcoal and shrubs modify soil processes in ponderosa pine forests of western Montana. Plant Soil 2006, 287, 257–266. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 273–275. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
Type of Biochar | Abbreviations * | H (%) | C (%) | N (%) | P (%) | K (%) | S (%) |
---|---|---|---|---|---|---|---|
Biochar type I | BC52% | 5.4 a | 52 c | 0.39 a | 0.059 a | 0.321 a | 0.004 a |
Biochar type II | BC50% | 4.3 a | 50 c | 0.33 b | 0.058 a | 0.301 a | 0.004 a |
Biochar type III | BC75% | 2.6 b | 75 b | 0.29 c | 0.053 a | 0.290 a | 0.003 a |
Biochar type IV | BC85% | 1.9 b | 85 a | 0.26 c | 0.054 a | 0.294 a | 0.003 a |
Groups * | N tot. | P | K | S tot. | Mg | Ca |
---|---|---|---|---|---|---|
g kg−1 | ||||||
Control | 39.4 c | 6.92 c | 67.7 a | 4.79 a | 2.64 c | 12.0 ab |
NPK | 45.5 ab | 8.01 ab | 61.7 b | 4.05 bc | 3.59 a | 13.9 a |
NPK + BC52% | 48.4 a | 7.57 bc | 58.9 bc | 4.02 bc | 3.14 b | 11.5 ab |
NPK + BC50% | 42.5 bc | 7.46 bc | 54.7 c | 3.68 c | 2.96 bc | 9.86 bc |
NPK + BC75% | 42.1 bc | 8.11 ab | 58.5 bc | 3.84 bc | 2.80 bc | 9.56 bc |
NPK + BC85% | 43.7 abc | 8.79 a | 58.9 bc | 4.16 b | 2.86 bc | 8.49 c |
Groups * | Mn | Fe | Cu | Zn | Ni | Cd | Pb |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Control | 67.3 ab | 938 b | 18.3 a | 64.2 b | 6.87 a | 1.08 a | 2.35 a |
NPK | 59.3 b | 655 cd | 15.0 bc | 73.7 a | 5.38 a | 0.58 b | 1.09 b |
NPK + BC52% | 55.0 b | 568 d | 14.6 bc | 72.7 a | 4.93 b | 0.67 b | 1.33 b |
NPK + BC50% | 65.7 ab | 861 bc | 16.2 ab | 72.4 ab | 6.27 a | 0.62 b | 1.25 b |
NPK + BC75% | 76.0 a | 1 419 a | 14.3 bc | 69.6 ab | 6.87 a | 0.56 b | 1.23 b |
NPK + BC85% | 74.0 a | 1 425 a | 13.6 c | 72.3 ab | ND | 0.62 b | 1.07 b |
Groups * | pHKCl | C tot | N tot | S tot | P pa | K pa | Mg sol |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Control | 6.99 a | 9810 a | 1313 a | 16 a | 184 b | 173 c | 90.2 a |
NPK | 6.84 ab | 9520 a | 1003 a | 13 a | 225 a | 243 a | 92.1 a |
NPK + BC52% | 6.70 b | 9750 a | 1293 a | 14 a | 238 a | 251 a | 91.6 a |
NPK + BC50% | 6.77 ab | 9530 a | 1213 a | 11 a | 222 a | 225 ab | 92.2 a |
NPK + BC75% | 6.81 ab | 9930 a | 1050 a | 13 a | 229 a | 213 abc | 95.4 a |
NPK + BC85% | 6.79 ab | 9720 a | 1050 a | 11 a | 234 a | 192 bc | 94.3 a |
Groups * | Mn | Fe | Cu | Zn | Ni | Cd | Pb |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Control | 148 a | 1185 a | 11.6 a | 14.58 a | 1.44 a | 0.15 a | 8.50 ab |
NPK | 148 a | 1199 a | 7.16 bc | 20.07 a | 1.41 a | 0.15 a | 9.18 ab |
NPK + BC52% | 152 a | 1219 a | 7.15 bc | 16.49 a | 1.45 a | 0.17 a | 9.61 a |
NPK + BC50% | 144 a | 1148 a | 5.93 c | 15.25 a | 1.43 a | 0.16 a | 8.56 ab |
NPK + BC75% | 151 a | 1166 a | 10.2 ab | 16.60 a | 1.41 a | 0.14 a | 7.90 b |
NPK + BC85% | 138 a | 1101 a | 9.09 abc | 18.89 a | 1.41 a | 0.14 a | 8.24 ab |
Groups * | Humic Acids | Free Phenolic Acids | Glomalin’s | WSOC | HWSOC |
---|---|---|---|---|---|
mg kg−1 | |||||
Control | 3810 b | 1.428 a | 588.8 ab | 307 c | 1020 a |
NPK | 4200 b | 1.431 a | 683.8 a | 443 a | 864 bc |
NPK + BC52% | 5100 a | 0.975 cd | 317.0 b | 441 ab | 915 b |
NPK + BC50% | 4860 a | 1.022 c | 450.9 ab | 427 ab | 858 bc |
NPK + BC75% | 4990 a | 0.936 d | 322.4 b | 409 ab | 862 bc |
NPK + BC85% | 4930 a | 1.112 b | 367.9 b | 400 b | 815 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczycki, G.; Magnucka, E.G.; Oksińska, M.P.; Kucińska, J.; Kobyłecki, R.; Pawęska, K.; Zarzycki, R.; Kacprzak, A.; Pietr, S.J. The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment. Agronomy 2020, 10, 1903. https://doi.org/10.3390/agronomy10121903
Kulczycki G, Magnucka EG, Oksińska MP, Kucińska J, Kobyłecki R, Pawęska K, Zarzycki R, Kacprzak A, Pietr SJ. The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment. Agronomy. 2020; 10(12):1903. https://doi.org/10.3390/agronomy10121903
Chicago/Turabian StyleKulczycki, Grzegorz, Elżbieta G. Magnucka, Małgorzata P. Oksińska, Jolanta Kucińska, Rafał Kobyłecki, Katarzyna Pawęska, Robert Zarzycki, Andrzej Kacprzak, and Stanisław J. Pietr. 2020. "The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment" Agronomy 10, no. 12: 1903. https://doi.org/10.3390/agronomy10121903
APA StyleKulczycki, G., Magnucka, E. G., Oksińska, M. P., Kucińska, J., Kobyłecki, R., Pawęska, K., Zarzycki, R., Kacprzak, A., & Pietr, S. J. (2020). The Effect of Various Types of Biochar Mixed with Mineral Fertilization on the Development and Ionome of Winter Wheat (Triticum aestivum L.) Seedlings and Soil Properties in a Pot Experiment. Agronomy, 10(12), 1903. https://doi.org/10.3390/agronomy10121903