Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards
Abstract
:1. Introduction
2. Feature Extraction and Model Training
2.1. Local-Lowest Point in Segments
2.2. Predictor Variables (Feature) for Machine Learning
2.3. Preparing Training Data
2.4. Model Extraction
3. Validation
Trunk Bottom Detection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Statistica Research Department. Fruit Consumption—Statistics & Facts. Available online: https://www.statista.com/topics/1475/fruit-consumption/ (accessed on 23 September 2020).
- Maida, J. Global Apple Market 2020–2024. Available online: https://www.businesswire.com/news/home/20191202005540/en/Global-Apple-Market-2020-2024-Evolving-Opportunities-Borton (accessed on 23 September 2020).
- Shahbandeh, M. Global Fruit Production in 2018, by Selected Variety (in Million Metric Tons). Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 22 September 2020).
- Production of Apples by Country. Available online: https://www.yara.kr/crop-nutrition/apple-pear/key-facts/world-production/ (accessed on 29 September 2020).
- Stefas, N.; Bayram, H.; Isler, V. Vision-Based UAV Navigation in orchards. IFAC-PapersOnLine 2016, 49, 10–15. [Google Scholar] [CrossRef]
- Gao, G.; Xiao, K.; Jia, Y. A spraying path planning algorithm based on colour-depth fusion segmentation in peach orchards. Comput. Electron. Agric. 2020, 173, 105412. [Google Scholar] [CrossRef]
- Lyu, H.K.; Park, C.H.; Han, D.H.; Kwak, S.W.; Choi, B. Orchard Free Space and Center Line Estimation Using Naive Bayesian Classifier for Unmanned Ground Self-Driving Vehicle. Symmetry 2018, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.-S.; Lee, D.-H.; Kim, Y.-J.; Kim, T.; Hwang, R.-Y.; Lee, H.-J. Path detection for autonomous traveling in orchards using patch-based CNN. Comput. Electron. Agric. 2020, 175, 105620. [Google Scholar] [CrossRef]
- Cheein, F.A.; Steiner, G.; Paina, G.P.; Carelli, R. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Comput. Electron. Agric. 2011, 78, 195–207. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Zhang, B.; Luo, L. Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors. Comput. Electron. Agric. 2018, 147, 91–108. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J.; Nieto, J.I.; Sukkarieh, S. A Pipeline for Trunk Detection in Trellis Structured Apple Orchards. J. Field Robot. 2015, 32, 1075–1094. [Google Scholar] [CrossRef]
- Bell, J.; MacDonald, B.A.; Ahn, H.S. Row Following in Pergola Structured Orchards by a Monocular Camera Using a Fully Convolutional Neural Network. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Sydney, Australia, 11–13 December 2017; pp. 133–140. [Google Scholar]
- Zhang, J.; Kantor, G.; Bergerman, M.; Singh, S. Monocular visual navigation of an autonomous vehicle in natural scene corridor-like environments. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; pp. 3659–3666. [Google Scholar]
- He, B.; Liu, G.; Ji, Y.; Si, Y.; Gao, R. Auto Recognition of Navigation Path for Harvest Robot Based on Machine Vision. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Zhangjiajie, China, 19–21 October 2011; pp. 138–148. [Google Scholar]
- Radcliffe, J.; Cox, J.; Bulanon, D.M. Machine vision for orchard navigation. Comput. Ind. 2018, 98, 165–171. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.E.; Wei, G.Y.; Brooks, D. Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv 2019, arXiv:1907.10701. [Google Scholar]
- Wang, Y.; Wang, Q.; Shi, S.; He, X.; Tang, Z.; Zhao, K.; Chu, X. Benchmarking the performance and power of AI accelerators for AI training. arXiv 2019, arXiv:1909.06842. [Google Scholar]
- Dai, W.; Berleant, D. Benchmarking Contemporary Deep Learning Hardware and Frameworks: A Survey of Qualitative Metrics. In Proceedings of the 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), Los Angeles, CA, USA, 12–14 December 2019; pp. 148–155. [Google Scholar]
- Kang, H.; Zhou, H.; Chen, C. Visual Perception and Modeling for Autonomous Apple Harvesting. IEEE Access 2020, 8, 62151–62163. [Google Scholar] [CrossRef]
- Kumar, R.; Jitoko, P.; Kumar, S.; Pillay, K.; Prakash, P.; Sagar, A.; Singh, R.; Mehta, U. Maze Solving Robot with Automated Obstacle Avoidance. Procedia Comput. Sci. 2017, 105, 57–61. [Google Scholar] [CrossRef]
- Bekkar, M.; Alitouche, T.A. Imbalanced data learning approaches review. Int. J. Data Min. Knowl. Manag. Process 2013, 3, 15. [Google Scholar] [CrossRef]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef]
- Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
ML Models | AUC | TP | FP | TN | FN | Recall | Precision | Accuracy |
---|---|---|---|---|---|---|---|---|
Decision Tree | 0.977 | 912 | 26 | 831 | 31 | 0.967 | 0.972 | 0.968 |
Discriminant | 0.955 | 877 | 136 | 721 | 66 | 0.930 | 0.866 | 0.888 |
Naïve Bayes | 0.930 | 936 | 175 | 682 | 7 | 0.993 | 0.842 | 0.899 |
SVM | 0.966 | 911 | 81 | 776 | 32 | 0.966 | 0.918 | 0.937 |
KNN | 0.970 | 915 | 97 | 760 | 28 | 0.970 | 0.904 | 0.931 |
Ensemble | 0.994 | 932 | 33 | 824 | 11 | 0.988 | 0.966 | 0.976 |
ML Models | TP | FP | TN | FN | Recall | Precision | Accuracy |
---|---|---|---|---|---|---|---|
Decision Tree | 337 | 15 | 360 | 51 | 0.869 | 0.957 | 0.913 |
Discriminant | 352 | 52 | 323 | 36 | 0.907 | 0.871 | 0.885 |
Naïve Bayes | 383 | 77 | 298 | 5 | 0.987 | 0.833 | 0.893 |
SVM | 366 | 47 | 328 | 22 | 0.943 | 0.886 | 0.910 |
KNN | 346 | 59 | 316 | 42 | 0.892 | 0.854 | 0.868 |
Ensemble | 377 | 22 | 353 | 11 | 0.972 | 0.945 | 0.957 |
Standard | TP | FP | Precision |
---|---|---|---|
Strict | 1120 | 191 | 0.85 |
Liberal | 1239 | 72 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, H.-K.; Yun, S.; Choi, B. Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards. Agronomy 2020, 10, 1926. https://doi.org/10.3390/agronomy10121926
Lyu H-K, Yun S, Choi B. Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards. Agronomy. 2020; 10(12):1926. https://doi.org/10.3390/agronomy10121926
Chicago/Turabian StyleLyu, Hong-Kun, Sanghun Yun, and Byeongdae Choi. 2020. "Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards" Agronomy 10, no. 12: 1926. https://doi.org/10.3390/agronomy10121926
APA StyleLyu, H. -K., Yun, S., & Choi, B. (2020). Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards. Agronomy, 10(12), 1926. https://doi.org/10.3390/agronomy10121926