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Abstract: Modern plant breeding practices have narrowed the genetic base of wheat throughout
the world, increasing crop vulnerability. Therefore, there is clearly a need for introducing new
germplasm in breeding programs to search for variability related to traits of agronomic interest
for wheat improvement. The existence of subsets of accessions (core collections) that represent the
diversity conserved in germplasm collections is a favored approach for breeders to explore novel
variation and enhance the use of germplasm. In this study, a core collection of Spanish landraces
of bread wheat has been created using high-throughput genotyping technologies (DArTseq), which
yielded more than 50 K molecular markers. This marker system not only provides a robust estimate
of the diversity, but also information about its distribution in the genome. Two core collections of
94 entries were created by using two common sampling strategies: the maximization strategy and
the population structure-based method. Both core collections showed high geographic, phenotypic
and genetic representativeness, but the collection obtained with the maximization strategy captured
better the diversity displayed by the initial collection. This core collection, which includes a broad
range of adapted genotypes, can be efficiently utilized for mining new alleles for useful traits in
wheat breeding.
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1. Introduction

Bread wheat (Triticum aestivum L.) is a major staple food crop that is widely grown throughout the
world. Currently, in order to meet the increasing requirements of a growing population and tackle
the challenges of global climate change, the genetic improvement of this crop must achieve several
goals, including higher yield, adaptation to specific environments, tolerance to biotic stresses and
quality enhancement. Modern plant breeding practices, in which only a small number of elite cultivars
are included in breeding programs, have narrowed the genetic base of wheat throughout the world,
increasing crop vulnerability. Therefore, there is clearly a need for introducing new germplasm in
breeding programs so as to broaden the gene pool in which to search for new traits of agronomic
interest necessary for wheat improvement. Wheat landraces are among the most suitable germplasm
resource where the genetic variation required to that end can be searched [1] and utilized through a
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pre-breeding process. These locally adapted varieties, traditionally grown with less artificial resource
inputs, are genetically diverse repositories of unique traits that have evolved in local environments,
which cover a wide range of biotic and abiotic conditions [2,3]. Different studies have shown that
Mediterranean wheat landraces represent a particularly important group of genetic resources, where
extensive genetic variability as well as tolerance to drought, resistance to diseases and adaptability to
low-input farming systems have been documented (see review [3]).

However, the use of wheat landraces in breeding is limited because the accessions preserved in
Genebanks have not been globally characterized, leading to a scarcity of genotypic and phenotypic
information. In particular, the lack of genome-wide genotypic information due to the characteristics
of the wheat genome (large size and polyploidy-related complexity), along with phenotyping costs
for specific traits, represent the main limiting factors for the use of such germplasm in breeding
programs. It is, therefore, essential to generate subsets of accessions of a suitable size to represent
the diversity conserved in germplasm collections, facilitating the availability of fine phenotyping for
breeders. This approach is currently being pursued in some international breeding programs, as in the
CIMMYT Seeds of Discovery program [4]. In this context, core collections, defined as a limited set of
accessions chosen to represent at least 70% of the genetic variation of an entire collection with minimal
redundancy, can be a powerful tool for increasing the efficiency of utilization of the germplasm stored
in Genebanks [5,6].

Although conservation of allelic variation is important, the challenge of preserving quantitative
genetic variation in conjunction with marker variation should be considered. Indeed, the final overall
objective of a core collection is its effective use in breeding programs. The evaluation of the quality of
the collection with phenotypic and genotypic data is, therefore, essential to confirm that prevalent
variation types are preserved in the core collection [7]. There are two basic requirements for setting
up useful core collections. The first concerns the use of efficient marker systems for unravelling the
diversity of the collection. The second relates to appropriate sampling strategies to retain maximum
diversity. To estimate the diversity of a collection, genotypic values are preferred over phenotypic
traits to minimize genotype × environmental (GE) interactions [8]. The assessment of genome-wide
diversity by genotyping by sequencing (GBS) methods provides a robust estimate of diversity and
has been increasingly adopted as a fast, high-throughput cost-effective tool for whole-genome genetic
diversity analysis in large germplasm sets [9]. Moreover, this approach may reveal new alleles in
wheat germplasm that might exhibit a high value for prebreeding [10–12]. DArTseq markers, based
on GBS [13], efficiently target low-copy-number sequences via a complexity reduction method and
provide data at a more affordable cost, especially in complex polyploid species such as wheat [14]
where they have been extensively used [15].

Regarding sampling strategies, the most common approaches using molecular markers are the
M (maximization) strategy [16], and stratified sampling [6,16,17]. In the M-strategy, accessions are
directly selected from the whole collection by maximizing the probability of retaining all observed
alleles in order to construct cores with high allelic richness [16]. This strategy, based on the existence
of correlations (shared coancestry) among marker and target loci, reduces the degree of redundancy
in the core collection and leads to a more effective capture of localized, high frequency alleles [18].
On the other hand, stratified sampling requires a previous knowledge of the genetic structure of the
collection; all genetic groups should contribute to the core collection with the goal of optimizing the
representativeness of the genetic diversity in the core collection. Different allocation strategies can
be implemented to decide the number of accessions to be selected per group. The H methodology
determines the size of the sample per group in proportion to their within group genetic diversity,
whereas the D method determines the size in proportion to a genetic distance and/or allele diversity
index within the group [19]. The use of a diversity index seems to be more effective in maximizing
allele richness, especially the expected heterozygosity, which leads to core subsets less likely to be
homozygous for a number of different loci [20,21]. The studies that compare the maximization and the
stratified sampling strategies have reported that stratified sampling used in conjunction with the D
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method formed core collections that had higher average genetic distances between genotypes, whereas
the M-strategy captured more allelic diversity [20,21].

There are several computer programs to aid in core collection design. The Core Hunter algorithm
has proved to be a fast and powerful method for designating core collections with increased genetic
diversity, which can be applied with or without stratification of the whole collection [21–23]. Core Hunter
has additional advantages: repeating the selection process produces a consistent solution, it is freely
available and it is less time-consuming than other algorithms [21,22].

The objectives of the research were (a) to apply DArTseq GBS technology to provide a molecular
basis for the design of a core collection of Spanish wheat landraces using the two most common
approaches, M-strategy and stratified sampling, and (b) to evaluate the quality of the resulting core
collections in order to select the most appropriate for a more efficient use of this germplasm in breeding.
The use of the GBS technology has allowed the selection of a core collection based on more than 50K
molecular markers distributed along the whole genome, and the detection of the presence of genomic
regions where the different sampling methods employed performed differently. The results showed
that the core collection created with the M-strategy using the Core Hunter algorithm performed better
at retaining the diversity available in the initial collection.

2. Materials and Methods

2.1. Materials

The Spanish National Plant Genetic Resources Centre, CRF-INIA (Centro de Recursos Fitogenéticos,
INIA, Madrid), maintains the national collection composed of 522 Spanish landraces of Triticum aestivum
subsp. vulgare (Vill.). From this collection, a total of 189 genotypes were selected based on their
collection site data (altitude, longitude, latitude [24]) and morphological spike traits (see Supplementary
Tables S1 and S2) to represent the available diversity [25]. Homozygous lines were derived from
these selected genotypes by collecting single bagged spikes from single selected plants during three
generations. These 189 genotypes constituted the primary subset collection (PS) from which the entries
for the final core collection were selected.

In the present study, the term “accessions” refer to genotypes that constitute the PS and “entries”
are genotypes of the core collection [26].

2.2. Genetic and Phenotypic Characterization

High-throughput genotyping data for the PS accessions were obtained by DArTseq GBS technology
at SAGA (Genetic Analysis Service for Agriculture, Mexico City, Mexico) as described in Pascual et
al. [27]. This genotyping technology produces two different sets of markers: SNPs (Single Nucleotide
Polymorphisms) and PAVs (Presence Absence Variants), from now on referred as DArTs (Diversity
Arrays Technology markers). For this study, we selected a total of 59,276 DArTs and 14,830 SNPs,
which were obtained after filtering out the markers that presented the same allelic profile or more than
10% missing data, as described by [27]. In that study, the genetic structure of the 189 accessions of the
present research were analysed based on DArT markers, and the allelic profiles for the vernalization
gene Vrn-A1 and the Glu-1 homoeoloci, determinants of wheat quality [28], were obtained. Both winter
and spring landraces are included in the PS [27].

For phenotypic characterization, the accessions were sown in an augmented design during the
season 2016–2017 at Alcala de Henares (Madrid). Seven qualitative (growth habit, awnedness, awn color,
spike density, glume hairiness, glume color and seed color) and five quantitative agromorphological
traits (days to heading and to maturity, plant height, spike length and spikelets per spike) were recorded
according to the International Board of Plant Genetic Resources (IBPGR) [29] from five different plants
in each accession.
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2.3. Creation of the Core Collections

In order to determine the optimal collection size, simulations for sizes ranging from 5% to 100% of
accessions included in the PS were performed with the DArT markers in the software Bio-R [30], which
provides a graphical interface for the Core Hunter algorithm [21]. For simulations, the heterozygosity
of the selected collections (HE = 1) was maximized, while the default values for the rest of parameters
were maintained. Finally, the relationship between collection size and genetic diversity, quantified as
the number of polymorphic markers retained, was examined. The optimal size was established as the
point where the number of polymorphic markers increased asymptotically.

Two core collections were constructed based on the DArT markers. The maximization core
collection (MCC) was obtained with the M-strategy using the Core Hunter algorithm and the expected
heterozygosity (HE = 1) as the criteria of maximization (as described for the simulations). The stratified
core collection (SCC) was created using the stratified sampling strategy. First, accessions were grouped
based on populations. Then, inside each population, a number of accessions proportional to the
genetic diversity (Hs), calculated with the DArTs as described by Nei [31], was selected to maximize
the expected heterozygosity (HE = 1). Finally, a random core collection (RCC), where accessions were
sampled randomly from the PS, was created to serve as reference.

2.4. Evaluation of the Core Collections

The quality of the different core collections created was evaluated using geographic,
agromorphological and genetic data. Statistical analyses were performed with the software R
version 3.5.2 [32].

For qualitative agromorphological traits and allelic profiles for the Vrn-A1 and Glu-1 loci, significant
differences between the frequencies in the core collections and the PS were checked by Fisher’s Exact
Test (p-value < 0.05) [33]. For quantitative characters, the mean, variance, range and coefficient of
variation were calculated for the PS, and for each one of the core collections. A homogeneity test (F-test)
for variances and a t-test for means (p-value < 0.05) were used to compare the core collections and PS.
The following evaluation parameters were calculated as described by Hu et al. [8]: mean difference
percentage (MD), variance difference percentage (VD), coincidence rate of range (CR) and variable
rate of coefficient of variation (VR). According to these parameters, a core collection can be considered
representative if the percentage of traits with significant differences in their means is less than 20%
(MD ≤ 20) and the coincidence rate of the range retained by the core collection is greater than 80%
(CR ≥ 80%) [8].

The genetic diversity captured in each core collection was assessed with SNP markers. Different
approaches were followed to evaluate the collections. First, the genetic diversity (Hs; [31]) was calculated
for the PS and each of the core collections. Second, SNPs markers were classified according to their
MAF (Minimum Allele Frequency) in: >0.1 (present in at least 19 accessions), ≥0.05 (9 accessions),
≥0.03 (6 accessions), >0.01 (2 accessions) and≤0.01 (only in one accession). The number of markers fixed
for each category in the core collections was calculated. Third, accessions selected and non-selected in
each core collection were plotted in the Principal Coordinate Analysis (PCoA) performed by [27] to
detect areas not sufficiently covered by the different core collections. Fourth, Hs along the bread wheat
genome in the PS and different core collections was calculated based on SNP markers located in the
bread wheat genome as described by [27]. Results were analyzed in order to detect genomic regions in
which the core collections failed to retain the available diversity.

Finally, in order to quantify the degree of dissimilarity, Gower’s genetic distances [34] between
accessions were computed using the agromorphological data, SNP markers and Glu-1 and Vrn-A1
alleles. For each core collection, entry to entry mean-distance (E-E), the distance between each accession
in the PS and the nearest entry in the core collection (A-NE) and the distance between each entry in
the core collection and the nearest neighboring entry (E-NE) were calculated and averaged over all
entries as described in [26]. A–NE represents the selection of entries close to each accession in the PS;
thus, lower values are obtained for greater representativeness in the core entries. The E–NE distance
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indicates the presence of groups of similar entries in the core; thus, both the mean and minimum E-NE
reach a maximum when all the entries are far apart.

3. Results

High-throughput genotyping provides genetic information that can guarantee the full inclusion
of the available genetic diversity when creating a core collection. In order to avoid constraints in
terms of budget and time, a primary set of accessions with low genetic redundancy, representing the
entire collection, was selected before genotyping. From the full collection of 522 T. aestivum subsp.
vulgare accessions, we selected a PS of 189 landraces covering the full collection range for latitude,
longitude and altitude (Supplementary Table S1). This PS included landraces collected in the first
half of the 20th century from all Spanish regions (including the two Spanish archipelagos), in which
nine agroecological growing zones have been described [35]. The PS also covers the variability for six
traits currently used in wheat accession characterization [29] (Supplementary Table S2). According to a
previous study [27], the PS was subdivided into 4 populations, with Pop 2 having the highest number
of accessions. The genetic diversity values (Hs) in each population ranged from 0.13 to 0.32 (Table 1).

3.1. Creation of the Core Collections

The final size of the core collection was determined based on simulations using the 59,276
polymorphic DArT markers present in the PS. For sizes larger than 94 entries, the genetic gain
(estimated as the number of polymorphic markers) increased asymptotically (Figure S1). Thus, the size
of the core collection was established in 94 genotypes, which captured 56,451 of the polymorphic
DArT markers.

DArT markers were also used to select entries of the core collections. The MCC was obtained
with the M-strategy by maximizing the expected heterozygosity. The SCC was created using the
stratified sampling strategy based on the genetic structure of the PS and the genetic diversity within
each population. Thus, those populations with higher diversity contributed a higher proportion of
entries to the core collection. Finally, the RCC collection was established by randomly selecting entries
from the PS. The final number of entries from each population included in the MCC, SCC and RCC are
indicated in Table 1.

Table 1. Genetic diversity (Hs) of DArT (Diversity Array Technology) markers in each population (Pop)
of the primary set and final number of accessions from each population in the core collections.

Pop 1 Pop 2 Pop 3 Pop 4

HS 0.21 0.32 0.13 0.23
PS 25 112 16 36

MCC 13 50 8 23
SCC 21 37 10 26
RCC 10 55 8 21

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling.

3.2. Evaluation of Core Collections

A core collection of germplasm is a useful approach for breeders only when it includes most of the
available variation (both genotypic and phenotypic). In this study, each core collection was evaluated
considering genotypic and phenotypic data not used for the selection of entries. We evaluated the
quality of the three core collections (CCs) at different levels: (1) representativeness of the CC for
geographic, phenotypic and allelic (Glu-1 and Vrn-A1 loci) variability present in the PS; (2) allelic
richness estimated from SNPs; (3) degree of dissimilarity and redundancy according to distances
between accessions; and (4) distribution of the genetic variability included in each CC with respect to
the PS and along the full genome.
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3.2.1. Representativeness of the Core Collections

The three CCs represented adequately the geographic diversity and variability of qualitative
morphological traits present in the PS (Table 2, Figure 1).

Table 2. Latitude, longitude and elevation ranges covered by the primary set and the core collections.

Latitude Longitude Elevation (m)

PS 433310N–281820N 0174928W–0041559E 10–1610
MCC 433310N–281820N 0174928W–0041559E 22–1540
SCC 433310N–281820N 0174928W–0041559E 35–1540
RCC 433310N–281820N 0162421W–0031238E 63–1540

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling.
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The results also showed that the frequency distributions of the qualitative agromorphological
traits in the CCs were not significantly different from the PS (p-values for Fisher tests ranging from 0.37
to 1). For the quantitative traits, no significant differences among means were detected in the CCs
(Table 3). Moreover, the null values for the evaluation parameters MD and VD indicated that the PS
was properly represented in the core collections (Table 3), and the high VR and CR values in the SCC
and MCC revealed the prevalence of diverse entries in these subsets. The MCC generally had the
highest coefficient of variation values, higher than those of the PS for some traits.

Table 3. Summary statistics for quantitative agromorphological traits in the primary set and
core collections.

Days to
Heading
(Days)

Days to
Maturity
(Days)

Plant
Height

(cm)

Spike
Length
(mm)

Spikelets
Per Spike
(Number)

Evaluation
Parameter

Mean

PS 171.23 206.86 88.27 117.03 19.11

MD

-
MCC 171.48 206.81 87.89 118.36 19.31 0
SCC 172.08 206.9 85.97 115.98 19.02 0
RCC 171.19 207 88.19 119 19.28 0

Variance

PS 49.16 11.34 137.87 365.54 4.16

VD

-
MCC 47.48 10.65 160.14 403.72 4.52 0
SCC 48.83 9.59 137.73 340.78 4.22 0
RCC 48.97 10.54 159.7 385.03 3.51 0

Coefficient of
Variation

PS 4.09 1.63 13.3 16.34 10.68

VR

-
MCC 4.02 1.58 14.4 16.98 11.01 102.06
SCC 4.04 1.49 13.58 15.83 10.74 97.92
RCC 4.09 1.57 14.33 16.49 9.72 99.18

Range

PS 155–188 199–216 53–119 59–168 14–24

CR

-
MCC 157–188 199–216 53–115 67–168 14–24 91.53
SCC 157–188 199–215 53–114 59–168 14–24 91.64
RCC 155–188 200–216 53–119 59–153 14–23 89.46

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling; MD, mean difference percentage; VD,
variance difference percentage; VR, variable rate of coefficient of variation; CR, coincidence rate of range.

Regarding the genotypic data, all Glu-1 alleles were included in the MCC and SCC (Table 4),
whereas the RCC failed to capture one allele at each of the Glu-B1 and Glu-D1 loci. The three CCs
included the three Vrn-A1 alleles identified in the Spanish landraces in a similar proportion, especially
in the MMC (Table 4).

Table 4. Alleles at the Glu-1 homoeoloci and gene Vrn-A1 in the primary set and the core collections.

Glu-1 Homoeoloci Vrn-A1 Alleles (%)

Glu-A1 Glu-B1 Glu-D1 Vrn-A1 Vrn-A1a Vrn-A1b

PS a,b,c,y a,al,am,aq,d,e,f,h,i,u,n2,n3,n4,n5,n6 a,c,d,h,j,l,n6 18.52 52.38 29.10
MCC a,b,c,y a,al,am,aq,d,e,f,h,i,u,n2,n3,n4,n5,n6 a,c,d,h,j,l,n6 18.09 48.94 32.98
SCC a,b,c,y a,al,am,aq,d,e,f,h,i,u,n2,n3,n4,n5,n6 a,c,d,h,j,l,n6 12.77 55.32 31.91
RCC a,b,c,y a,al,am,aq,d,e,f,h,i,u,n3,n4,n5,n6 a,c,d,h,j,l 15.96 50.00 34.04

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling.

3.2.2. Representativeness of the Core Collections

The allelic richness of the CCs was evaluated with 14,830 polymorphic SNPs in the PS. To analyze
the degree of allele fixation in the three subsets, we studied the presence of monomorphic markers
(Table 5). All the SNPs with predominant alleles (MAF > 0.1) were polymorphic in the three CCs.
For the rest of the markers, the MCC had the lowest number of fixed markers, whereas the SCC showed
the highest values. Taking into account the number of accessions in the PS, the least frequent allele in
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markers with MAF ≤ 0.01 was present in only one accession. Thus, it was expected that some of them
would not be included. Overall, the MCC possessed the highest gene diversity value, equal to that in
the PS.

Table 5. Genetic diversity (Hs) and distribution of minor allele frequency (MAF) for the SNP (Single
Nucleotide Polymorphisms) markers in the primary set and those fixed in the core collections.

SNP Markers
(Number)

Fixed SNP Markers
(Number)

MAF PS MCC SCC RCC

>0.1 6376 0 0 0
≥0.05 8394 0 6 2
≥0.03 10,092 3 43 8
>0.01 14,002 534 685 586
≤0.01 828 387 419 453
Total 14,830 921 1104 1049
HS 0.20 0.20 0.19 0.19

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling.

3.2.3. Distances between Entries

The mean Gower’s distance between entries (E-E) was higher in the CCs than in the PS, thereby
providing a gain of 1% in the RCC and SCC, and 2% in the MCC (Table 6). The three CCs showed
higher values for the minimum distances among the entries (mean E-NE distance and minimum
E-NE distance) than the PS, especially the MCC. This last subset and the RCC also showed the lowest
A-NE distances.

Table 6. Gower’s genetic distance values between accessions in the primary set and core collections.

E-E A-NE E-NE Min E-NE

PS 0.189 - 0.073 0.0061
MCC 0.192 0.043 0.090 0.0067
SCC 0.190 0.051 0.081 0.0065
RCC 0.191 0.043 0.081 0.0067

PS, primary set; MCC, core collection generated with maximization strategy; SCC, core collection generated with
stratified sampling; RCC, core collection generated with random sampling; E-E, mean distance between entries;
A-NE, average distance between each accession in the PS and the nearest entry in the core collection; E-NE, average
distance between each entry in the core collection and the nearest neighboring entry; E-NE min, minimum distance
between each entry in the core collection and the nearest neighboring entry.

3.2.4. Distribution of Genetic Variability

The capture of the available genetic diversity in the three CCs was analyzed by representing the
selected accessions in each one of them with respect to the PS by a PCoA analysis explaining 19.2% of
the available SNPs diversity (Figure 2). The three subsets well covered the genetic variation, capturing
accessions from the four populations of the PS. The RCC, however, failed to include some accessions
from Pop 2 placed in the central part of the PCoA graph (Figure 2).
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showing the relative distribution of the primary set and core collections generated with (a) maximization
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is also indicated in the representation of the accessions.

Finally, we analyzed the genetic diversity along the bread wheat genome in the PS and the three
CCs (Figure 3). In this case, the SCC failed to capture all the available diversity in the centromeric
regions of chromosomes 2A, 4A and 2D. The RCC included less diversity in the 7D, and the MCC
captured most of the diversity present in the PS along all the chromosomes. Considering both analyses,
the MCC better represented the distribution of genetic variability in the PS.
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4. Discussion

Several studies have shown the considerable variability among the Spanish wheat landraces
compared to other germplasm collections [36,37]. These materials can be an important source of
genes for wheat improvement, such as rust resistance [38] and quality traits [37,39]. However, even
after the removal of redundant accessions, the collection maintained at CRF-INIA comprising more
than 500 landraces is too large for evaluation and use in most breeding programs. Defining a core
collection is, therefore, a pre-requisite and valuable tool for utilizing this germplasm, particularly for
more complicated phenotypic screens, as has been demonstrated by the Spanish core collections of
barley and durum wheat [40,41]. Both core subsets have facilitated detailed study of some difficult to
analyze traits such as yield performance, root architecture, disease resistance or characterization of low
molecular glutenin subunits [42–46].

On the other hand, the high genetic variability of the Spanish collection complicated the designing
of a core collection of suitable size and able to capture the diversity present in the entire collection.
To determine the optimal number of entries needed to retain an acceptable proportion of alleles present
in the primary set, we tried to find a “point of compromise” between gain of genetic variation and
elimination of genetic redundancy in the core collection. The final size of 94 entries captured 96% of
polymorphic DArT markers present in the PS, which is in agreement with other studies that have
reported values between 70 and 98% using SNPs [47,48] and SSR [40,49,50]. This size represents 18%
of the entire collection, and is within the range from 5 to 30% recommended for retaining a great part
of the genetic variability with a manageable number of accessions (e.g., [5,40,51]).

Preserving maximum genetic variation with a small number of accessions is a challenging task,
and several improvements in sampling strategies have been devised over the last two decades. In order
to create a multipurpose collection, we constructed two core collections using the most common
approaches: M-strategy [16] and stratified sampling [6,16,17]. According to the objectives of these
methodologies, we expected that the MCC maximized the total allelic diversity, and selected more
diverse entries, whereas the SCC optimized the representativeness of the genetic diversity, including
more representative entries. However, the effective utilization of the resulting core collections in
breeding programs depends directly on their quality, which should be correctly evaluated.

Depending on the purpose of a core collection, a variety of metrics can be used to evaluate its
quality. In the present study, considering that the aim is a multipurpose collection, the quality was
evaluated using different types of variables such as geographic, phenotypic (discrete and continuous)
and genotypic data that were not used in the core selection [26,51]. Also, a random core collection
was generated to serve as a reference. Both the M-strategy and the stratified sampling selected entries
that represented the geographic, phenotypic and genotypic variability of the PS, which validated both
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sampling strategies. However, the MCC included higher variation for quantitative agromorphological
characters, indicating that this subset maximized the representativeness of the pattern of variation of
these traits in the PS [26]. The allelic richness of the collections was analyzed with 14,830 SNPs covering
all chromosomes. This genome-wide assay has proved to be a very convenient method for the analysis
of the variability in germplasm collections [52]. On average, the CCs captured between 92.6 (in the SCC)
and 93.8% (in the MCC) of SNPs present in the PS, and more than 90% of common alleles (0.1 ≥MAF >

0.01). Common-localized alleles may be biologically specialized alleles that enhanced adaptation to
different agroecological conditions, and is often the class of alleles most interesting to breeders. Other
studies have reported that crop improvement is accompanied by a selective advantage of rare alleles
present at low frequency (MAF < 0.05) [53,54]. The percentage of rare allele recovery was 82.9% in the
SCC and 85.7% in MCC, which was in agreement with that obtained in other core collections with
SNPs [55]. The core collections performed worse in preserving very rare-localized alleles (MAF ≤ 0.01)
that were present in only one accession, which is in agreement with Wingen et al. [49]. Some studies
reported that this type of allele, likely to be maintained by deleterious mutation-selection balance,
would be of less interest; they seldom contribute to the improvement of elite varieties and, therefore,
their inclusion in the CC might not be worthwhile [7,56,57]. In contrast, other authors have more
recently proposed core subsets focused on preserving rare accessions and uncommon alleles, which
may have unique genetic potentials for plant breeding [58]. In our case, the high number of accessions
possessing specific rare alleles makes it difficult to retain a greater number of very rare alleles without
increasing the sample size. Nevertheless, the MCC also maximized the coverage of this type of alleles
and included an increased number of the most divergent accessions (56 in MCC, 52 in SCC and 50 in
RCC out of the 94 accessions with the highest mean E-E distance in the PS). Moreover, the screening of
the genetic diversity in each CC along the genome revealed that the MCC was able to better capture
the available diversity from the PS in chromosomes 2A, 4A and 2D than the SCC.

Allelic richness is an evaluation criterion that ensures the inclusion of restricted alleles, whereas
genetic distances between accessions is an evaluation criterion related to the concept of the maximization
of the representation of genetic diversity in the whole collection [19,26,57]. In the present study, both
phenotypic and genotypic variables were combined to calculate the distance among accessions since
they provided complementary information thereby maximizing overall diversity for analysis [55,59].
The mean distance between accessions (E-E) reaches a maximum when diverse entries are sampled,
but the presence of similar entries at the extreme ends of the distributions cannot be distinguished
by this criterion. Therefore, two additional distances (A-NE and E-NE) recommended to evaluate
the quality of multipurpose CCs were calculated [26]. The A-NE distance is a good criterion to
evaluate the representativeness of genetic diversity of the PS, whereas the E-NE distance allows
evaluation of whether the core collection has entries that are as different as possible from each other [26].
The lower A-NE and the higher E-NE distances in the MCC indicated that this subset maximized the
representativeness of the genetic diversity of the PS and that all the entries were far apart genetically.
The PCoA of the MCC also demonstrated that this subset was well distributed within the PS, covering
the four genetic populations, even though the information on the genetic structure of the collection
was not used to constrain the subset extraction. To some extent, this latter result could be related to the
small number of populations identified in the collection [60].

Other studies have shown that the CC created based on the M-strategy maximizes the genetic
variability index [23,40], whereas the structured method yields subsets that better represent the
distribution of the genetic variability of the initial collections [7,20,40,57]. Also, worse values for E-NE
distances have been reported in collections developed using the M-strategy [23,40]. In the present study,
however, the M-strategy performed better than the stratified method, by increasing genetic diversity
and reducing redundancy [26]. The higher quality of the MCC could be due to the lower degree of
stratification of our collection. Only Pop 4 was clearly separated, while some overlap was shown
among the other three populations, especially within Pop 2, which was the largest population [27].
In contrast, the stratified sampling performed better than the M-strategy in the Spanish durum wheat
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collection [40]. Comparisons of the genetic structure of the two wheat collections revealed that bread
wheat populations exhibited a higher level of admixture and less genetic differentiation (Population
differentiation index Dest = 0.22 in durum and 0.17 in bread wheat) [27]. This finding may explain
why population-based sampling did not optimize the representativeness of the genetic diversity in
bread wheat. Furthermore, the little gain by minimizing A–NE in the MCC compared to RCC could be
also caused by the weaker structure of our bread wheat collection [26]. The results presented here
have shown that the core collection designed with the M-strategy had superior performance; thus, this
subset was selected as the Spanish core collection.

The Spanish wheat core collection constructed in the present study contains genotypes collected
from every region in Spain where bread wheat is cultivated. Such coverage is essential because
growing regions possess very diverse environmental conditions in terms of climate, altitude and
soil characteristics. Wheat is grown from cold sub-humid areas in the northern parts of Spain to
warm semi-arid regimes in the southeast [61], in basic or neutral soils in the Centre and East, and
acid soils in the western regions [62]. Our core collection also includes all the Vrn-A1 alleles for
the vernalization response identified in Spanish landraces. The Vrn-A1 gene is one of the most
determinant loci involved in the transition from vegetative to reproductive growth [63], and thus
for wheat adaptability. Such adaptation of Spanish landraces to different agroecological conditions
has resulted in the accumulation of favorable alleles, including for stress tolerance, which can be
incorporated into breeding programs [44,64–66]. Furthermore, in the case of wheat, functional quality
requirements must also be kept in mind in order to have a multipurpose collection useful for wheat
improvement. Our collection covers the allelic variation for 30 alleles at the Glu-1 loci, the main genetic
determinants of gluten quality [28,37].

5. Conclusions

The use of high-throughput genotyping technologies has allowed the selection of a core collection
based on more than 50K molecular markers distributed across the whole genome. In addition, this
approach has enabled us to detect the presence of genomic regions where different sampling methods
employed performed differently. The M-method using the Core Hunter algorithm has demonstrated
to be a fast and powerful method for designating core collections, especially for non-highly structured
collections or in the absence of knowledge of a clear genetic structure in the whole collection. The core
collection of Spanish landraces of bread wheat designed in the present study includes a broad range of
adapted genotypes, and maximizes the representativeness of the genetic and phenotypic diversity in
the initial collection of 522 landraces. This wheat core collection can be efficiently utilized in mining
new alleles for useful traits and in broadening the genetic base in the cultivated wheat germplasm pool.
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