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Abstract: Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and
productivity. Furthermore, global climate change may increase the frequency and severity of abiotic
stresses, suggesting that development of varieties with improved stress tolerance is critical for future
sustainable crop production. Improving stress tolerance requires a detailed understanding of the
hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA)
and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive
transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling,
playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified
other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY
families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional
regulation of stress-responsive genes is an essential step to determine the mechanisms underlying
plant stress responses and tolerance to abiotic stress, and that these transcription factors may be
important targets for development of crops with enhanced abiotic stress tolerance. In this review,
we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA
and JA metabolism and signaling pathways. We then summarize the diverse array of transcription
factors involved in plant responses to abiotic stress, while noting their potential applications for
improvement of stress tolerance.
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1. Introduction

Stress-responsive transcription factors play essential roles in abiotic stress responses and stress
tolerance [1,2]. Therefore, these stress-responsive transcription factors may be important targets for
developing crops with enhanced abiotic stress tolerance [3]. Plant stress hormones, such as abscisic acid
(ABA) and jasmonic acid (JA), regulate plant abiotic stress responses [4,5]. ABA signaling pathways
activate target transcription factors, such as the basic leucine zipper (bZIP) ABA-responsive element
binding factor (ABF) transcription factors, and JA signaling pathways activate the basic helix-loop-helix
(bHLH) MYC transcription factors. These transcription factors control ABA- and JA-dependent
expression of stress-responsive genes, as demonstrated using knock-out and overexpression
systems [6–8]. In addition, experimental and computational approaches have identified other
stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families,
which are not direct components of ABA and JA signaling pathways but are essential for plant abiotic
stress responses. In this review, we describe the roles of ABA and JA metabolism and signaling

Agronomy 2020, 10, 788; doi:10.3390/agronomy10060788 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
http://www.mdpi.com/2073-4395/10/6/788?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy10060788
http://www.mdpi.com/journal/agronomy


Agronomy 2020, 10, 788 2 of 23

pathways, and of ABA and JA signaling-specific bZIP and bHLH transcription factors in plant abiotic
stress responses. We also summarize other stress-responsive transcription factor families, such as NAC,
AP2/ERF, MYB, and WRKY, which are involved in abiotic stress tolerance, and discuss studies using
these transcription factors to improve abiotic stress tolerance in plants.

2. ABA Signaling and ABF Transcription Factors

2.1. ABA Metabolism

The key stress hormone ABA mediates plant responses to abiotic stress. For example,
ABA mediates stress-induced modulation of plant development, such as root growth inhibition,
leaf senescence, and stomatal closure [9,10]. ABA is biosynthesized through the enzymatic activity of
9-cis-epoxycartotenoid dioxygenase (NCED), abscisic aldehyde oxidase (AAO), cytosolic short-chain
dehydrogenase/reductase (SDR), and MOLYBDENUM COFACTOR SULFURASE (MCSU), which
mediate the production of xanthoxin, an ABA precursor, and the conversion of xanthoxin to ABA [11,12].
Abiotic stress promotes ABA biosynthesis [13]. Mass transcription of the genes encoding the key ABA
biosynthetic enzymes is largely responsible for ABA production in response to abiotic stresses such
as drought and osmosis, and many stress-responsive transcription factors, including members of the
bZIP, MYC, NAC, AP2/ERF, and MYB families, are involved in the transcription of ABA biosynthesis
genes [14–19]. ABA degradation also controls cellular ABA levels. The formation of ABA-glucose
ester by UDP glucosyltransferase (UGT) is involved in ABA degradation, but ABA hydroxylation by
cytochrome P450 monooxygenase 707A family members (CYP707As) appears to be largely responsible
for ABA degradation [20]. Similar to the ABA biosynthetic genes, expression of CYP707As is regulated
by abiotic stresses, such as drought, salinity, and oxidative stress. Moreover, knock-out or knock-down
of CYP707As increase ABA levels, suggesting that CYP707A-mediated ABA degradation is an important
process controlling cellular ABA levels [20–22]. The finding that ABA response and abiotic stress
tolerance is altered in plants with knock-out or overexpression of ABA biosynthetic genes, including
NCED, indicates that ABA metabolism is an essential step controlling plant abiotic stress responses [23].
Although ABA transport has not been fully elucidated, the results showing that ABA accumulates in
roots and xylem sap in response to drought suggest that ABA synthesized in roots is transported to
shoots through xylems [24,25].

2.2. ABA Signaling and ABF Transcription Factors

The ABA signaling pathway initiates with recognition of ABA by a complex including Pyrabactin
Resistance 1 (PYR1)/PYR-Like (PYL)/Regulatory Component of ABA Receptor (RCAR) and signal
transduction by Protein Phosphatase Type 2Cs (PP2Cs), and SNF1-Related Protein KINASES TYPE
2s (SnRK2s) [26]. These activate the ABA signaling-specific ABA-Responsive Element Binding
Factor (ABF) transcription factors, which belong to a distinct subfamily of bZIP transcription factor,
and regulate the expression of ABA-responsive genes, leading to the establishment of stress-specific
transcription [27–29]. SnRK2s activate ABFs through direct phosphorylation. In the absence of ABA,
PP2Cs inhibit the kinase activity of SnRK2s, thus blocking activation of the ABFs. When plants are
exposed to abiotic stress, ABA biosynthesis is promoted, resulting in formation of the PYR/PYL–PP2C
complex, which inhibits PP2C activity, thus activating SnRK2s to phosphorylate and activate ABFs [30]
(Figure 1). The activated ABFs directly bind to the ABA-responsive element (ABRE), a major cis-element
in ABA-responsive genes [31], and activate the transcription of other stress-responsive transcription
factors, such as NACs and AP2/ERFs, which are also responsible for the expression of stress-responsive
genes [32]. This transcriptional cascade changes the genome-wide transcription profile, inducing the
plant defense system, to adapt to and survive the abiotic stress, suggesting that stress-responsive bZIPs,
including ABFs, are essential components of the plant response and tolerance to abiotic stress [33,34].
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Figure 1. A schematic of ABA signaling pathway. In response to ABA, ABA receptor 
PYR1/PYL/RCAR forms a complex with PP2Cs, and activates SnRKs, the kinases that determine the 
activity of ABF transcription factors. SnRK-mediated phosphorylation of ABF promotes expression 
of ABA-responsive genes and ABA response. 

The pivotal functions of ABFs in the ABA response and abiotic stress tolerance have been well 
documented in Arabidopsis thaliana. The transcription of ABF1, 2, 3, and 4 is strongly upregulated by 
ABA or abiotic stress, and overexpression of ABF3 and 4 promotes the expression of ABA-responsive 
genes, such ABA-INSENSITIVE 1 (ABI1) and ABI2, which encode PP2Cs, and whose mutations cause 
defects in ABA-dependent stomatal closure [35–37]. Furthermore, overexpression of ABF3 and 4 
significantly improves drought tolerance. For example, most wild-type plants withered by 
approximately 10 days of drought stress, whereas ABF3- and 4-overexpressing transgenic plants 
survived the drought stress [36]. In contrast to the ABF3- and 4-overexpressing plants, the abf2 abf3 
abf4 triple mutant exhibited reduced drought tolerance compared to wild-type plants, and large-scale 
transcriptome analysis showed that expression of stress-responsive genes is impaired in the triple 
mutant [27]. These studies indicate that ABFs play an essential role in the plant response to abiotic 
stress. Moreover, ABF3 and 4 are predominantly expressed in roots, suggesting that ABF3 and 4 are 
involved in ABA response in roots [27,36]. Despite the functional redundancy of ABFs in ABA 
response and stress tolerance, it is likely that their functions do not completely overlap [36,38]. 

ABFs mediate stress-induced changes in plant development. For example, abiotic stress 
accelerates flowering and shortens the plant life cycle. A recent study by Hwang et al. revealed that 
ABF3 and 4 regulate flowering time by controlling the expression of the floral integrator 
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) [38]. Mutant plants that lack 
expression of ABF3 and 4 exhibit reduced expression of SOC1 and showed an ABA-insensitive late 
flowering phenotype, whereas transgenic plants ectopically expressing ABF3 or 4 displayed an early 
flowering phenotype. Together with the result that SOC1 is a direct downstream target of ABF3 and 
4 transcription factors, these findings suggest that stress-responsive ABFs mediate ABA-dependent 
modulation of plant growth and development under stress conditions. 

The function of ABFs in abiotic stress tolerance is conserved in plants. For example, ABA and 
abiotic stress upregulate the Fagopyrum tataricum FtbZIP5 and Poncirus trifoliata PtrABF bZIP 
transcription factors. FtbZIP5-overexpressing Arabidopsis plants exhibited improved tolerance to 
drought, salinity, and oxidative stress by modulating the antioxidant system [39]. Similar to FtbZIP5, 

Figure 1. A schematic of ABA signaling pathway. In response to ABA, ABA receptor PYR1/PYL/RCAR
forms a complex with PP2Cs, and activates SnRKs, the kinases that determine the activity of ABF
transcription factors. SnRK-mediated phosphorylation of ABF promotes expression of ABA-responsive
genes and ABA response.

The pivotal functions of ABFs in the ABA response and abiotic stress tolerance have been well
documented in Arabidopsis thaliana. The transcription of ABF1, 2, 3, and 4 is strongly upregulated by
ABA or abiotic stress, and overexpression of ABF3 and 4 promotes the expression of ABA-responsive
genes, such ABA-INSENSITIVE 1 (ABI1) and ABI2, which encode PP2Cs, and whose mutations
cause defects in ABA-dependent stomatal closure [35–37]. Furthermore, overexpression of ABF3
and 4 significantly improves drought tolerance. For example, most wild-type plants withered by
approximately 10 days of drought stress, whereas ABF3- and 4-overexpressing transgenic plants
survived the drought stress [36]. In contrast to the ABF3- and 4-overexpressing plants, the abf2 abf3
abf4 triple mutant exhibited reduced drought tolerance compared to wild-type plants, and large-scale
transcriptome analysis showed that expression of stress-responsive genes is impaired in the triple
mutant [27]. These studies indicate that ABFs play an essential role in the plant response to abiotic
stress. Moreover, ABF3 and 4 are predominantly expressed in roots, suggesting that ABF3 and 4
are involved in ABA response in roots [27,36]. Despite the functional redundancy of ABFs in ABA
response and stress tolerance, it is likely that their functions do not completely overlap [36,38].

ABFs mediate stress-induced changes in plant development. For example, abiotic stress accelerates
flowering and shortens the plant life cycle. A recent study by Hwang et al. revealed that ABF3 and
4 regulate flowering time by controlling the expression of the floral integrator SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1) [38]. Mutant plants that lack expression of ABF3 and 4
exhibit reduced expression of SOC1 and showed an ABA-insensitive late flowering phenotype, whereas
transgenic plants ectopically expressing ABF3 or 4 displayed an early flowering phenotype. Together
with the result that SOC1 is a direct downstream target of ABF3 and 4 transcription factors, these
findings suggest that stress-responsive ABFs mediate ABA-dependent modulation of plant growth
and development under stress conditions.

The function of ABFs in abiotic stress tolerance is conserved in plants. For example, ABA and abiotic
stress upregulate the Fagopyrum tataricum FtbZIP5 and Poncirus trifoliata PtrABF bZIP transcription
factors. FtbZIP5-overexpressing Arabidopsis plants exhibited improved tolerance to drought, salinity,
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and oxidative stress by modulating the antioxidant system [39]. Similar to FtbZIP5, overexpression
of PtrABF enhanced abiotic stress tolerance in tobacco [40]. This indicates functional conservation of
stress-responsive bZIPs in plants, suggesting that modulation of the stress-responsive bZIPs could be a
good strategy for development of crops with improved stress tolerance. For example, ABA and abiotic
stress induce the expression of rice (Oryza sativa) OsbZIP23 [41] and transactivation assays showed that
OsbZIP23 is a transcriptional activator. Overexpression of OsbZIP23 increased sensitivity to ABA and
improved the tolerance to abiotic stress, including drought and salinity.

Other stress-responsive rice bZIPs showed similar functions in abiotic stress tolerance to that of
OsbZIP23. For example, OsbZIP12 and OsbZIP71 conferred drought tolerance by increasing sensitivity
to ABA, and OsbZIP46 and OsbZIP72 improved drought tolerance in rice and Arabidopsis [36,42–46].
ZmbZIP4 is a stress-responsive maize (Zea mays) bZIP transcription factor with high sequence similarity
to OsbZIP23 [47]. Similar to OsbZIP23, overexpression of ZmbZIP4 increased ABA levels and enhanced
abiotic stress tolerance by activating the transcription of stress-responsive genes. Interestingly, ZmbZIP4
also affects expression of genes involved in root development in maize, such as ZmLRP1, ZmSCR,
ZmIAAs, and ZmARFs, and ZmbZIP4-overexpressing transgenic plants formed longer roots with an
increased number of lateral roots. These results suggest that ZmbZIP4 positively regulates plant abiotic
stress responses and is involved in root development in maize [47].

3. JA Signaling and MYC Transcription Factors

3.1. JA Metabolism

JA regulates plant responses to environmental stresses and modulates development under stress
conditions [48,49]. JA, a cyclopentane fatty acid, and was initially isolated as a methyl ester from
Jasminum grandiflorum. JA is biosynthesized from linolenic acid via the octadecanoid pathway involving
a variety of enzymatic components, such as lipoxygenase (LOX), allene oxide synthase (AOS), allene
oxide cyclase (AOC), and 12-oxo-PDA reductase (OPR) [50,51]. The free acid form of JA, which is
produced through the octadecanoid pathway, is further metabolized into the JA-isoleucine conjugate
(JA-Ile) or methyl jasmonate (MeJA) through the activity of jasmonate-amido synthetase 1 (JAR1)
and jasmonate methyl transferase (JMT), respectively [52,53]. JA-Ile is an active form of JA that
interacts with JA receptors to promote the JA-dependent stress response [54]. In response to abiotic
stress, the expression of JA biosynthesis genes is dynamically upregulated, leading to increases
in endogenous JA levels. For example, cold temperature stress rapidly activated the JA response
by inducing expression of JA biosynthesis genes such as LOX, AOS, and AOC in Arabidopsis and
rice [55,56]. Furthermore, exogenous JA treatments improved freezing tolerance, and the JA-deficient
mutants lox2 and aos exhibited reduced tolerance to freezing compared to wild-type plants [55].
In addition, transgenic Arabidopsis plants overexpressing wheat (Triticum aestivum) AOC1 (TaAOC1)
showed enhanced tolerance to salt stress by activating JA biosynthesis [57,58]. These studies support
the view that JA is a key hormone mediating plant responses and tolerance to abiotic stress, indicating
that JA metabolism is a key step controlling the JA response in plants. Similar to ABA, JA transport
remains largely unknown. A radioisotopic labeling experiment suggested that JA is transported
both through phloem and xylem [59]. However, a recent study using a micrografting experiment
suggested shoot-to-root JA transport mainly though phloem, and this finding is partially supported by
phloem-specific accumulation of JA biosynthetic enzymes such as LOX and AOS [60,61].

3.2. JA Signaling and MYC Transcription Factors

Early studies on JA revealed that the expression of genes involved in plant defenses is rapidly and
dynamically regulated by exogenous JA treatment, indicating the existence of a JA-specific signaling
pathway and the integral role of JA in modulating stress-related transcription networks [62,63].
In Arabidopsis, identification of JA signaling components, including the JA receptor CORONATINE
INSENSITIVE 1 (COI1) and the JA signaling repressors JASMONATE ZIM-DOMAIN proteins
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(JAZs), have extended our understanding of the JA signaling pathway and establishment of
JA-dependent transcription. In response to abiotic stress, JA, especially JA-Ile, activates JA signaling
through interaction with COI1. This interaction induces 26S proteasome-mediated proteolysis
of JAZs. In the absence of JA, the activity of the MYC2 transcription factor, which governs the
expression of JA-dependent stress-responsive genes, is suppressed through its interaction with JAZ
proteins. The degradation of JAZs liberates MYC2, which then activates the expression JA-responsive
genes [64–67] (Figure 2). This indicates a pivotal role of MYC2 in the JA response, and the finding that
expression of MYC2 is regulated by diverse abiotic stresses, including drought and salinity, suggests
that MYC2 is involved in the plant response and tolerance to abiotic stress [68–70]. MYC2 was identified
in a mutant screen for insensitivity to exogenous JA, and further characterization revealed that MYC2
is a key component of the JA signaling pathway [71]. MYC2 contains a conserved bHLH domain
required for the formation of homo- or hetero-dimers with other JA-responsive MYCs such as MYC3
and MYC4 [72]. The basic region of the MYC2 protein is responsible for its interaction with DNA
(G-box; 5′-CACGTG-3′) [73]. Expression of MYC2 is involved in the plant response and tolerance to
abiotic stress such as oxidative stress. Ascorbate is a major reactive oxygen species (ROS) scavenger
in plants [74]. Exogenous JA treatment increases ascorbate levels by inducing ascorbate biosynthesis
genes such as DEHYDROASCORBATE REDUCTASE and ASCORBATE PEROXIDASE, and knock-out
mutant plants that lack MYC activity display reduced expression of genes involved in oxidative stress
tolerance [69,75]. This suggests that MYC2 positively regulates oxidative stress tolerance, and the
result that MYC2-overexpressing transgenic plants show improved tolerance to oxidative stress further
supports this.
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Figure 2. A schematic of JA signaling pathway. MYC2 is a key transcription factor responsible
for expression of JA-responsive genes. In the absence of JA, the transcription activity of MYC2 is
suppressed by direct interaction with JAZs. In JA condition, JA interacts with the JA receptor COI1 and
provokes ubiquitin (Ub)-mediated proteolysis of JAZs, leading to activation of MYC2 and expression
of JA-responsive genes.

MYC transcription factors, which are characterized by the basic helix-loop-helix (bHLH) domain,
belong to a subfamily of bHLH transcription factors [76,77]. The family of bHLH transcription factors is
widespread in eukaryotes, and has expanded in plants [78,79]. Based on the sequence similarity of the
bHLH domain, it has been suggested that Arabidopsis contains approximately 160 bHLH transcription
factors, and many bHLH transcription factors, including AtbHLH17, AtbHLH68, and AtbHLH122,
are involved in plant abiotic stress responses [80–83]. The function of bHLH transcription factors in
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abiotic stress tolerance is conserved in plants, as supported by studies showing that heterologous
expression of F. tataricum FtbHLH2 and 3, and Populus euphratica PebHLH35 in Arabidopsis enhanced
tolerance to abiotic stresses, such as cold, drought, and oxidative stress [82,84,85].

In rice, OsbHLH148 has a similar activity to MYC2 [86]. OsbHLH148 directly interacts with
JAZ proteins, suggesting that OsbHLH148 act as a JA signaling component in rice. The expression
of OsbHLH148 is rapidly upregulated by JA and diverse abiotic stresses such as drought, salinity,
cold, and wounding. Furthermore, transgenic rice overexpressing OsbHLH148 exhibited increased
transcript levels of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEINS (OsDREBs),
which are involved in the drought-stress response, and displayed enhanced tolerance to drought [86].
This suggests that stress-responsive bHLH transcription factors, including MYC2 and OsbHLH148,
play an essential role in plant response and tolerance to abiotic stress. Indeed, studies using
stress-responsive bHLH transcription factors, such as INDUCER OF CBF EXPRESSION 1 (ICE1)
and ICE2, support this [55,87].

In addition, stress-responsive bHLH transcription factors, including MYC2 and OsbHLH148,
are involved in ABA-mediated stress tolerance [86,88]. Expression of MYC2 and OsbHLH148 is
strongly upregulated by ABA and ABA-related stresses. In addition, MYC2 promotes the expression
of ABA and the dehydration-responsive gene rd22 by directly interacting with its promoter, and myc2
mutant plants show reduced sensitivity to ABA [88]. These results suggest that JA interacts with
ABA to modulate stress response and tolerance, and stress-responsive bHLH transcription factors are
involved in the JA–ABA crosstalk. This idea is supported by increasing evidence showing that ABA is
involved in modulation of stress tolerance by stress-responsive bHLH transcription factors [89–91].
In addition, the results showing that activation of JA biosynthesis by jasmonic acid methyltransferase
(JMT) promotes ABA production, and that the ABA receptor PYL6/RCAR9 interacts with MYC2 also
support this [92,93].

4. Other Transcription Factors Involved in Plant Tolerance to Abiotic Stress

4.1. NAC Transcription Factors

NAC (NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR
1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON 2 (CUC2)) transcription factors are plant-specific
transcription factors [94,95]. Plants contain more than 100 NAC transcription factors, indicating that
the NACs constitute one of the largest families of transcriptional regulators in plants. This suggests that
NAC-dependent transcription networks are involved in many biological processes in plants [96,97].
NAC transcription factors contain a conserved NAC domain in the N-terminal region and a regulatory
domain in the C-terminal region, which are responsible for DNA binding and transcriptional regulation,
respectively [98,99]. The expression of many NACs is regulated by abiotic stress. For example, Jiang
and Deyholos (2006) reported that the expression of 33 NAC genes was significantly upregulated by
salt stress in Arabidopsis [100], and Fang et al. (2008) and Le et al. (2011) reported that the expression of
approximately 40 NACs was upregulated in response to abiotic stresses, such as drought and salinity,
in rice and soybean [101,102]. These studies suggested that stress-responsive NACs are involved in
plant abiotic stress responses. Indeed, many studies of stress-responsive NACs including ANAC019,
ANAC055, ANAC072, OsNAC6, OsNAC5, OsNAC9, and OsNAC10, have demonstrated this [103–107].

EARLY RESPONSIVE TO DEHYDRATION STRESS 1 (ERD1), encoding a chloroplast
ATP-dependent protease, is involved in the response to abiotic stresses [108]. ERD1 expression
is tightly regulated by abiotic stress, and the stress-responsive expression pattern of ERD1 largely
depends on a CATGTG motif in its promoter. ANAC019, ANAC055, and ANAC072, which interact
with the motif, are responsible for the expression of ERD1 [103], and further characterization of
ANAC019, ANAC055, and ANAC072 revealed that their expression is induced by diverse abiotic
stresses, such as drought and salinity, and by ABA, and overexpression of these NACs significantly
increases drought tolerance. In contrast to the overexpressing plants, mutant plants that lack the
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activity of ANAC019, ANAC055, and ANAC072 displayed reduced tolerance to salt stress compared
to wild-type control plants [109]. These findings suggest that stress-responsive NACs play a crucial
role in plant tolerance to abiotic stress, and the results of other stress-responsive NACs, such as RD26
and ANAC042, support this [7,110].

The function of stress-responsive NACs is conserved in plants. Heterologous overexpression of
Arabidopsis ANAC042/AtJUB1 improved abiotic stress tolerance in tomato (Solanum lycopersicum) and
Arabidopsis [110,111]. In addition, transgenic Arabidopsis plants expressing stress-responsive wheat
TaNAC29 exhibited enhanced tolerance to high salinity by reducing the accumulation of hydrogen
peroxide [112]. This suggests that stress-responsive NACs would be good targets for improvement
of abiotic stress tolerance in crops. For example, OsNAC6 is a rice NAC transcription factor, and its
expression is upregulated by a variety of abiotic stresses [104]. OsNAC6-overexpressing transgenic
rice showed enhanced tolerance to drought, whereas OsNAC6 knock-out mutants displayed reduced
tolerance compared to wild-type control plants. This indicated that OsNAC6 positively regulates
abiotic stress tolerance [112]. In addition, genome-wide transcription profiling revealed that OsNAC6
regulates the expression of nicotianamine biosynthesis genes such as NICOTIANAMINE SYNTHASE
2 (NAS2), and overexpression of NAS2 improved tolerance to drought. These findings suggest that
OsNAC6 modulates plant tolerance to drought by regulating nicotianamine biosynthesis [113].

The essential role of stress-responsive OsNACs in stress tolerance was also shown in other
studies using OsNAC5, OsNAC9, and OsNAC10. Similar to OsNAC6, expression of OsNAC5, OsNAC9,
and OsNAC10 is activated by abiotic stress, and overexpression of these transcription factors significantly
improved drought tolerance [105–107]. Consequently, grain yields of the OsNACs-overexpressing
transgenic rice plants were higher than that of wild-type control plants under stress conditions.
Unlike these NACs, OsNAC2 negatively regulates plant tolerance to drought stress [114], suggesting
that stress-responsive transcription factors including NACs are involved in negative regulation of
plant tolerance to abiotic stresses [115]. Previous studies also show that NACs mediate modulation
of plant growth and development under stress conditions. For example, overexpression of OsNAC5,
OsNAC9, and OsNAC10 promoted root growth, suggesting that these stress-responsive NACs are
involved in developmental changes under stress conditions [116]. A wheat NAC transcription factor,
TaRNAC1, showed a similar function to the rice NACs; overexpression of TaRNAC1 resulted in
enhanced dehydration tolerance, and promoted root growth in wheat [117].

Despite the crucial role of NAC transcription factors in abiotic stress tolerance, the regulatory
interactions between NACs and ABA, or NACs and JA remain largely unknown. However, increasing
evidence suggests that NACs cooperate with ABA and JA to modulate plant responses and tolerance to
abiotic stress. For example, the expression of many NACs is regulated by ABA and JA, as well as abiotic
stress [103,105–107,118]. Furthermore, the Arabidopsis NAC transcription factor ANAC096 directly
interacts with ABF2 and 4, which are key transcription factors of ABA signaling, to regulate dehydration
and osmotic stress responses, and the Arabidopsis NAC transcription factor VASCULAR-RELATED
NAC-DOMAIN-INTERACTING 2 (VNI2) integrates ABA signals into leaf senescence [119,120].
In addition, ANAC019 and ANAC055 regulate the JA-signaled defense response, and the rice NAC
transcription factor RIM1 functions as a regulator of JA signaling [121,122]. These findings suggest that
NACs are fundamentally involved in ABA- and JA-mediated modulation of abiotic stress responses
in plants.

4.2. AP2/ERF Transcription Factors

The APETALA 2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor family
comprises a large group of plant-specific transcription factors (122 AP2/ERFs in Arabidopsis
and 139 in rice) that includes four major subfamilies, AP2, RELATED TO ABSCISIC
ACID INSENSITIVE 3/VIVIPAROUS 1 (RAV), ETHYLENE-RESPONSIVE FACTOR (ERF),
and DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN (DREB) [123–125]. Genome-wide
transcription profiling studies showed that expression of most AP2/ERFs is activated by abiotic
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stress, and this activation largely depends on the stress or ABA-responsive cis-elements of their
promoter regions. For example, the Arabidopsis AP2/ERF transcription factor DREB2A plays a
key role in controlling plant tolerance to abiotic stresses such as drought, and the expression of
DREB2A is controlled by a direct interaction between stress-signaling proteins, such as ABFs and the
ABA-Responsive Element (ABRE) of the DREB2A promoter [126,127]. AP2/ERF transcription factors
contain an AP2 domain consisting of approximately 60 amino acids in the N-terminal region and a
regulatory domain in the C-terminal region, which are responsible for the activity of DNA binding and
transcriptional regulation, respectively [125].

AP2/ERFs play an essential role in plant response and tolerance to abiotic stress by regulating the
expression of stress-responsive genes. DREB1s/C-REPEAT-BINDING FACTORS (CBFs), belonging
to the AP2/ERF transcription factor family, are key regulators of plant response to cold temperature
stress [128]. Expression of DREB1s/CBFs is strongly upregulated by cold, and overexpression of
DREB1s enhances plant tolerance to freezing stress in Arabidopsis. In contrast to the overexpressing
plants, knock-out mutants that lack the activity of DREB1s displayed reduced tolerance to freezing
temperatures, indicating a pivotal role of DREB1s in cold stress tolerance [129]. Expression of DREB1s
also affects plant tolerance to drought and salt stress, and it is likely that expression of a common set of
stress-responsive gene is involved in this phenomenon [125,130,131]. The crucial role of AP2/ERFs in
plant stress tolerance was also shown in other subfamilies of the AP2/ERFs in Arabidopsis. AtERF53 is a
stress-responsive AP2/ERF transcription factor and its overexpression confers enhanced tolerance to
heat stress and drought in Arabidopsis [132,133]. Similar to AtERF53, transgenic plants overexpressing
AtERF74 displayed enhanced tolerance to drought, whereas AtERF74 knock-out mutants exhibited
reduced tolerance [133]. Furthermore, the peanut (Arachis hypogaea) AP2/ERF transcription factor
AhDREB1 improved tolerance to osmotic stress in Arabidopsis [134]. These studies indicate a crucial
role of AP2/ERFs in stress tolerance, and that the function of stress-responsive AP2/ERFs is conserved
in plants.

Because of the essential role of AP2/ERFs in stress tolerance, many studies have aimed to identify
and characterize stress-responsive AP2/ERFs in crops. For example, the rice stress-responsive AP2/ERFs
OsDREB1, OsEREBP1, and OsERF71 mediate abiotic stress responses in rice. The expression of
OsDREB1, OsEREBP1, and OsERF71 is regulated by abiotic stress, and their overexpression improved
abiotic stress tolerance in rice by regulating the expression of stress-responsive genes [135–139].
Interestingly, the stress-responsive OsERF71 also regulates lignin biosynthesis by directly regulating
the expression of lignin biosynthesis genes such as CINNAMOYL-COENZYME A REDUCTASE 1 [137].
Lignin biosynthesis affects drought stress because lignin, a key component of plant secondary cell walls,
is hydrophobic and inhibits water loss from plant tissues [140]. Indeed, drought-tolerant inbred lines
displayed increased levels of lignin compared to drought-sensitive lines in maize [141]. These studies
suggest that OsERF71 regulates plant tolerance to drought stress by controlling lignin biosynthesis.
Many stress-responsive AP2/ERFs have been identified in other crops besides rice, including soybean
ERF3, maize DREB2A, and tomato SlERF5, based on their stress-responsive expression patterns and
functions in abiotic stress tolerance [17,142–144]. This further suggests that AP2/ERF transcription
factors are critical for meditating plant response and tolerance to abiotic stress.

It has been suggested that DREBs regulate plant response to abiotic stress in an ABA-independent
manner [145]. However, increasing evidence suggests that several stress-responsive AP2/ERFs are
involved in ABA-dependent stress responses [17,132,134,137,139,146]. Furthermore, a study by Feng
et al. (2014) showed that the AP2/ERF transcription factor RAV1 directly interacts with SnRK2s,
which are key kinases that determine the activity of ABFs, and regulates ABA sensitivity [147].
This finding supports the idea that some AP2/ERF transcription factors are involved in ABA-dependent
stress responses. In addition, a recent study showed that OCTADECANOID-RESPONSIVE AP2/ERF
TRANSCRIPTION FACTOR 47 (ORA47) regulates the biosynthesis of JA, suggesting that AP2/ERFs
might be involved in modulation of JA -mediated plant responses [17].
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4.3. MYB Transcription Factors

MYB transcription factors are named for the conserved MYB domain responsible for DNA
binding, and constitute a large family of transcription factors [148]. The MYB domain is composed of
approximately 50 amino acids and MYB transcription factors are divided into four subfamilies based
on the number and the position of MYB repeats: 1R-, R2R3, R1R2R3-, and 4R-MYB [149]. R2R3-MYBs
are plant-specific MYB transcription factors, and it has been suggested that plants have approximately
100 R2R3-MYBs [150,151]. Genome-wide transcription profiling showed that expression of many MYBs
and genes with MYB-binding elements are regulated by abiotic stresses such as drought [152–155],
suggesting that MYBs are involved in plant responses and tolerance to abiotic stress. MYBs tend to
interact with other transcription factors, and direct interaction between MYBs and stress-responsive
transcription factors, such as MYCs and WRKYs, support the finding that MYBs are involved in
plant response and tolerance to abiotic stresses [156–158]. The role of MYBs in abiotic stress response
have been further demonstrated by functional characterization studies using overexpression and
knock-out systems. For example, AtMYB44 regulates drought tolerance in Arabidopsis [159]. AtMYB44
is specifically expressed in guard cells, and the expression is activated by abiotic stresses such as drought,
cold, and salinity. Furthermore, overexpression of Arabidopsis AtMYB44 increases ABA sensitivity and
ABA-induced stomatal closure, leading to improved tolerance to drought stress. By contrast, atmyb44
knockout plants displayed increased sensitivity to drought stress, indicating that AtMYB44 positively
regulates drought tolerance by modulating ABA-dependent stomatal closure [159]. AtMYB96 is also
involved in drought tolerance in Arabidopsis [160,161]. Expression of AtMYB96 is induced by drought
and ABA, and overexpression of AtMYB96 enhanced drought resistance by activating cuticular wax
biosynthesis, which inhibited water loss through the leaf surface. This result is supported by a study
in Camelina sativa in which heterologous overexpression of AtMYB96 resulted in improved drought
tolerance via cuticular wax accumulation, similar to Arabidopsis [162], suggesting that the function of
AtMYB96 in cuticular wax synthesis and drought tolerance is conserved among plants.

MYBs are also involved in salt stress. Expression of AtMYB20 is upregulated by salt stress,
and transgenic plants overexpressing AtMYB20 showed improved tolerance to salt stress [163].
By contrast, suppression of AtMYB20 resulted in hypersensitivity to salt stress, indicating that AtMYB20
positively regulates plant tolerance to salt stress. Similar to Arabidopsis, many stress-responsive MYBs
have been identified in crops, including rice and soybean, based on their expression patterns and
functions in abiotic stress tolerance. For example, OsMYB4, OsMYB6, OsMYB48-1, and OsMYB91 were
identified in rice, and GmMYB76, GmMYB92, and GmMYB177 in soybean [164–168]. The interaction
between MYBs and ABA is largely unknown, but several studies showing that the expression of many
stress-responsive MYBs is also regulated by ABA and JA suggest that MYBs are involved in modulation
of ABA- and JA-dependent stress responses. This is partially supported by studies showing that
AtMYB20 suppresses the expression of PP2Cs, which encode negative regulators of ABA signaling,
and AtMYB21 and 24 directly interact with the JA signaling repressors JAZs [169].

4.4. WRKY Transcription Factors

WRKY transcription factors contain a highly conserved WRKYGQK motif in their N-terminal
region and a novel zinc-finger-like motif at their C-terminal region [170]. WRKY transcription factors
constitute a large family in plants. For example, the Arabidopsis, rice, and soybean genomes are predicted
to have approximately 74, 103, and 197 WRKYs, respectively [170–172]. Stress-responsive expression
patterns of WRKYs have suggested their involvement in plant response to abiotic stress. For example,
a microarray analysis showed that the expression of 18 WRKYs (among 35 WRKYs tested) is induced
by salt stress [100]. The involvement of WRKYs in plant stress responses has been demonstrated
through functional characterization using knock-out or overexpression systems. In Arabidopsis,
heat stress affects the expression of AtWRKY25, 26, and 33 [173]. In normal growth conditions,
germination and growth of wrky25 wrky26 and wrky25 wrky33 double mutants and the wrky25 wrky26
wrky33 triple mutant were similar to those of wild-type control plants. However, these mutants were
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hypersensitive to heat stress, and their survival rate was significantly decreased. By contrast, transgenic
plants overexpressing WRKY25, WRKY26, and WRKY33 displayed enhanced tolerance to heat stress,
providing evidence that WRKY25, WRKY26, and WRKY33 positively regulate plant tolerance to heat
stress. Similarly, heat stress-responsive WRKY39 also positively regulates heat stress tolerance [174].
In addition, increasing evidence suggests that WRKYs are involved in modulating development under
stress conditions, similar to NACs and AP2/ERFs. For example, stress-responsive WRKY46 modulates
the development of lateral roots under abiotic stress conditions, and WRKY22 mediates dark-induced
senescence [175,176]. Despite the crucial role of WRKYs, the interaction between WRKYs and ABA in
abiotic stress response remains largely unknown; however, findings that the expression of WRKYs,
such as AtWRKY18, AtWRKY40, AtWRKY60, AtWRKY63, and GhWRKY17, affects the ABA response
suggest that WRKYs are involved in ABA-mediated abiotic stress signaling [177–179].

Several WRKYs have been identified in crops and functionally characterized through
gain-of-function studies. Overexpression of the stress-induced rice OsWRKY11 and OsWRKY45
enhanced drought tolerance, and heterologous overexpression of wheat TaWRKY1 and TaWRKY33
also improved drought tolerance in Arabidopsis [180–182]. These studies suggest that the function of
stress-responsive WRKYs is conserved in plants, and also propose that stress-responsive WRKYs may
be promising target genes for improving abiotic stress tolerance in crops. The transcription factors
described in this review were summarized in Table 1.

Table 1. Transcription factors that mediate plants tolerance to abiotic stress.

Family Gene Species Abiotic tolerance Reference

bZIP

ABF3 Arabidopsis thaliana Drought [36]
ABF4 Arabidopsis thaliana Drought [36]

FtbZIP5 Fagopyrum tataricum Drought, salinity, oxidative [39]
PtrABF Poncirus trifoliate Drought [40]

OsbZIP23 Oryza sativa Drought, salinity [41]
OsbZIP12 Oryza sativa Drought [42]
OsbZIP71 Oryza sativa Drought, salinity [45]
OsbZIP46 Oryza sativa Drought [43]
OsbZIP72 Oryza sativa Drought [44]
ZmbZIP4 Zea mays Salinity [47]

bHLH

MYC2 Arabidopsis thaliana Oxidative [69]
AtbHLH17 Arabidopsis thaliana Salinity, oxidative [80]
AtbHLH68 Arabidopsis thaliana Drought [81]

AtbHLH122 Arabidopsis thaliana Salinity [83]
FtbHLH2 Fagopyrum tataricum Freezing [84]
FtbHLH3 Fagopyrum tataricum Drought, oxidative [82]

PebHLH35 Populus euphratica Drought [85]
OsbHLH148 Oryza sativa Drought [86]

NAC

ANAC019 Arabidopsis thaliana Drought [103]
ANAC055 Arabidopsis thaliana Drought [103]
ANAC072 Arabidopsis thaliana Drought [103]
ANAC042 Arabidopsis thaliana Heat [110]
TaNAC29 Triticum aestivum Salinity [113]
OsNAC6 Oryza sativa Drought [112]
OsNAC5 Oryza sativa Drought [105]
OsNAC9 Oryza sativa Drought [106]

OsNAC10 Oryza sativa Drought [107]
TaRNAC1 Triticum aestivum Drought [117]
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Table 1. Cont.

Family Gene Species Abiotic tolerance Reference

AP2/ERF

CBF1 Arabidopsis thaliana Freezing, salinity [128,129]
CBF2 Arabidopsis thaliana Freezing, salinity [128,129]
CBF3 Arabidopsis thaliana Freezing, salinity [128,129]

AtERF53 Arabidopsis thaliana Heat [132]
AtERF74 Arabidopsis thaliana Drought [133]

AhDREB1 Arachis hypogaea Osmosis [134]
OsDREB1 Oryza sativa Drought, salinity, freezing [135]
OsEREBP1 Oryza sativa Drought, submergence [136]
OsERF71 Oryza sativa Drought [137–139]
GmERF3 Glycine max Salinity, drought, heat stress [142]

ZmDREB2A Zea mays Drought, heat [143]
SlERF5 Solanum lycopersicum Drought, salinity [144]

MYB

AtMYB44 Arabidopsis thaliana Drought [159]
AtMYB96 Arabidopsis thaliana Drought [160–162]
AtMYB20 Arabidopsis thaliana Salinity [163]
OsMYB4 Oryza sativa Freezing [164]
OsMYB6 Oryza sativa Drought, salinity [165]

OsMYB48-1 Oryza sativa Drought, salinity [166]
OsMYB91 Oryza sativa Salinity [167]
GmMYB76 Glycine max Salinity, freezing [168]
GmMYB92 Glycine max Salinity, freezing [168]

GmMYB177 Glycine max Salinity, freezing [168]

WRKY

AtWRKY25 Arabidopsis thaliana Heat [173]
AtWRKY26 Arabidopsis thaliana Heat [173]
AtWRKY33 Arabidopsis thaliana Heat [173]
AtWRKY39 Arabidopsis thaliana Heat [174]
OsWRKY11 Oryza sativa Drought [180]
OsWRKY45 Oryza sativa Drought [181]
TaWRKY1 Triticum aestivum Drought [182]

TaWRKY33 Triticum aestivum Drought [182]

5. Future Perspectives

ABA and JA are key hormones that mediate plant response and tolerance to abiotic stress. However,
increasing evidence suggests that other phytohormones, such as auxin, cytokinin, brassinosteroid,
salicylic acid and ethylene, are also involved in plant response to abiotic stress [183–185]. At present,
a large number of phytohormone-derived growth regulators are used commercially in agriculture to
improve plant tolerance to abiotic stresses [186–193], suggesting that identification and characterization
of genetic components such as transcription factors, which mediate hormonal response, provide
important clues to understand the molecular mechanisms underlying plant response and tolerance to
abiotic stress, and to develop crops with improved stress tolerance. In this review, we summarized the
function of stress-responsive transcription factors in modulating plant response and tolerance to abiotic
stress, focusing on bZIPs, bHLHs, NACs, AP2/ERFs, MYBs, and WRKYs. However, other families of
transcription factors, such as HD-ZIP and Zinc Finger transcription factors, whose expressions are
regulated by abiotic stress, are also involved in plant response and tolerance to abiotic stress [194–197].
Although many of the questions about the molecular mechanisms underlying transcriptional and
translational interaction between multiple transcription factors remain largely unanswered, these
suggest that modulation or manipulation of transcription involved in plant stress response factors
would be a good strategy to enhance tolerance to abiotic stress in crops. Numerous studies have
identified and characterized the roles of stress-responsive transcription factors in plant response
and tolerance to abiotic stress, but most of these studies were performed in laboratory conditions.
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Functional validation under field conditions will expand potential applications of stress-responsive
transcription factors for improvement of abiotic stress tolerance in crops.
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Abbreviations

ABA Abscisic acid
JA Jasmonic acid
bZIP Basic leucine zipper
ABF ABA-responsive element binding factor
bHLH Basic helix-loop-helix
NCED 9-cis-epoxycartotenoid dioxygenase
AAO Abscisic aldehyde oxidase
SDR Short-chain dehydrogenase/reductase
MCSU Molybdenum cofactor sulfurase
UGT UDP glucosyltransferase
CYP707A Cytochrome P450 monooxygenase 707A
PYR1 Pyrabactin resistance 1
PYL Pyr-like
RCAR Regulatory component of aba receptor
PP2C Protein phosphatase type 2C
SnRK2 SNF1-related protein kinases type 2
ABRE ABA-responsive element
ABI ABA-insensitive1
SOC1 Suppressor of overexpression of constans 1
LOX lipoxygenase
AOC Allene oxide cyclase
ERF Ethylene-responsive factor
OPR 12-oxo-PDA reductase
JA-Ile JA-isoleucine conjugate
MeJA Methyl jasmonate
JAR1 Jasmonate-amido synthetase 1
JMT Jasmonate methyl transferase
COI1 Coronatine insensitive 1
JAZ Jasmonate zim-domain
ROS Reactive oxygen species
DREB Dehydration-responsive element-binding protein
ICE Inducer of CBF expression
NAM No apical meristem
ATAF1/2 Arabidopsis transcription activator factor 1/2
CUC2 Cup-shaped cotyledon 2
ERD1 Early responsive to dehydration stress 1
NAS2 Nicotianamine synthase 2
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VNI2 Vascular-related NAC-domain-interacting 2
AP2/ERF Apetala 2/ethylene-responsive factor
RAV Related to abscisic acid insensitive3/viviparous 1
CBF C-repeat-binding factor
ORA47 Octadecanoid-responsive AP2/ERF transcription factor 47
AOS Allene oxide synthase
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