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Abstract: Cercospora leaf spot of olive (CLSO), caused by Pseudocercospora cladosporioides, is one of
the most important foliar diseases of olives worldwide. This study aimed to evaluate the effect of a
wide range of fungicides on mycelial growth and conidial germination of P. cladosporioides in vitro,
and to evaluate the effect of several fungicides, application timings and management strategies
(conservative and risky) to control CLSO under field conditions. Of the studied fungicides, strobilurin
compounds and benomyl were the most effective active ingredients, followed by folpet, captan
and maneb, in inhibiting mycelial growth and conidial germination. The pyraclostrobin + boscalid
treatment was effective under field conditions, even without the application of supplementary
copper. Treatments conducted in October or March were more effective than those conducted in May.
Management strategies based on the author’s experience reduced copper applications up to 32.0%
and 50.0% (conservative and risky strategy, respectively) in comparison to the reduction with the
traditional strategy, without increasing CLSO incidence. This work provides useful information
about effective formulations against CLSO and a reduction in unnecessary fungicide applications in
an effort to implement IPM in olive orchards under Mediterranean conditions.

Keywords: chemical control; fungicide reduction; integrated pest management; Olea europaea;
Pseudocercospora cladosporioides

1. Introduction

The cultivated olive (Olea europaea subsp. europaea L.) is one of the most important perennial crops
across the Mediterranean basin, including Spain [1]. This country contains 25% of the global olive
acreage at approximately 2.6 M ha and nearly 45% of the global olive oil production. The Andalusia
region (southern Spain) is the most important olive-growing region in Spain, representing approximately
65% and 80% of the Spanish olive-growing area and production, respectively [2].

Cercospora leaf spot of olive (CLSO) has been described as one of the most relevant diseases of this
crop worldwide [1,3–5]. Typical symptoms of CLSO are grey spots and early leaf fall, leading a less
shoot growth, a poor fruit production, decreased flower bud formation in the following years,
and a delay in fruit ripening [5–8]. Light-green to yellow spots, with may become necrotic, appear on
the upper side surface of the leaf, while on the under-side surface, leaden-grey areas also occur with the
presence of characteristic lead-black olivaceous asexual fruiting structures [1,3–5]. CLSO symptoms on
fruit vary depending on the fruit ripening stage, from brown, sunken, more or less circular areas of
three to seven mm in diameter on green olives to more extensive areas with a pale-yellow halo that
surrounds the infected sites on ripening fruits. Severe symptoms cause a decrease in the quality and
oil production [1,5,9–11].
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CLSO is caused by Pseudocercospora cladosporioides (Sacc.) U. Braun (syn. Cercospora
cladosporioides Sacc.), a fungal pathogen that was first described in olive in 1881 in Italy [12]. From
there, P. cladosporioides has been cited in the most important olive-growing areas worldwide [13]. The
disease cycle of CLSO has traditionally been compared with that of the olive scab caused by Venturia
oleaginea, a polyethic disease. In brief, V. oleaginea spread mainly thorough rainfall, occurring infection
from 5 to 25 ◦C. Incubation and conidial production periods are usually long (from >28 days to ≈9
months), whilst young leaves are more susceptible to olive scab [14,15]. Regarding CLSO, the few
studies previously conducted on the biology of P. cladosporioides suggest that the incubation period of
CLSO could be even longer (up to 11 months) [5]. The fungus mainly survives on the infected leaves
that remain on the tree canopy. Under Mediterranean conditions, lesions enlarge during the autumn,
winter and spring, and rainfall initiates conidial spread and new infections, particularly in young,
susceptible leaves. Diseased leaves mainly fall to the soil in summer [5,16].

Until now, no specific management strategies are available for olive growers against CLSO.
The same traditional strategies developed to control olive scab are usually used to control CLSO.
Copper-based compounds or mixtures of these compounds with systemic fungicides, such as
difenoconazole, tebuconazole, and strobilurin, have had successful results in controlling olive aerial
diseases [17–19]. In fact, copper-based compounds are the most common active ingredient used by
olive growers to control foliar diseases [20], mainly due to their relatively low cost, long persistence,
efficacy in inhibiting conidial germination and their wide spectrum against fungal and bacterial
foliar pathogens [18,20–22]. Copper applications against olive scab and olive anthracnose have been
traditionally recommended at the beginning of autumn, in winter (after harvesting and, sometimes, at
the end of winter) and at the end of spring [1]. Based on [23], with a phenological growth scale which
will be used henceforth in this study, these dates correspond with the following phenological stages (PS):
75–80 (autumn), 81–92 (after harvesting), 5–10 (at the end of winter) and 68–71 (at the end of spring).
However, applications of copper-based compounds may present important limitations because their
efficacy depends on the application time and their rainfastness [24,25]. Moreover, the long-term use of
copper-based compounds in agriculture leads to copper accumulation in the soil surface that leaches
into water sources, causing an adverse effect on aquatic or soil organisms and on fertility [22,26,27].
Restrictions in the use of copper-based fungicides are expected to be established in the near future
to prevent the development of fungicide resistance in crops and possible negative effects on human
health [28–30]. Thus, the European Community Directive 128/2009 on the Sustainable Use of Pesticides
established mandatory integrated pest management (IPM). Based on this directive, the use of fungicides
should be justified based on economic and ecological criteria to reduce or minimize risks to human
health and the environment in the framework of IPM [31].

As indicated above, consistent studies about the efficacy of a wide range of fungicides against
CLSO under different conditions have not yet been performed. Therefore, the objectives of this study
were as follows: (i) to evaluate the effect of copper-based compounds and systemic and organic
protective fungicides on the inhibition of mycelial growth and conidial germination in P. cladosporioides
by in vitro tests; (ii) to assess the most effective fungicides and their application timing under field
conditions; (iii) to evaluate three different management strategies, modifying application timing,
in several orchards with endemic populations of P. cladosporioides.

2. Materials and Methods

2.1. Fungicides

Sixteen commercial compounds, including copper-based products (6), systemic (5), and organic
preventive (5) fungicides, were evaluated (Table 1). These fungicides were selected based on the active
ingredients traditionally used to prevent olive diseases over the last two decades in the main olive
growing regions of the world.
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Table 1. Fungicides and dosage used in the different trials carried out in this study.

Tradename 1 Active Ingredient-
Formulation 3

Class (FRAC
Number) 4 Systemic Action

Doses (mg L−1)

Company 2 Mycelial Growth Conidial Germination Manufacturer
Recommended

Caldo Bordelés
Vallés

Ind. Químicas del
Vallés

Copper calcium sulfate
20% WP Inorganic (M1) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 5000

Copper sulphate Merk Lab Copper sulphate 25% Cu
WP Inorganic (M1) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 2500

Cuproflow Caffaro
Blue Caffaro (Isagro) Copper oxychloride 38%

Cu WP Inorganic (M1) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 4000

Cuprosan * Bayer CropScience Copper oxychloride 50%
Cu WG Inorganic (M1) No - - 4000

Funguran-OH 50
PH Nufarm España Copper hydroxide 50%

WP Inorganic (M1) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 4000

Nordox super 75 * Nordox Cuprous oxide 75% WP Inorganic (M1) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 2000

Benomilo 50 Aragonesas Agro Benomyl 50% WP ß-tubulin inhibitor
(B) (3) Yes 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 900

Bellis * Basf Pyraclostrobin 10% +
Boscalid 20% WG

QoI 5 (11)-SDHI 6

(7)
Yes 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01;

0.001; 0.0001 1000

Flint Max * Bayer CropScience Trifloxystrobin 25% +
Tebuconazole 50% WG

QoI (11)/
DMI-triazole (3) Yes - - 200

Score 25 * Novartis
(Syngenta) Difenoconazole 25% EC DMI 7-triazole (3) Yes 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 150

Stroby * Basf Kresoxim- methyl 50%
WG QoI (11) Yes 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 750

Belpron F 50 Probelte Folpet 50% WP Phtalimide (M4) No 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 3000

Belpron M 80 Probelte Maneb 80% WP Carbamate (EBDC)
7(M3) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 2500

Captazel Zeneca Agro
(Syngenta) Captan 50% WP Phtalimide (M4) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 3000

Cobreline Folpet * C. Q. Masso
Folpet 30% + Cuprous
oxide 10% + Copper

calcium sulfate 10% WP

Phtalimide (M4)-
Inorganic (M1)-
Inorganic (M1)

No 0.001;0.01;0.1;1;10 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 2500

Dithane M45 Rohm and Haas
(Dow) Mancozeb 80% WP Carbamate (EBDC)

8 (M3) No 50; 150; 300; 600 32;16;8;4;2;1;0.5;0.25;0.12;0.06;0.03;0.01 4000

1 All fungicides were tested for in vitro sensitivity tests excepting Cuprosan and Flint Max. 2 Company names during the Trials development and currently (in brackets). 3 WP, wettable
powder; WG, water dispersible granule; EC, emulsifiable concentrate; EW, emulsion oil in water; SL, soluble. 4 Group numbers are assigned by the Fungicide Resistance Action Committee
(FRAC) according to different modes of actions (for more information, see http://www.frac.info/). 5 QoI = quinone outside inhibitor (strobilurin). 6 SDHI = Succinate dehydrogenase
inhibitor. 7 DMI = demethylation (sterol) inhibitor. 8 EBDC = ethylene bisdithiocarbamate. * Products tested under field conditions.

http://www.frac.info/
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2.2. In Vitro Evaluation of Fungicides

2.2.1. Inoculum Sources

Fungal mycelia. The isolate P. cladosporioides ILE40 [5] was used to evaluate the effect of fungicides
on mycelial growth. It was recovered from olive leaves of cultivar (cv.) Lechín de Sevilla showing
typical symptoms of CLSO. The isolate ILE40 was stored at 5 ◦C in darkness inside 50 ml tubes of
potato dextrose agar (PDA) (Difco Laboratories®, Detroit, MI, USA) filled completely with sterile
paraffin oil and maintained in the fungal collection of the Agronomy Department at the University of
Córdoba, Spain. Prior to use, a small mycelial plug of the colonized agar was transferred from the
collection tube to the PDA acidified with lactic acid [25% (vol/vol) at 2.5 ml l−1 of medium, APDA] to
minimize bacterial growth. Culture was incubated at 20 ± 2 ◦C with a 12-h photoperiod of fluorescent
light (350 µmol m−2 s−1) for 4 weeks.

Conidial suspensions. To evaluate the effect of fungicides on conidial germination, conidial
suspensions of P. cladosporioides were obtained by scraping olive leaves with CLSO symptoms.
The infected leaves were collected from olive trees of cv. Picudo growing at the “World Olive
Germplasm Bank” (WOGB) of the Andalusian Institute for Research and Formation in Agriculture
and Fishery (IFAPA in Spanish), located in Córdoba Province (Andalusian region, southern Spain).
No fungicides had been applied in this experimental field for the previous three years. Conidia were
collected from the leaf surface with a sterile needle and introduced into a sterile tube filled with 2 ml of
sterile distilled water (SDW). The resulting conidial suspension was adjusted to 2 × 105 conidia ml−1

using a haemocytometer to obtain a final concentration of 105 conidia ml−1 after fungicide addition
(see below).

2.2.2. Effect of Fungicides on Mycelial Growth

The required amounts of each fungicide were calculated according to the active ingredient, and
they were added to sterilize PDA (120 ◦C-20 min) at approximately 45 ◦C to achieve the required
concentrations (Table 1) [32]. Mycelia agar plugs (5 mm in diameter) obtained from the margins of
14-day-old actively growing culture were placed in the center of Petri dishes (90 mm in diameter)
containing PDA amended with the compound and doses under evaluation. Non-amended PDA
plates were included as a control. There were four replicated Petri dishes per fungicide concentration.
Plates were incubated at 20 ± 2 ◦C with a 12-h photoperiod of fluorescent light (350 µmol m−2 s−1) for
four weeks in a completely randomized design. The experiment was conducted twice.

The diameter of each colony was measured twice perpendicularly. Measurements were made at
the same time and averaged. The diameter was expressed in mm of real growth by deducting 5 mm of
the initial mycelial plug (growth rate: mm day−1).

2.2.3. Effect of Fungicides on Conidial Germination

A 5-µl drop of conidial suspension (2 × 105 conidia ml−1) was mixed homogeneously with another
5-µl drop of fungicide solution on a microscope coverslip (20 × 20 mm). Coverslips were placed
inside the Petri dishes containing water agar, which were used as humid chambers. Dishes were
incubated for 48 h at 20 ± 2 ◦C with a 12-h photoperiod of fluorescent light. Conidia germination was
stopped by staining with acid fuchsin in lactophenol. The germination percentage was determined by
evaluating 100 conidia randomly selected on each coverslip. Overlapped conidia and conidia linked to
conidiophores were not considered. There were three replicated coverslips per fungicide concentration.
The experiment was conducted twice.

2.3. Effect of Fungicides and Annual Timing on Disease Incidence in a Naturally Infected Orchard

Two experiments (Trials I and II) were carried out in a commercial olive orchard of cv. Hojiblanca
(204 trees/ha; 15 years old) located in ‘La Roda de Andalucía’ (37.216923, −4.793416; Province of Sevilla,
Andalusian region, southern Spain; Figure 1). This orchard was naturally infected by P. cladosporioides,
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with trees showing typical symptoms of CLSO. The experiments were conducted from March 2003 to
May 2004.
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Figure 1. Rainfall (R, light grey line), relative humidity (RH, black line) and air temperature (T,
dark grey line) in Sierra de Yeguas (Málaga), the location with the closest meteorological station from
the location of the Trials II and III (15 km away). Meteorological data were registered from 1 March
2003 to 31 May 2004.

Trial I. The efficacy of one copper compound (cuprous oxide), three systemic (pyraclostrobin +

boscalid, difenoconazole and kresoxim-methyl) fungicides and one protectant (folpet + cuprous oxide
+ copper calcium sulfate) fungicide was evaluated at the manufacturers’ recommended doses (Table 1).
Three applications were performed (March 2003, May 2003 and October 2003; PS = 75–80, 5–10 and
68–71, respectively), and the following treatments were conducted: (i) cuprous oxide; (ii) folpet +

cuprous oxide + copper calcium sulphate; (iii) difenoconazole + cuprous oxide; (iv) kresoxim-methyl
+ cuprous oxide; and (v) pyraclostrobin + boscalid. Fungicide applications were carried out by
a backpack 25-L sprayer (Synergy 25.6 cm3, Spain). Three liters of fungicide solution were applied per
olive canopy to reach homogenous wetting. Treatments were arranged in a completely randomized
design with seven blocks and one tree per block. Olive trees sprayed with water were included as
controls. The experiment was repeated once in a second experimental field within the same orchard.

Trial II. The effect of annual fungicide application timing was evaluated using cuprous oxide
at the manufacturer’s dose. Timing was established according to previous experience in controlling
olive scab [1]. The following seven application timings were evaluated: (i) a single annual application
at three different times—March (PS = 75–80), May (PS = 5–10) and October (68–71); (ii) two annual
applications (March + May, March + October and May + October); (iii) three annual applications
(March + May + October). March application in 2004 was not carried out. Olive trees without any
spraying were included as controls. Fungicide applications were conducted as described above,
with the same experimental design as Trial I.

Disease assessment. CLSO incidence was evaluated at four different times during the experiment
(May and November 2003; March and May 2004) by estimating the percentage of symptomatic leaves
using a 0-to−10 rating scale adapted from fruits to leaves [33]. This scale estimates the percentage of
leaves affected by CLSO in each tree according to the following intervals for each scale value: 0 = no
visible symptoms, 1 = 0.01% (1–3 affected leaves per tree), 2 = 0.1% (5–10 affected leaves per tree),
4 = 5%, 6 = 25%, 8 = 75% and 10 = trees with more than 90% of leaves showing symptoms. Then, the
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scale data were transformed into the proportion of affected leaves using a logistic equation, where X is
the scaling rating value and Y is the percentage of CLSO incidence [33].

Y =
1

1 + 3(7−X)

2.4. Comparative Effectiveness of the Three Management Strategies for Disease Control

2.4.1. Management Strategies

Based on previous knowledge about the epidemiology and control of olive scab and olive
anthracnose [1,34–36], two management strategies (conservative and risky) were designed by the
authors to compare their efficacy in controlling CLSO against the traditional management strategy
conducted by local olive growers (Figure 2). The traditional management strategy consisted of
applications with only copper oxychloride (50%) (Table 1), which were conducted according to the
experience of the Andalusian olive growers: three fungicide applications (FA) per year in autumn (PS
= 75–80), post-harvest (PS = 85–92) and in spring (PS = 37–50).
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Figure 2. Decision making rules for fungicide application (FA) of traditional, conservative and risky
strategies (TS, CS and RS, respectively). 1 Autumn applications in TS or CS/RS in cv. Hojiblanca
orchards were applied during the first half of October (phenological growth stage = 75–80 based
on [23]). 2 Postharvest applications in TS/CS and RS were applied <3 days after fruit harvesting (from
November to December, phenological growth stage = 85–92 [23]). 3 Spring applications in TS were
applied in April–May (phenological growth stage = 37–50 [23]). Rest of fungicides applications were
not dependent on disease and weather conditions.

Five decision-making rules were established to perform the two management strategies of the
authors, with slight changes between them. Four of the five rules needed to occur simultaneously to
support the FAs. In the conservative management strategy, FAs in spring and autumn were conducted
when (i) the CLSO incidence of the last evaluation (n, in March-April, see below) was ≥ 1%, or (ii)
when an increase in CLSO incidence was observed between the n−1 and n evaluations (CLSOincidence n

> CLSOincidence n−1). When at least one of these two conditions occurred, (iii) from the 12th week
after the last FA, decisions considered the combination of the following two environmental conditions
based on the weather forecast for the following seven days—(iv) accumulated rainfall (> 1 mm)
and (v) mild average temperatures (15 ≤ T ≤ 25 ◦C). The same rules were established for the risk
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management strategy, except for slight changes in conditions (iii) and (iv) during autumn—more than
18 weeks should have elapsed since the last FA, and the accumulated rainfall must be higher than 5 mm.
These changes in the management strategies were not employed in orchards of cv. Hojiblanca because
of its high susceptibility to olive anthracnose in autumn [1], so the same decision rules were employed
for both management strategies for this cv. In addition, for all management strategies, a copper
fungicide was applied in winter immediately after harvest to control olive knot caused by Pseudomonas
savastanoi pv. savastanoi. A copper compound (copper oxychloride 50%) and a systemic fungicide
(trifloxystrobin + tebuconazole) (Table 1) were both applied as part of the FAs in autumn/winter and
spring, respectively, in both management strategies (see below the exception in the organic farming
system). Weather forecasts were obtained from the nearest area provided by the Spanish Agency of
Meteorology (AEMET).

2.4.2. Experimental Design

Sixteen commercial orchards of the olive cvs. Arbequina, Hojiblanca, Manzanilla de Sevilla
and Picual affected by CLSO were selected across the Andalusia region and southeastern Portugal
(Table 2). Experimental orchards ranged from 5 to 20 years old and were located in Córdoba (5
orchards), Jaén (4 orchards), Málaga (3 orchards), Sevilla (3 orchards) (Andalusia region, Southern
Spain), and Beja (1 orchard) (South Portugal). Two orchards, one from Sevilla and another from Jaén,
were grown within an organic farming system. In these later experimental orchards, the systemic
fungicide was not used, and only the copper fungicide was applied. In all the orchards, olive trees
were planted on 7−12 × 7−12 m and 7–3 × 1.5 m row spacing in low, high and super-high-density
plantations, respectively. The selected orchards were managed according to the cultural practices used
in commercial olive orchards in Andalusia [36]. Treatments were arranged in a randomized complete
block design with four replicated blocks, with 15 trees per experimental unit arranged in three rows of
five trees each. A 2000 l sprayer (Mañez-Lozano; 20 kg cm−2 pressure, 1.2 mm nozzles, Spain) was
used for FA, which was carried out only under calm, sunny conditions, and 400 l of fungicide solution
was applied per treatment in each management strategy (1200 l ha−1), reaching a homogenous wetting
of the olive canopy. The amount of deposited copper in the leaves was measured [37] annually to check
the homogeneity of the FA. From April 2012 to August 2016, four epidemical seasons were evaluated.
Only the three central trees were evaluated to avoid a possible effect of fungicide drift. The CLSO
incidence was annually assessed when the highest CLSO incidence occurred frequently (March–April)
by using the same 0 to−10 rating visual scale described above (Moral and Trapero, 2009) [33].
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Table 2. Olive orchards selected to compare management strategies.

Orchard Location UTM 1 Farming System 2 Cultivar Risk Factor
3

Period of
Evaluation

1 El Cañuelo Córdoba (Córdoba) 37.763166; −4.670026 Low-density/Organic Picual Low 2012/2016
2 El Realengo 1 4 Antequera (Málaga) 37.188711; −4.573885 High-density/IPM Arbequina Mild 2012/2016
3 El Realengo 2 Antequera (Málaga) 37.191442; −4.576739 High-density/IPM Hojiblanca Mild 2012/2016
4 El Realengo 3 Antequera (Málaga) 37.,191959; −4.576605 High-density/IPM Picual Mild 2012/2016
5 Fonte dos Frades Beja (Portugal) 38.021307; −7.747067 High-density/IPM Hojiblanca High 2012/2013
6 La Veguilla Córdoba (Córdoba) 37.820535; −4.896576 High-density/IPM Hojiblanca Low 2012/2016
7 Linares Linares (Jaén) 38.097234; −3.709578 High-density/IPM Picual Mild 2012/2016
8 Los Cansinos Córdoba (Córdoba) 37.892221; −4.596169 Super-High-density/IPM Arbequina Low 2012/2015
9 Malena de Castro Linares (Jaén) 38.113009; −3.590850 High-density/IPM Picual Low 2012/2016

10 Naranjilla Carmona (Sevilla) 37.409752; −5.807546 High-density/IPM Manzanilla de
Sevilla High 2012/2015

11 Ribera Alta Córdoba (Córdoba) 37.953271; −4.624638 High-density/IPM Picual High 2012/2016
12 Todolivo Pedro Abad (Córdoba) 37.959700; −4.466828 Super-High-density/IPM Arbequina Mild 2012/2015

13 Aljarafe Bollullos de la Mitación
(Sevilla) 37.356450; −6.164204 High-density/Organic Manzanilla de

Sevilla High 2013/2016

14 Los Ballesteros El Cuervo (Sevilla) 36.795540; −5.971842 High-density/IPM Hojiblanca High 2013/2016

15 Cortijo de
Guadiana 1 4 Úbeda (Jaén) 37.914793; −3.232109 High-density/IPM Picual Mild 2014/2016

16 Cortijo de
Guadiana 2 Úbeda (Jaén) 37.902171; −3.237424 High-density/Organic Picual Low 2014/2016

1 Universal Transverse Mercator coordinate system. 2 Categories of farming system based on planting density and type of production: Low-density plantation < 100 olive trees/ha,
High-density plantation ≥ 100 and < 200, and Super-High-Density plantation ≥ 200. IPM: integrated pest management. 3 Risk categories to the infection of aerial olive diseases according
to the climatic history of the location (AEMET, 2011) and the particular edaphic and climatic conditions of the experimental field (topography, orientation and presence of rivers and
streams nearby). 4 Within these orchards, different experimental trials were selected depending on the cultivar (El Realengo) or the farming system (Cortijo de Guadiana).
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2.5. Data Analyses

For each fungicide concentration and dose, inhibition of mycelial growth and conidial germination
was calculated as a percentage with respect to the control treatment according to the following formulas:
relative growth inhibition (RGI) = [(Dcontrol − DTreatment)/ Dcontrol] × 100, where D = diameter of the
fungal colony and relative germination inhibition (RGeI) = [(Gecontrol − GeTreatment)/ Gecontrol] × 100,
where Ge = conidial germination (%). Probit regression analysis was used to calculate the concentration
that inhibited mycelial growth and conidial germination by 50% (EC50) and 90% (EC90). Analysis of
variance (ANOVA) was performed on EC50 and EC90 data, and means were compared using Fisher´s
protected least significant difference (LSD) test at p < 0.05 [38].

To evaluate the efficiency of different fungicides, the area under the disease progress curve
(AUDPC) was calculated by trapezoidal integration of CLSO incidence over time. The reduction in
CLSO incidence (%) between the first and last evaluation and the AUDPC were subjected to ANOVA,
and the treatment means were compared according to the LSD test at p = 0.05. To evaluate the annual
timing of fungicide application, the reduction in CLSO incidence (%) was subjected to ANOVA, and the
treatment means were also compared according to the LSD test at p = 0.05. To compare management
strategies, an index of fungicide application efficacy (IFAE) was calculated as the percentage of healthy
tissue (100-CLSO incidence) divided by the number of FAs. The IFAE of conservative and risky
strategies was divided by the IFAE of the traditional strategy to obtain the relative IFAE (RIFAE).
ANOVA was conducted to determine the differences between management strategies (independent
variable) using the CLSO incidence, FA, FA copper-based, IFAE and RIFAE as dependent variables.
To compare the reduction in FA only with copper-based compounds, data for the ecological orchards
were not considered because only copper-based compounds were allowed there. The averages of the
three management strategies were compared by LSD or Dunnett tests at p = 0.05. The last test was used
to compare the CLSO incidence of conservative and risky strategies against the traditional strategy in
each orchard and year. When the experiments were repeated, the data were combined after checking
the homogeneity of the experimental error variances by the F test. For ANOVA performance, in all cases,
data were tested for normality, pattern of residuals and homogeneity of variances, which indicated
their suitability for the statistical analysis without data transformations in all experiments. Data were
logarithmically transformed when necessary. Statistical analysis was performed using SPSS (LeOra
Software Inc., Berkeley, CA, USA, 2008) and Statistix 10 (Analytical software, Tallahassee, FL, USA,
2013).

3. Results

3.1. In Vitro Evaluation of Fungicides

3.1.1. Effect of Fungicides on Mycelial Growth

Probit regression analysis showed high EC50 values for all copper-based compounds, ranging
from 111.8 to >600 mg L−1 for copper hydroxide and copper sulphate, respectively. A broad range
of EC50 values was observed for the organic compounds, ranging from 2.7 to >600 mg L−1 for folpet
and captan, respectively. Concerning the systemic fungicides, very low EC50 values were obtained,
ranging from 0.1 mg L−1 for benomyl and pyraclostrobin + boscalid to 2.1 mg L−1 for difenoconazole.
The EC90 values of mycelial growth inhibition were always above the higher dosage tested, with the
exception of benomyl, mancozeb and copper hydroxide (Table 3).



Agronomy 2020, 10, 271 10 of 19

Table 3. Effect of fungicides on the inhibition of mycelial growth and conidial germination of
Peudocercospora cladosporioides in in vitro sensitivity tests. The pathogen isolate ILE40 and a conidial
suspension from olive leaves with disease symptoms were used, respectively, in each of the two trials.

Fungicides 1
Inhibition

Mycelial Growth Conidial Germination

EC50
2 EC90

3 EC50 EC90

Copper hydroxide 50% Cu WP 111.82 b 4 400.41 a 0.85 cd 15.03 a
Copper oxychloride 38% Cu WP 210.39 a >600 0.75 cd 13.05 a

Cuprous oxide 75% WP 172.14 ab >600 0.36 e 3.32 bc
Copper calcium sulfate 20% WP 223.15 a >600 0.80 cd 5.38 b

Copper sulphate 25% Cu WP >600 >600 0.08 gh 0.65 e
Captan 50% WP >600 >600 0.48 de 1.35 de
Maneb 80% WP 42.58 c >600 1.21 c 27.52 a

Mancozeb 80% WP 60.61 c 327.27 a 6.74 b >32
Folpet 50% WP 2.73 e >10 0.10 fg 0.59 e

Folpet 30% + Cuprous oxide 10% +
Copper calcium sulfate 10% WP 8.17 d >10 0.14 f 1.77 cd

Difenoconazole 25% EC 2.14 e >10 17.01 a >32
Kresoxim- methyl 50% WG 0.54 f >10 0.004 i 0.04 g

Pyraclostrobin 10% + Boscalid 20%
WG 0.12 g >10 0.002 j 0.01 h

Benomyl 50% WP 0.11 g 0.89 b 0.05 h 0.15f
1 WP, wettable powder; WG, water dispersible granule; EC, emulsifiable concentrate; EW, emulsion oil in water; SL,
soluble. The dose ranges evaluated in the different trials were: from 50 to 600 for mycelial growth in the first eight
fungicides, from 0.01 to 10 for mycelial growth in the remaining ones, and from 0.0001 to 32 for conidial germination
in all fungicides. 2 EC50: effective concentration (mg L−1) inhibiting 50% of mycelia growth or conidial germination.
3 EC90: effective concentration (mg L−1) inhibiting 90% of mycelia growth or conidial germination. 4 Means in
a column followed by the same letter do not differ significantly according to Fisher´s protected least significant
different (LSD) at p = 0.05.

3.1.2. Effect of Fungicides on Conidial Germination

Most fungicides are highly effective at inhibiting conidial germination. Pyraclostrobin + boscalid,
kresoxim-methyl, benomyl and copper sulphate obtained the lowest values of EC50 (<0.1 mg L−1),
while mancozeb and difenoconazole showed the highest EC50 (>5 mg L−1). In relation to the EC90

values, only those of difenoconazole and mancozeb were above the highest dose tested (Table 3).

3.2. Effect of Fungicides and Application Times in a Naturally Infected Orchard

Trial I. In general, the incidence of CLSO was low during the two years of the trial and gradually
decreased from the first to the last evaluation for all fungicidal treatments, but there was no such
decrease in the control treatment (p < 0.001). No CLSO incidence was observed in the last evaluation
with four of the five fungicides. Among the fungicides, difenoconazole + cuprous oxide exhibited the
lowest decrease in CLSO incidence (Figure 3). The AUDPCs of all fungicides were lower than those of
the control (p < 0.001).
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Three applications per treatment were performed in March, May and October. Columns represent 
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last evaluation according to Fisher´s protected LSD test at P = 0.05. 

Trial II. No CLSO incidence was observed in the last evaluation, with five of the seven timings 
of fungicide application (Figure 2). The CLSO incidence decreased at the end of the experiment but 
in different amounts. All the timings of fungicide applications reduced the CLSO incidence with 
respect to the control (P < 0.001). Applications in March and October were more effective than those 
in May (Figure 4). 
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Figure 3. Incidence of cercospora leaf spot of olive (CLSO) at the four sampling times (1 = May 2003,
2 = November 2003, 3 = March 2004 and 4 = May 2004) in olive trees treated with different fungicides.
Three applications per treatment were performed in March, May and October. Columns represent the
average of 14 olive trees. Vertical bars are the standard error (SE) of the means. Fungicides with the
same letter did not show differences in the reduction in CLSO incidence among the first and the last
evaluation according to Fisher´s protected LSD test at p = 0.05.

Trial II. No CLSO incidence was observed in the last evaluation, with five of the seven timings of
fungicide application (Figure 2). The CLSO incidence decreased at the end of the experiment but in
different amounts. All the timings of fungicide applications reduced the CLSO incidence with respect
to the control (p < 0.001). Applications in March and October were more effective than those in May
(Figure 4).
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other strategies, especially due to the increase in CLSO incidence (Figure 6). 

Figure 4. Incidence of cercospora leaf spot of olive (CLSO) at the beginning (May 2003) and at the end
(May 2004) of Trial II for each fungicide application timing. All olive trees were treated with copper
oxide (Nordox® super 75). Columns represent the average of the evaluations conducted in 14 olive
trees. Vertical bars are the standard error of the means. Annual treatment times with the same letter
did not show differences in reduction in CLSO incidence among the evaluations according to Fisher´s
protected LSD test at p = 0.05.

3.3. Effectiveness of Management Strategies against P. cladosporioides

There was an important reduction in the number of FAs over the four years of the study with both
the conservative (123 FAs, 15.8% reduction) and risky strategies (98 FAs, 32.9% reduction) with respect
to the traditional strategy (146 FAs) (p = 0.001). This reduction was greater when only the number of
applications with copper-based fungicides was measured (32.0% and 50.0% for the conservative and
risky strategy, respectively) (p = 0.003). The reduction in the number of FAs was variable, depending
on the selected orchard (Table 4) and the season (Figure 5). For instance, the FA reduction using
the conservative or risky strategies was 60.1% or 39.9%, respectively, in orchard 8. In contrast, the
conservative strategy increased the number of FAs by 14.6% in orchard 10. Since the 2014/2015 season,
the reduction in applications in the directed strategies was lower than those in the other strategies,
especially due to the increase in CLSO incidence (Figure 6).
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Table 4. Relationship of the average number of fungicide applications (FA), incidence of cercospora leaf
spot of olive (CLSO incidence) and Index of Fungicide Application Efficacy (IFAE) per each orchard
and management strategy.

Orchard Strategy FA 1 CLSO Incidence (%) 2 IFAE 3 RIFAE 4

1 El Cañuelo Traditional 1.75 0.49 b5 56.86

Conservative 1.50 1.04 a 65.97 1.16

Risky 1.50 0.87 a 66.09 1.16

2 El Realengo Traditional 2.25 1.87 a 43.61

Conservative 2.25 1.87 a 43.61 1.00

Risky 1.75 1.87 a 56.07 1.29

3 El Realengo Traditional 2.00 1.85 b 49.08

Conservative 1.75 3.36 a 55.22 1.13

Risky 1.00 2.74 ab 97.26 1.98

4 El Realengo Traditional 3.67 0.84 a 27.02

Conservative 3.33 0.76 a 29.80 1.10

Risky 2.00 1.74 a 49.13 1.81

5 Fonte Dos Frades Traditional 5.00 1.22 a 19.76

Conservative 4.00 1.22 a 24.70 1.25

Risky 2.00 1.22 a 49.39 2.50

6 La Veguilla Traditional 2.50 1.14 b 39.54

Conservative 1.75 2.19 a 55.89 1.41

Risky 1.25 2.07 a 78.34 1.97

7 Linares Traditional 2.50 0.61 b 39.76

Conservative 2.50 0.62 b 39.75 1.00

Risky 1.75 1.87 a 56.07 1.41

8 Los Cansinos Traditional 3.33 0.04 a 30.02

Conservative 2.00 0.04 a 49.98 1.67

Risky 1.33 0.04 a 75.16 2.50

9 Malena de Castro Traditional 2.50 0.70 b 39.72

Conservative 2.25 2.06 a 43.53 1.10

Risky 2.00 2.53 a 48.74 1.23

10 Naranjilla Traditional 2.33 0.84 b 42.56

Conservative 2.67 2.03 a 36.69 0.86

Risky 2.33 1.02 b 42.48 1.00

11 Ribera Alta Traditional 3.25 2.50 a 30.00

Conservative 3.25 2.89 a 29.88 1.00

Risky 2.50 2.81 a 38.88 1.29

12 Todolivo Traditional 3.00 0.04 a 33.32

Conservative 2.00 0.04 a 49.98 1.50

Risky 1.67 0.04 a 59.86 1.80

13 Aljarafe Traditional 4.33 0.81 b 22.91

Conservative 3.33 1.48 a 29.59 1.29
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Table 4. Cont.

Orchard Strategy FA 1 CLSO Incidence (%) 2 IFAE 3 RIFAE 4

14 Los Ballesteros Traditional 5.00 0.81 a 19.84

Conservative 5.00 0.60 a 19.88 1.00

Risky 3.33 0.51 a 29.88 1.51

15 Cortijo de Guadiana Traditional 2.50 0.21 a 39.92

Conservative 2.00 0.28 a 49.86 1.25

Risky 1.50 0.18 a 66.55 1.67

16 Cortijo de Guadiana Traditional 2.00 0.21 a 49.90

Conservative 0.50 0.31 a 199.38 4.00
1 Average of fungicide applications during the seasons in which each experimental orchard was maintained. 2

Average of CLSO incidences calculated on the evaluations carried out during the whole period of each experimental
field. 3 IFAE: healthy tissue percentage (100-CLSO incidence) divided by FAs. The units are the percentage of
healthy tissue per FA. Authors considered that the fungicides strategies with IFAE < 25 (a fungicide application
implies a protection lower than 25% of the all canopy leaves) did not achieve a successful control of CLSO. The IFAE
average of the traditional strategy was lower (37.60) than the IFAE average of the conservative and risky strategies
(53.27 and 67.42, respectively) (p = 0.011). 4 Relative IFAE (RIFAE): IFAE of conservative or risky strategies divided
by the IFAE of the traditional one. There were no significant differences between conservative and risky strategies
(p = 0.175). 5 For each orchard, means followed by the same letter are not significantly different according to the
Fisher’s protected LSD test (p = 0.05).
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Figure 5. Four-season reduction in the total number of fungicide applications (a) and fungicide
applications with copper as the active ingredient (b) in the conservative and risky strategies in
comparison to the fungicide applications in the traditional strategy used as the control. There was
a reduction in applications in terms of both the total and copper-based fungicides between the
designed-by-authors strategies and the traditional strategy (p = 0.001).
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Figure 6. Four-season response of the conservative and risky strategies (CS and RS, respectively) in
comparison to the traditional strategy used as the control. The percentage of orchards in which the
incidence of cercospora leaf spot (CLSO) decreased (white area), remained (grey area) or increased
(black area), based on Dunn test (p = 0.05), with respect to the traditional strategy is shown.

During the trial period, the average CLSO incidence in all orchards ranged from 0.04% (orchards
8 and 12, with the three strategies) to 3.4% (orchard 3, conservative strategy) (Table 4). The CLSO
incidence was lower when the traditional strategy was conducted (0.88%) in comparison to when
the conservative and risk strategies were conducted (1.32% and 1.36%, respectively) (p = 0.007).
However, the CLSO incidence did not increase in 88.5% and 78.9% of all the evaluations when
the conservative and risky strategies, respectively, were conducted. In the last season (2015/2016),
a decrease in CLSO incidence was achieved with both strategies (16.7% and 8.3% for conservative
and risky ones, respectively) (Figure 4). The percentage of healthy tissue per FA, expressed by the
IFAE, ranged from 19.84 (orchard 14, traditional strategy) to 199.38 (orchard 16, conservative strategy).
The IFAE of the traditional strategy was lower (37.6%) than that of the conservative and risky ones
(53.3% and 63.4%, respectively) (p = 0.011). The relative IFAE (RIFAE) of the conservative strategies
obtained in the orchards with low, mild and high risks of disease infection were 1.86, 1.16 and 1.08,
respectively, although there were no significant differences between them (p = 0.175); with the risky
strategy, these values were 1.72, 1.66 and 1.57, respectively (p = 0.923). The highest and the lowest
RIFAE were obtained in orchard 16 (4.00) and orchard 10 (0.86), respectively, with the conservative
strategy (Table 4).

4. Discussion

In this work, a total of 16 commercial fungicides, including inorganic copper compounds and
organic compounds with systemic or protectant activity, were tested for their effect on mycelial growth
and conidial germination of P. cladosporioides. Secondly, the most effective fungicides were selected
for further studies under natural conditions to evaluate fungicide timing and management strategies.
To our knowledge, few studies on chemical control against CLSO have been performed worldwide.
Consequently, the current study provides helpful information to optimize fungicide applications by
implementing the principles of the IPM [31,39].

Several authors have performed previous studies indicating that copper is the most effective active
ingredient against CLSO [40–43]. Nevertheless, systemic fungicides had the highest rates of mycelial
growth inhibition based on our results. Among them, strobilurin compounds, pyraclostrobin + boscalid,
and benomyl were able to inhibit the mycelial growth of P. cladosporioides even at very low doses.
Difenoconazole and folpet also showed good inhibitory effects on mycelial growth, but copper-based
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compounds were the least effective, with high EC50 values. In comparison to protective fungicides
(inorganic copper-based and organic fungicides), systemic fungicides provide a higher efficacy in
inhibiting mycelial growth [44–46]. However, these differences between systemic and protective
fungicides should not be directly extrapolated to field conditions because protective fungicides have
a marked effect on conidial germination [47].

Regarding the fungicides effect on the conidial germination, the results varied in comparison with
those observed for the inhibition of mycelial growth. The results revealed pyraclostrobin + boscalid
mixture and the organic fungicide folpet as the most effective. Among the copper-based compounds,
copper sulphate and cuprous oxide were the most effective against conidial germination. In this case,
the EC50 values did not range as markedly as the EC50 values in terms of mycelial growth inhibition.
The efficacy of copper sulfate has previously been reported under field conditions [15].

All the fungicides tested in naturally infected orchards reduced disease incidence. The efficacy of
pyraclostrobin + boscalid was remarkable, even without the addition of copper-based compounds,
because it allowed a reduction in the copper fungicide applications. Thus, it has been previously
proposed that other active ingredients control CLSO, such as thiopron (a sulphur-based product) [15].
Moreover, the FA of an appropriate fungicide at optimal times is a key point in IPM. The results of this
trial are not highly conclusive in terms of making decisions on FAs against CLSO because of the low
CLSO incidence registered in the experiment, which are related to unfavorable climatic conditions for
CLSO epidemics (i.e., lack of match between days with rainfall and T > 10ºC). Perhaps because of this
factor, a low CLSO incidence was observed even with only one FA per year, whereas other authors have
cited two applications [40,41,48] or even more than two FAs [15,41,49] as required to control CLSO in
susceptible olive cultivars. Nevertheless, our results suggest that FAs conducted in October or March
are more effective than those conducted in May. FAs at the end of October would be useful for protecting
the leaves at the beginning of conidial production under natural conditions [5], whereas treatments in
February–March would have to act at the end of epidemic development, when temperature rises up
and might concur with rain events. In contrast, weather conditions in May might be too hot and dry to
promote P. cladosporioides infection given Mediterranean climate conditions [5].

The five rules of FA decision-making could be grouped based on two types of variables related
to the presence of the pathogen (i and ii), one variable dependent on human intervention (iii) and
two environmental variables related to temperature and rainfall (iv and v). Olive tree phenology
was indirectly considered by matching rules of conservative and risk management in spring, when
unprotected young leaves appear, which are more susceptible to CLSO [5]. Therefore, the four
components of the disease tetrahedron were considered [50]. The results showed that copper
applications could be strongly reduced by conservative and risky management strategies. The reduction
in this active ingredient in crop protection is one of the goals of Directive 2009/128/EC of the European
Union given the impact of copper on nature [22,51]. Moreover, an important reduction in the total
amount of fungicides, including systemic ones, was also achieved. Despite the reduction in the number
of FA, the percentage of evaluations in which CLSO incidence increased with respect to the traditional
strategy was low. Although the average of the CLSO incidence in the traditional strategy (0.88%) was
lower than that in the conservative and risky ones (1.32% and 1.36%, respectively), these CLSO scarcely
justify a higher number of FAs based on the concept of economic threshold of damages [52]. Thus,
our results are helpful for olive growers in terms of establishing IPM against olive foliar diseases and
decreasing the number of FAs, mainly with copper-based compounds.

Due to the lack of information with respect to CLSO incidence and yield or economic losses,
ANOVA of dependent variables CLSO incidence, IFAE and RIFAE were performed to compare
strategies. IFAE, from which RIFAE was calculated, showed better results with the strategies designed
by the authors (conservative and risky ones) than those with the traditional strategy. Although without
significant differences, RIFAE was higher in the orchards with low risk for the development of aerial
olive diseases than in the other orchards. These results showed that a reduction in FAs is feasible,
especially in olive orchards not located under very favorable conditions for CLSO development,
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such as geographical zones with mild temperatures, high rainfall and relative humidity or those close
to troughs or poorly ventilated areas. Nevertheless, further studies are needed to (i) determine these
favorable conditions and predict CLSO epidemics and (ii) identify accurate levels of CLSO incidence
that justify the FAs. Both achievements may optimize decision making through advanced disease and
crop-loss models [53] or fuzzy control systems [54], complementing or improving the results obtained
in this study using decision-making rules.

Finally, this study shows the efficacy of several fungicides and provides helpful information about
dates and rules for their application under field conditions. Furthermore, a reduction in fungicide
application is possible when controlling CLSO through IPM. Future work on CLSO epidemiology and
cultivar resistance could complement current knowledge about this disease.
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