Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout
2.2. Characterization of Soil and Organic Amendments
2.3. Analysis of Plant Growth Parameters
2.4. Analysis of Nitrogen, Nitrate, and Pigment Leaf Content
2.5. Statistical Analysis
3. Results
3.1. Plant Growth Parameters
3.2. Total N and NO3− Leaf Content
3.3. Pigment Leaf Content
4. Discussion
4.1. Influence of Organic Amendments on Plant Growth
4.2. Influence of Organic Amendments on Nitrogen, Nitrate and Pigment Leaf Content
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ivanović, L.; Milašević, I.; Topalović, A.; Ðurović, D.; Mugoša, B.; Knežević, M.; Vrvić, M. Nutritional and phytochemical content of Swiss chard from Montenegro, under different fertilization and irrigation treatments. Brit. Food J. 2019, 121, 411–425. [Google Scholar] [CrossRef]
- Miceli, A.; Miceli, C. Effect of nitrogen fertilization on the quality of Swiss chard at harvest and during storage as minimally processed produce. J. Food Qual. 2014, 37, 125–134. [Google Scholar] [CrossRef]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Pyo, Y.H.; Lee, T.C.; Logendra, L.; Rosen, R.T. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 2004, 85, 19–26. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Pokluda, R.; Kuben, J. Comparison of selected Swiss chard (Beta vulgaris ssp. cicla L.) varieties. Hort. Sci. 2002, 29, 114–118. [Google Scholar]
- Kolota, E.; Adamczewska-Sowińska, K.; Czerniak, K. Yield and nutritional value of Swiss Chard Grown for Summer and Autumn Harvest. J. Agric. Sci. 2010, 2, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Libutti, A.; Monteleone, M. Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions Agric. Water Manag. 2017, 186, 40–50. [Google Scholar]
- Dzida, K.; Pitura, K. The influence of varied nitrogen fertilization on yield and chemical composition of Swiss chard (Beta vulgaris L. var. cicla L.). Acta Sci. Pol.-Hortorum 2008, 7, 15–24. [Google Scholar]
- Engelbrecht, G.M.; Ceronio, G.M.; Motseki, P.C. Effect of nitrogen levels and sources on production of Swiss Chard (Beta vulgaris var. cicla). S. Afr. J. Plant Soil 2010, 27, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Razgallah, N.; Chikh-Rouhou, H.; Boughattas, I.; M’hamdi, M. Nitrates contents in some vegetables in Tunisia. Arch. Agron. Soil Sci. 2016, 62, 473–483. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment: A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.D.; Nair, P.K.R.; Dari, B.; Freitas, A.M.; Chatterjee, N.; Pinheiro, F.M. Biochar in the Agroecosystem-Climate-Change-Sustainability Nexus. Front. Plant Sci. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Demiraj, E.; Libutti, A.; Malltezi, J.; Rroço, E.; Brahushi, F.; Monteleone, M.; Sulçe, S. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania. Ital. J. Agron. 2018, 13, 1136. [Google Scholar] [CrossRef] [Green Version]
- Libutti, A.; Mucci, M.; Francavilla, M.; Monteleone, M. Effect of biochar amendment on nitrate retention in a silty clay loam soil. Ital. J. Agron. 2016, 11, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, V.; Bonato, S.; Nicoletto, C.; Zanin, G. Spent mushroom substrate as organic fertilizer: Vegetable organic trials. Acta Hortic. 2016, 1146, 49–56. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis-biochar based system integrated in an olive farm in simbiosi with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Monlau, F.; Francavilla, M.; Sambusiti, C.; Antoniou, N.; Solhy, A.; Libutti, A.; Zabaniotou, A.; Barakat, A.; Monteleone, M. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energy 2016, 169, 652–662. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.K.; Francavilla, M.; Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Conceptual vision of bioenergy sector development in Mediterranean regions based on decentralized thermochemical systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
- Libutti, A.; Cammerino, A.R.B.; Francavilla, M.; Massimo, M. Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Subedi, R.; Bertora, C.; Zavattaro, L.; Grignani, C. Crop response to soils amended with biochar: Expected benefits and unintended, risks. Ital. J. Agron 2017, 12, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Paredes, C.; Cegarra, J.; Bernal, M.P.; Roig, A. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Environ. Int. 2005, 31, 305–312. [Google Scholar] [CrossRef]
- Abbey, L.; Young, C.; Teitel-Payne, R.; Howe, K. Evaluation of proportions of vermicompost and coir in a medium for container-grown Swiss chard. Int. J. Veg. Sci. 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Smith, D.C.; Beharee, V.; Hughes, J.C. The effects of compost produced by a simple composting procedure on the yields of Swiss chard (Beta vulgaris L. var. flavescens) and common bean (Phaseolus vulgaris L. var. nanus). Sci. Hortic. 2001, 91, 393–406. [Google Scholar]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, P.F.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Cai, Z.; Zhang, Y.; Liu, G.; Luo, X.; Zheng, H. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere 2019, 224, 151–161. [Google Scholar] [CrossRef]
- Carter, S.; Shackley, S.; Sohi, S.; Suy, T.B.; Haefele, S. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy 2013, 3, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate; USDA Circular 939; USDA: Washington, DC, USA, 1954; pp. 1–19.
- Walkley, A.; Black, I.A. An examination of the Degtjareff method fordetermining soil organic matter and a proposed modification of the chromicacid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis Part 3—Chemical Methods; SSSA Book Ser. No. 5; Sparks, D.L., Page, A.L., Johnston, C.T., Summ, M.E., Eds.; SSSA: Madison, WI, USA, 1996; pp. 1058–1121. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen Inorganic Forms. In Methods of Soil Analysis Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of America Publisher: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Chan, K.Y.; Xu, K. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management. Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- EBC. European Biochar Certificate Guidelines for a Sustainable Production of Biochar; European Biochar Certificate (EBC): Arbaz, Switzerland, 2012. [Google Scholar]
- IBI. International Bichar Inititative, Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil; IBI-STD-2.0; IBI: Toronto, ON, Canada, 2014. [Google Scholar]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: Some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant-Tissue by Nitration of Salicylic-Acid. Commun. Soil Sci. Plan Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Doan, T.T.; des Tureaux, T.H.; Rumperl, C.; Janeau, J.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Garcia-Ruiz, R.; Ochoa, V.; Gómez-Muñoz, B.; Alvarez de la Puente, J.M. Does the composted olive mill pomace increase the sustainable N use of olive oil cropping? In Proceedings of the 16th Nitrogen Workshop on Connecting Different Scales of Nitrogen Use in Agriculture, Torino, Italy, 28 June–1 July 2009. [Google Scholar]
- Morra, L.; Pizzolongo, G.; Baiano, S.; Pentangelo, A. Comparison of olive pomace and biowaste composts in vegetable cropping systems. Ital. J. Agron. 2013, 8, 206–216. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Fu, S.; Méndez, A.; Gascó, G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J. Soil. Sediments 2014, 14, 483–494. [Google Scholar] [CrossRef]
- Jones, L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmermann, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Chatterjee, S.; Santos, F.; Abiven, S.; Itin, B.; Stark, R.E.; Jeffrey, A.B. Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry. Org. Geochem. 2012, 51, 35–44. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.; Williams, P.T.; Forster, P.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Meschewski, E.; Holm, N.; Sharma, B.K.; Spokas, K.; Minalt, N.; Kelly, J.J. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth. Chemosphere 2019, 228, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Olszyk, D.; Johnson, M.; Shiroyama, T.; Novak, J.; Cantrell, K.; Watts, D. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot; Society for Environmental Toxicology and Chemistry, US Environmental Protection Agency: Vancouver, BC, Canada, 2014. [Google Scholar]
- Gravel, V.; Dorais, M.; Menard, C. Organic potted plants amended with biochar: Its effect on growth and Pythium colonization. Can. J. Plant Sci. 2013, 93, 12171227. [Google Scholar] [CrossRef]
- Khan, T.F.; Salma, M.U.; Hossain, S.A. Impacts of Different Sources of Biochar on Plant Growth Characteristics. Am. J. Plant Sci. 2018, 9, 1922–1934. [Google Scholar] [CrossRef] [Green Version]
- Revell, K.T.; Maguire, R.O.; Agblevor, F.A. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci. 2012, 177, 402–408. [Google Scholar] [CrossRef]
- Awadi, Y.M.; Lee, S.S.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Seop, K.I.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M.; et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Clean. Prod. 2017, 156, 181–188. [Google Scholar] [CrossRef]
- McClellan, T.; Deenik, J.; Uehara, G.; Antal, M. Effects of Flashed Carbonized Macadamia Nutshell Charcoal on Plant Growth and Soil Chemical Properties. In Proceedings of the ASA-CSSA-SSA International Annual Meetings, New Orleans, LA, USA, 6 November 2007; p. 194. [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agriculture benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 11–18. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-term CO2mineralization after additions of biochar and switchgrass to aTypic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira, J.; Steiner, C.; Nehls, T.; Zechs, W.; Glaser, B. Nutrient availability and Leaching in the Archaeological Anthrosols and Ferrosol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Hernández, A.; Castillo, H.; Ojeda, D.; Arras, A.; López, J.; Sánchez, E. Effect of vermicompost and compost on lettuce production. Chil. J. Agric. Res. 2010, 70, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Helgason, B.; Larney, F.L.; Janzen, H.H.; Olson, B.M. Nitrogen dynamics in soil amended with composted cattle manure. Can. J. Soil Sci. 2007, 87, 43–50. [Google Scholar]
- Wolkowski, R. Nitrogen management considerations for landspreading municipal solid waste compost. J. Environ. Qual. 2003, 32, 1844–1850. [Google Scholar] [CrossRef]
- Hartl, W.; Erhart, E. Crop nitrogen recovery and soil nitrogen dynamics in a 10- year field experiment with biowaste compost. J. Plant Nutr. Soil Sci. 2005, 168, 781–788. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-term and residual availability of nitrogen after long-term application of organic amendments on arable land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Echer, M.M.; Zoz, T.; Rossol, C.D.; Steiner, F.; Castagnara, D.D.; Lana, M.C. Plant density and nitrogen fertilization in Swiss chard. Hortic. Bras. 2012, 30, 703–707. [Google Scholar] [CrossRef]
- EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the European commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 2008, 6, 689. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Herencia, J.F.; Ruiz-Porras, J.C.; Melero, S.; Garcia-Galavis, P.A.; Morillo, E.; Maqueda, C. comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentration and yield. Agron. J. 2007, 99, 973–983. [Google Scholar] [CrossRef]
- Matallana- Gonzales, M.C.; Martinez-Tomè, M.J.; Isasa, M.E.T. Nitrate and nitrite content in organically cultivated vegetables. Food Addit. Contam. Part B 2010, 3, 19–29. [Google Scholar] [CrossRef]
- Bosch, M.N.; Alvarez, J.M.; Rodriguez, M.L.P. Influencia del tipo de abono sobre la acumulacion de nitrato en vegetales. Ann. Bromatol. 1991, 2, 215–220. [Google Scholar]
- Raigon, M.D.; Gento, A.D.; Sierra, J.M.C.; Vidal, E. Comparacion de parametros de calida en hortalizas de hoja ancha bajo sistemas de produccion ecologica y convencional. Agric. Vergel 2002, 241, 26–32. [Google Scholar]
- Barcelos, C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Bryla, D.R. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach. Int. J. Plant. Biol. 2016, 7, 6325. [Google Scholar] [CrossRef] [Green Version]
- Conesa, E.; Niñirola, D.; Vicente, M.J.; Ochoa, J.; Bañón, S.; Fernández, J.A. The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system. Acta Hortic. 2008, 843, 269–273. [Google Scholar] [CrossRef]
- Tischner, R. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 2000, 23, 1005–1024. [Google Scholar] [CrossRef]
- Liu, Y.J.; Tong, Y.P.; Zhu, Y.G.; Ding, H.; Smith, E.A. Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. J. Plant Nutr. 2006, 29, 1207–1217. [Google Scholar] [CrossRef]
- Castellanos, J.Z.; Uvalle-Bueno, J.X.; Aguilar-Santelises, Y.A. Manual de Interpretación de Análisis de Suelos, Aguas Agrícolas, Plantas ECP, 2nd ed.; INIFAP: Chapingo, Mexico, 2000. [Google Scholar]
Property | Value |
---|---|
Clay (%) | 22.40 ± 0.72 |
Silt (%) | 11.50 ± 0.81 |
Sand (%) | 66.10 ± 0.81 |
pH (-) | 7.50 ± 0.08 |
EC (dS m−1) | 0.42 ± 0.12 |
Olsen P2O5 (mg kg−1) | 28.00 ± 0.61 |
Organic carbon (g kg−1) | 7.90 ± 0.74 |
Organic matter (%) | 1.40 ± 0.74 |
C/N (-) | 7.20 ± 0.82 |
Total nitrogen (‰) | 1.10 ± 0.53 |
NO3− (mg kg−1) | 48.00 ± 0.32 |
Na+ (mg kg−1) | 25.00 ± 0.38 |
Ca2+ (mg kg−1) | 3289.00 ± 0.89 |
Mg2+ (mg kg−1) | 215.00 ± 0.91 |
K+ (mg kg−1) | 368.00 ± 0.78 |
Property | B | COP | CW | CD1 | CD2 |
---|---|---|---|---|---|
pH | 11.26 ± 0.07 | 7.92 ± 0.03 | 7.64 ± 0.07 | 6.89 ± 0.02 | 8.74 ± 0.04 |
EC (dS m−1) | 3.63 ± 0.15 | 2.35 ± 0.05 | 2.65 ± 0.03 | 4.33 ± 0.05 | 1.95 ± 0.01 |
Fixed carbon (%) | 69.77 ± 0.04 | 3.93 ± 0.10 | 0.53 ± 0.04 | 2.35 ± 0.02 | 2.37 ± 0.04 |
Volatile solids (%) | 16.95 ± 0.03 | 53.87 ± 0.03 | 32.34 ± 0.09 | 44.61 ± 0.14 | 69.77 ± 0.01 |
Ash (%) | 13.28 ± 0.03 | 42.20 ± 0.11 | 67.13 ± 0.09 | 53.04 ± 0.10 | 27.85 ± 0.12 |
Moisture (%) | 5.22 ± 0.04 | 28.75 ± 0.10 | 35.45 ± 0.08 | 54.55 ± 0.40 | 33.96 ± 0.10 |
C (%) | 67.70 ± 0.30 | 60.90 ± 1.23 | 25.20 ± 0.10 | 24.50 ± 0.63 | 34.50 ± 0.34 |
H (%) | 2.36 ± 0.06 | 4.55 ± 0.22 | 1.36 ± 0.17 | 2.17 ± 0.20 | 4.44 ± 0.06 |
N (%) | 1.48 ± 0.02 | 2.61 ± 0.11 | 1.62 ± 0.01 | 2.27 ± 0.12 | 2.59 ± 0.02 |
Corg (%) | 66.74 ± 0.04 | 56.30 ± 0.14 | 20.05 ± 0.18 | 23.33 ± 0.58 | 26.56 ± 0.63 |
C/N | 45.10 ± 0.76 | 21.57 ± 0.84 | 12.38 ± 0.08 | 10.31 ± 0.56 | 10.25 ± 0.29 |
H/Corg ratio | 0.42 ± 0.01 | - | - | - | - |
Amendment | Dose (Kg N ha−1) | First Leaf Cut | Second Leaf Cut | ||
---|---|---|---|---|---|
SPADleaf | SPADplant | SPAD leaf | SPAD plant | ||
NT | - | 32.8 ± 2.9 | 25.9 ± 2.6 | 36.1 ± 1.9 | 32.8 ± 2.0 |
average | 32.8 B | 25.9 B | 36.0 C | 32.8 C | |
B | 140 | 35.3 ± 1.9 | 27.1 ± 0.8 | 36.7 ± 1.8 | 34.1 ± 1.4 |
280 | 32.9 ± 2.4 | 26.6 ± 1.5 | 35.3 ± 1.1 | 32.1 ± 0.9 | |
average | 34.1 AB | 26.8 AB | 36.0 C | 33.0 C | |
COP | 140 | 39.7 ± 2.3 | 28.7 ± 2.1 | 35.0 ± 0.8 | 31.5 ± 0.7 |
180 | 40.0 ± 2.7 | 29.4 ± 2.1 | 39.3 ± 1.6 | 35.6 ± 1.0 | |
average | 39.8 AB | 29.0 AB | 37.1 BC | 33.5 BC | |
CW | 140 | 42.4 ± 1.6 | 32.9 ± 2.0 | 42.0 ± 1.1 | 36.1 ± 1.4 |
280 | 39.4 ± 2.7 | 30.6 ± 0.8 | 39.8 ± 0.9 | 35.9 ± 1.1 | |
average | 40.9 A | 31.8 A | 40.9 AB | 36.0 AB | |
CD1 | 140 | 36.9 ± 0.7 | 30.7 ± 1.1 | 41.0 ± 1.2 | 36.8 ± 0.8 |
280 | 41.2 ± 4.3 | 30.6 ± 1.7 | 43.0 ± 1.2 | 39.5 ± 1.2 | |
average | 39.1 AB | 30.6 AB | 42.0 A | 38.2 A | |
CD2 | 140 | 36.7 ± 0.7 | 26.6 ± 0.6 | 39.9 ± 1.6 | 35.4 ± 0.8 |
280 | 42.3 ± 2.7 | 29.5 ± 2.5 | 39.6 ± 1.9 | 36.1 ± 0.6 | |
average | 39.5 AB | 28.0 AB | 39.8 AB | 35.8 AB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy 2020, 10, 346. https://doi.org/10.3390/agronomy10030346
Libutti A, Trotta V, Rivelli AR. Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy. 2020; 10(3):346. https://doi.org/10.3390/agronomy10030346
Chicago/Turabian StyleLibutti, Angela, Vincenzo Trotta, and Anna Rita Rivelli. 2020. "Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla)" Agronomy 10, no. 3: 346. https://doi.org/10.3390/agronomy10030346
APA StyleLibutti, A., Trotta, V., & Rivelli, A. R. (2020). Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy, 10(3), 346. https://doi.org/10.3390/agronomy10030346