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Abstract: The sustainability of irrigated agriculture is threatening due to adverse climate change,
given future projections that every one in four people on Earth might be suffering from extreme
water scarcity by the year 2025. Pressurized irrigation systems and appropriate irrigation schedules
can increase water productivity (i.e., product yield per unit volume of water consumed by the crop)
and reduce the evaporative or system loss of water as opposed to traditional surface irrigation
methods. However, in water-scarce countries, irrigation management frequently becomes a complex
task. Deficit irrigation and the use of non-conventional water resources (e.g., wastewater, brackish
groundwater) has been adopted in many cases as part of a climate change mitigation measures to
tackle the water poverty issue. Protected cultivation systems such as greenhouses or screenhouses
equipped with artificial intelligence systems present another sustainable option for improving water
productivity and may help to alleviate water scarcity in these countries. This article presents a
comprehensive review of the literature, which deals with sustainable irrigation for open-field and
protected cultivation systems under the impact of climatic change in vulnerable areas, including the
Mediterranean region.

Keywords: evapotranspiration; water use efficiency; protected cultivation; precision
agriculture; screenhouses

1. Introduction

It is projected that by 2080, net crop water requirements will increase globally by 25% despite the
increased irrigation efficiency, attributed to changes in precipitations patterns, global warming, and
extended crops’ growing periods [1]. Nowadays, extreme weather events such as frost, hail, heat waves,
percentile of precipitation, and drought periods affected global food security, limiting rain-fed and
irrigated agricultural crop production potential [2–5]. Mediterranean countries have been identified
globally as climate change “hot spot” areas where the occurrence of hot extremes is expected to increase
by 200 to 500% due to elevated greenhouse gas emissions [6,7]. Indeed, crop water demands are relatively
high, especially in arid and semi-arid areas, due to high radiation load observed throughout a year,
but also in more temperate and sub-tropical zones as periodic drought phenomena and heat waves often
occur [5]. Reference evapotranspiration (ETo; the sum of evaporation from the soil and transpiration
from a reference crop such as, e.g., grass or alfalfa) is expected to increase in many parts of the world by
2055, increasing the total irrigation water needs [8]. In Spain, under Mediterranean climatic conditions,
irrigation water requirements are expected to increase between 40 to 250%, depending on the crop
type by 2100 [9]. In Cyprus, a typical water-scarce country with the highest water stress index among
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European countries, for the period 2031–2060, the seasonal average temperature is expected to increase
by up to 2◦C for winter, 3◦C for summer, and 2.4◦C for the transient seasons; in addition, a mean
annual decrease in total precipitation of 5 to 15% is expected [10]. Actually, for a given type of soil and
crop, both annual and seasonal rainfall variations are critical for the estimation of a predictable water
stress profile which can be addressed [11]. For example, the phenological behavior of rain-fed winter
wheat (Triticum aestivum L.), which is considered to be an important crop grown in the Mediterranean,
is expected to be negatively affected by variations in rainfall patterns, resulting in yields reduction [12].
This is especially true as agricultural water demand is less flexible, while the supply is at or beyond
the margin of sustainability, so there is a limitation of crops’ abilities to absorb variations in the
water supply [13].

Modernization of irrigation increases the water application efficiency. Converting from traditional
surface irrigation methods to closed pressurized pipe network systems could lead to as much as 90% of
the total water savings, as is the case of trickle irrigation [14]. Therefore, the use of improved irrigation
schemes was financially supported through the World of Bank in low-income countries with the aim of
reducing poverty. In the European Union, improved irrigation systems are of the priority measures of
the European Water Framework Directive for achieving irrigation water sustainability [15]. Nowadays,
40% of the world’s food comes from the 18% of the cropland that is irrigated, while in several cases,
high water application efficiency irrigation systems estimated to be used in more than 95% of the total
irrigated land as is the case of Cyprus [16,17]. Overall, in Mediterranean countries, the irrigated area
accounts for less than 40% [18]; however, in Germany, only 2% of the cropland area are irrigated [19].

On the other hand, the traditional assumption that substantial water savings may obtain through
the adoption of new/improved technology irrigation systems are under controversy in some instances.
This is a consequence of higher irrigation systems’ application efficiency, which tends to increase their
irrigated area, in addition to less irrigation return flow back to the aquifers. Therefore, the total water
consumption calculated on a basin scale increased [13]. Similarly, climatic and economic implications of
the modernizing irrigation system are related to the high energy use and carbon emissions for extracting
groundwater, pumping it, and distributing it in the appropriate water quantity and pressure [20].
In another occasion, the Chinese government is planning for the expansion of irrigated areas by
4.4% until 2030 [9] under the concept that global irrigation patterns seem to alter climate with some
cooling effects observed near irrigated areas during the peak period of irrigation [21,22]. However,
in the Mediterranean region, soil salinization and land degradation are often associated with irrigated
land [5,20]. Worldwide, it is estimated that by 2050, more than 50% of arable land will have soil
quality issues, while at the current time, about 10 million hectares are abandoned every year due to
soil salinization [23].

In any case, irrigation scheduling frequently represents a difficult task to accomplish, resulting in
significant water losses [24]. Traditionally, irrigation scheduling was based on growers’ perspective
rather than on climatic characteristics, soil properties, or plant indicators, resulting many times
in over-irrigation of crops. Consequently, water and nutrients depleted and potentially lead to
groundwater contamination [25]. Indeed, in the Salinas Valley of California, irrigation of vegetables
was estimated as 200% above actual crop evapotranspiration [26]. In any case, excessive irrigation
is associated with the lack of root aeration and favors plant pathogens [27]. However, it is generally
accepted that the use of evapotranspiration models in irrigation practice increases the efficiency
of water and nutrient application. In fact, in intensive production systems such as soilless culture
systems, irrigation control requires the estimation of crop evapotranspiration over short time intervals,
e.g., in the basis of a few minutes [28]. Therefore, more sophisticated/complex irrigation monitoring
systems are required with the aim of matching the diurnal evapotranspiration fluctuation with water
and nutrient supply. Even in the latter case, there is a need for models’ recalibration under prevailing
climatic conditions.

Agronomic practices such as “deficit irrigation” (i.e., irrigation application below evapotranspiration)
save water and enhance water use efficiency (WUE) of the crops as a result of an improved ratio of
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carbon fixation to water consumption ratio [29]. In addition, as biomass production and transpiration
are tightly linked to each other and both are facilitated by stomata pores, the effective use of water
under limited water condition should be the aim of maximum soil moisture capture with minimal water
losses by stomata transpiration and soil evaporation [30]. Plastic film mulching has been shown to
decrease soil evaporation [21]. In line, protected cultivation systems (greenhouses, screenhouses) have
been proved to have higher WUE values comparing with open-field cultivation [31]. Indeed, peppers’
water requirements under the screen cover were found to be 38% lower than those of an open-field
crop affected by lower evapotranspiration rate [32]. In addition, the water productivity (WP; the ratio
of the total value of production to total crop irrigation water supply, €m−3) of protected crops is much
higher as opposed to open-field crops’ due to the higher economic value of crops that are produced out
of season [33]. Katsoulas et al. [34] have demonstrated that increasing the greenhouse cooling system
capacity gives higher values in yield in both in the Mediterranean and Central European countries.

Rural areas are expected to experience major impacts of climate change on water availability and
supply; infrastructure and agricultural incomes; reduced agricultural production; and food security
with socioeconomic consequences, such as increasing poverty and migration. Farmers only recently
start to adopt water-saving practices and technological improvements in irrigation. The adoption
is relatively low because in many cases, these systems are of high cost and growers do not benefit
directly by water saving [35]. Thus, sustainable irrigation adaptation to climate change in water-scarce
regions should be implemented in terms of demand and supply enhancement of water management,
even though measures are often linked through the hydrological cycle.

Increasing the productivity of water, the use of non-conventional irrigation waters, crop diversification,
and crop rotation are some of the adaptation/mitigation measures discussed in the following. Reliable
estimates of consumptive use are especially needed for water allocation by policy makers at the basin
scale and beyond and for optimizing farm irrigation management under water scarcity. Anyhow,
it is important to understand that implementing sustainable irrigation in water-scarce regions will be
feasible only by a combination of measurements, rather than by individual actions. In view of the
above, this publication makes a contribution by providing information regarding sustainable irrigation
in water-scarce regions.

2. Improving Irrigation Efficiency

The majority of irrigated land in the world is of the category surface irrigation. The field water
application efficiency of traditional surface irrigation methods such as, e.g., furrow, basin, or border
strips (Figure 1) is estimated to be as low as 40% [36] with excessive deep percolation losses and low
water distribution uniformity [37]. However, in countries with the largest irrigated area, these methods
are prevailing because they are low-cost and easily implemented.
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Selecting the appropriate irrigation method will be advantageous to manage limited water supplies
and increase crop profitability [38]. Nowadays, it is widely accepted that a pressurized irrigation system
(PIS; an installation under pressure network consisting of various pipes, valves, and fittings for supply
water from the source to the irrigable area) [39] has significantly higher water application efficiency
values as opposed to traditional irrigation methods such as, e.g., furrow and border strips. PIS operate
on demand, which allows for higher irrigation frequency, optimization of crop irrigation scheduling,
and cropping pattern diversification [13]. The application of fertilizers can also be optimized through
fertigation (i.e., irrigation combined with fertilization). A typical arrangement of PIS pipe layout
and irrigation components indicated in Figure 2. The control head unit is considered to be the most
important part for measuring and appropriately treating the irrigation water [40].

Plastics, as the basic component of PIS, were first produced in British industry in 1935, even though
the idea of using plastic pipes for irrigation become feasible during the World War II [41]. Early advances
in surface drip (i.e., trickle) irrigation technology, which is considered to be the most efficient irrigation
method in terms of water use, took place in Israel from the 1950s into the 1970s [22], although, according
to Velasco-Muñoz et al. [42], drip irrigation systems application was first recorded in Australia in the
1940s. Aside from the fact that the installation of PIS remains costly and requires specific skills and
knowledge to operate, it is still an important adaptive strategy to reduce agricultural risk during times
of drought [43]. However, in humid areas, the application of PIS may not be profitable if droughts
are rare [37]. Over the past decades, a significant shift to pressurized irrigation was observed, with a
significant component being micro-irrigation, including micro-sprays, mini-sprinklers, surface drip,
and subsurface drip irrigation systems (SDI) [44].
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Figure 2. Layout components of a modernized pressurized irrigation system (PIS); supply pump (a);
central control head unit ((b) to (h)); pressure regulator and pressure relieve valve (b); air release valve
(c); water meter (d); one-way valve or a non-return valve (e); injection tank (f); pressure gauge (g);
filtration unit (h); manifold and electric valves (i); irrigation zone 1 and 2 irrigating crops with different
water needs (IZ1,IZ2); irrigation controller (j).

Particularly, the field application efficiency is about 50–70% with sprinkler system and 80–90% with
surface drippers [45]. That is because as drip irrigation system minimize water losses due to surface
runoff and deep percolation of water under difficult soil and terrain conditions [22]. Water is locally
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applied directly near to the root zone in low application rates and pressure and enables the precise
management of soil moisture. Due to the low operating pressure of drippers (e.g., 100 kPa), the energy
cost is also decreased compared to the sprinkler system (e.g., micro-sprinkles 200 kPa, spray booms
500–600 kPa) [39,44,46]. Thus, low pressure irrigation systems will result in both water and economics
savings [47]. However, in such a case, it is important to assess water quality as lower operating system
pressure, increasing the possibility of clogging drippers [46]. The appropriate selection of filtration
system based on the water source will ensure the good operating performance of irrigation systems
(Figure 3). In any case, drip irrigation can minimize the wetting of leaf surface and thus the risk of leaf
sunburn and crop diseases, while sprinkling result in wet leaves and mud splash [48]. In addition,
drip irrigation is preferable when recycle water is used, as there is also minimization of the risk of
pathogen movement to the crops. Choosing the appropriate irrigation method should also take into
consideration several factors such as the soil infiltration rate, the system precipitation rate, and the
quality of water. In any case, the main problem of PIS has to do with poor hydraulic design, resulting
in low field application water uniformities [49]. Qi et al. [50] concluded that the effects of different
irrigation water movement in soil crack closure and soil water storage efficiency were lower in drip
irrigation rather than in sprinkler or in surface irrigation. HYDRUS models have been repeatedly used
in the literature e.g., [51–53] for simulating irrigation soils’ water movement and other related options.

Drip irrigation systems account for up to 90% application efficiency, and they have been used
with success in arid and semi-arid regions for vegetable production, forage crops, and maintenance of
trees [54–56]. Yield of onions almost doubled using SDI, allowing for more frequent irrigation with
smaller depths of water [38]. In tomatoes, the most appropriate irrigation arrangement for optimum
growth and production is considered to be SDI with plastic film mulching, according to Wang et al. [57].
In any case, water savings of up to 20% were recorded in olives under the SDI treatment as opposed to
surface drip irrigation [58].Agronomy 2020, 10, x FOR PEER REVIEW 6 of 36 
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In another occasion, irrigation sustainability may not always be in accordance with environmental
sustainability. Recent work raised a few controversial thoughts that policies of encouraging the
adoption of more efficient irrigation technology will potentially lead to the cultivation of more
water-intensive crops on previously marginal land, in addition to less irrigation water return flow to
the watershed, a phenomenon known as “irrigation paradox” [59,60]. Furthermore, the irrigated area
could be increased by 30–40% when shifting from furrow to sprinkler and drip irrigation systems [45].

3. Scheduling Irrigation Methods

The appropriate irrigation scheduling (i.e., determine the amount and the frequency of an irrigation
event) has been considered to be the most important factor for crop growth and sustainable irrigation
water management. Climatic conditions, soil, and plant-related characteristics may affect crop water
uptake [61,62]. Therefore, irrigation scheduling based on those factors must take into account the
irrigation system and the water delivery volumes [28,63]. In any case, the applicability of an irrigation
schedule computation depends on calibration against direct measurements of yield as a function
of irrigation application deducted from carefully designed and conducted field experiments under
local conditions [64].

3.1. Evapotranspiration Models

Reference evapotranspiration (ETo; the sum of evaporation from the soil and transpiration from
a reference crop such as, e.g., grass or alfalfa) is an essential parameter for crop irrigation estimation
optimization [65]. In the past years, a lot of research has been conducted in the field, for calculating ETo,
based on measured meteorological variables (e.g., net radiation, temperature, wind, relative humidity),
applying similar to the initial Penman–Monteith (P–M) evapotranspiration models (Equation (1)),
which were initially developed for open-field cultivations [66].

ETo =
0.408∆(Rn−G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo, reference evapotranspiration (mm d−1); ∆, slope vapour pressure curve (kPa ◦C−1);
G, soil heat flux density (Mj m−2 day−1); Rn, net radiation at the crop surface (Mj m−2 day−1);
γ, psychrometric constant (kPa ◦C−1); u2, wind speed at 2 m height (m s−1); T, air temperature at 2 m
height (◦C); es, saturation vapour pressure for a given time period (kPa); ea, actual vapour pressure
(kPa); and es − ea, saturation vapour pressure deficit (kPa).

In the meantime, a meteorological database named LocClim and several software programs were
developed (e.g., CropSyst, AquaCrop) with a view of predicting crop evapotranspiration and crop
growth in any region of the word based on historical climatic data [11,67]. Other methodologies for
estimating ETo were also used in cases where fewer climatic data were available [68]. In any case,
commercial agro-automatic weather stations can be used inside by farmers, increasing the accuracy of
ETo estimation (Figure 4) [69].

Comparatively, Class-A evaporation pans and atmometers are considered to be low-cost
devices that can reduce the complexity associated with the ETo-weather based estimation procedure,
even though atmometers, in open-field crops, seem to underestimate ETo by as much as 21% in
comparison with the P–M model equation estimation [70]. However, as supported by Blanco and
Folegatti [71], atmometers had the best performance in estimating irrigation requirements in the
greenhouse; therefore, they could be used advantageously in relation to the evaporation pans.
The weekly ETo values estimation inside a greenhouse and the high correlation coefficients between
the Class-A evaporation pan and the reduced-size pan and an atmometer were demonstrated by
Fernandes et al. [72].
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Crop evapotranspiration (ETc; the sum of evaporation from the soil and transpiration from
a crop) can be calculated by multiplying a specific crop coefficient value (Kc) with the reference
evapotranspiration ETo (Equation (2)) following the procedure of Allen et al. [66].

However, Kc reporting values are differentiated even within the same crop, as affected by different
climatic conditions and crop management practices [73,74]. It has to be noted that the impact of climate
change on Kc values was also investigated by many researchers in the past [75,76].

ETc = Kc x ETo (2)

where ETc, crop evapotranspiration (mm d−1); Kc, specific crop coefficient; and ETo, reference crop
evapotranspiration (mm d−1).

Many researchers used the P–M method based on ETo calculation and Kc values for estimating
ETc [63,73,74]. In the meantime, the dual crop coefficient method was used for predicting the effects of
specific wetting events on the values for the crop coefficient by separating Kc into two coefficients
for soil evaporation and crop transpiration [77]. Meanwhile, remote sensing imagery from airplanes,
drones, and satellites have been used in the open field as a tool to obtain information for crop
evapotranspiration estimation [75]. Chen et al. [76] show that the vegetation fraction obtained with
unmanned aerial vehicles can be used “on the spot” by the farmer in order to directly define the
Kc values.

The method for estimating crop evapotranspiration based on Class-A evaporation pan using
local Kc values was adopted and used by the Cyprus Agriculture Research Institute (Table 1), taking
into account local climatic conditions (eastern Mediterranean region). From Table 1, we can observe
that in open-field crops, the irrigation period starts between March and April and ends in October,
with maximum crop evapotranspiration values estimated in July. During winter months, there is no
need for irrigating open-field crops due to sufficient rainfall. However, as drought events often occur,
supplementary irrigation of rain fed crops helps them to improve and stabilize yields. The colocasia
(2400 mm), the lucerne (1350 mm), and the banana (1252 mm) are considered to be among the most
water-demanding crops, while olives (430 mm) and pistachios (355 mm) are less water-demanding
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tree crops. Hence, the estimation of crop-specific irrigation volumes is a major aspect in sustainable
irrigated agriculture and particularly in arid and semi-arid regions where irrigation water is limited.

In high-technology greenhouse production systems, climatic data acquisition could be analyzed
on a real-time basis on short time intervals, i.e., in the basis of a few minutes, allowing re-adjustments
of irrigation. The following simplified form of the Penman–Monteith equation (Equation (3)) was
proposed for estimating soilless crop transpiration rate within greenhouses [78].

λTc = A(1− exp(−KLAI))RSi + BLAIVPD (3)

where Tc, crop transpiration rate (kg m−2 s−1); Rsi, solar radiation inside greenhouse (W m−2); VPD,
the greenhouse air vapor pressure deficit (kPa); LAI, the calculated leaf area index (m2 leaf m−2 ground);
K, light extinction coefficient; λ, vaporization heat of water (J kg−1); and A and B, values of equation
parameters (A, dimensionless; B, W m−2 kPa−1).

A practical way to determine the irrigation frequency in soilless culture systems is the procedure
proposed by Katsoulas et al. [79], based on “the accumulated radiation method”. A main drawback of the
method is that it does not take into account the effect of greenhouse air vapor deficit on the transpiration
rate. However, due to the simplicity of the method several authors proposed on accumulated radiation
values for starting irrigation [80,81]. For tomatoes grown in a solar greenhouse, the Priestley–Taylor
model revealed superiority compared to the pan evaporation or radiation models [82]. In another
study, no statistical differences were observed in estimating ETc for different crops within plastic
greenhouses based on the radiation model, either by using historical climatic data or values obtained
in real time [83]. A comprehensive review of the accuracy of different evapotranspiration models used
under prevailing greenhouse conditions can be found in the literature [84,85].

Similarly, for open-field crops, a form of a simple linear regression between potential
evapotranspiration and solar radiation has been proposed a long time ago [86].

Ep = c
(W

Rs

)
(4)

where Ep, potential evapotranspiration (mm d−1); Rs, solar radiation expressed in equivalent (mm d−1);
W, weighting factor depends on altitude and temperature; and c, adjustment factor which depends on
mean humidity and daytime wind conditions.

Table 1. Monthly and yearly estimated evapotranspiration requirements (mm) for several crops in
Meditteranean climatic conditions, as is the case of Cyprus. Data adapted from [76,87].

CROP J F M A M J J A S O N D Total

Citrus, Avocado - - 20 68 107 133 145 138 124 55 10 - 800
Table Olives - - - 34 53 78 87 81 65 32 - - 430

Banana - - 25 73 125 175 230 241 203 129 51 - 1252
Deciduous
(mountain) - - - - 62 175 182 182 82 - - - 683

Deciduous (plain) - - - - 70 214 244 210 82 - - - 820
Almond - - - - - 100 100 100 55 - - - 355
Pistachio - - - - - 91 112 100 52 - - - 355

Pecan - - - 73 113 149 186 187 160 127 - - 995
Table grapes - - - 44 112 150 - - - - - - 306

Tomato
greenhouse 42 60 85 120 180 168 - - - 12 40 36 743
low tunnel 12 24 60 90 120 156 - - - - - - 462
open field - - - 15 75 150 168 168 78 - - - 654

Cucumber
greenhouse 42 48 72 120 208 - - - - - 40 36 566
low tunnel 12 24 40 60 104 50 - - - - - - 290
open field - - - 15 75 170 216 - - - - - 476
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Table 1. Cont.

CROP J F M A M J J A S O N D Total

French bean
greenhouse 42 48 84 140 70 - - - - - 24 28 436
open field - - 10 50 180 210 160 - - - - - 610

Aubergines
low tunnel 12 24 40 60 76 100 68 - - - - - 380
open field - - - 15 43 100 168 168 78 22 - - 594

Pepper
low tunnel 12 24 40 60 76 100 112 - - - - - 424
open field - - - 15 43 100 168 168 62 - - - 556

Water melon
low tunnel 10 20 32 48 84 28 - - - - - - 222
open field - - - - 15 70 165 200 60 - - - 510

Courgettes
low tunnel 12 24 50 78 136 88 - - - - - - 388
open field - - - 15 70 165 200 60 - - - - 510

Potato
spring - - 60 100 140 - - - - - - - 300

Autumn - - - - - - 48 98 146 140 70 - 502

Cauliflower
early - - - - - 36 124 210 150 28 - - 548

normal - - - - - - - 40 100 112 28 - 280

Peas grean
early - - - - - - - 42 150 150 48 - 390

normal - - 18 122 54 - - - - - - - 194

Onions
fresh - - - - - - - - 144 156 66 - 366
Dry - - 30 80 130 120 - - - - - - 360

Broadbeans fresh - - - - - - - - 130 90 - - 220
Colocasia - - 36 164 200 380 470 470 380 160 140 - 2400
Lettuce - - - - - - - - 132 144 60 - 336
Celery - - 66 - - - - - 144 156 66 - 432

Radishes - - 50 - - - - - 144 156 66 - 416
Artichoke - - 60 100 - - - 146 62 54 26 - 448

Okra - - 12 35 68 145 245 175 - - - - 680
Lucerne - - - 100 170 240 300 260 180 100 - - 1350

Common beans - - - - - - 70 100 140 140 - - 450
Grounnuts - - - 50 50 70 165 165 30 - - - 530

Maize - - - 15 40 190 240 75 - - - - 560
Tobacco - - - - 75 150 150 75 - - - - 450

3.2. Lysimeters and the Water Balance Method

Knowledge of crop water requirements is the first step in optimizing irrigation regimes. Crop
evapotranspiration estimation is based on the “water balance method”, calculating the water volume
differences from a system between irrigation/precipitation and the water outflow (i.e., drainage, runoff,
and evapotranspiration; Equation (5)) [63,88].

ETc = ∆SWC + R + I (5)

where ETc, evapotranspiration (mm); ∆SWC, the variation of the volumetric soil water between
seeding and harvest dates; R, rainfall (mm); and I, irrigation (mm); runoff and capillary water are
considered negligible.

Even though the water balance method is not very accurate for open-field crops, it has generally
been found to be sufficiently robust under a wide range of conditions [88]. The water balance method
in open-field conditions can usually only give evapotranspiration estimations over longer time periods
such as in a week or a ten-day basis [66]. The soil/substrate volumetric water content may be estimated
using dielectric sensors such as, e.g., time-domain reflectometry or with devices and sensors that are
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measuring the water potential such as, for example, the tensiometers and electrical resistance sensor
(Figure 5). A comprehensive review of field irrigation based on soil water potential measurement can
be found in the literature in addition with available software for scheduling irrigation based on the
water balance method such as, e.g., Saltmed, Simis, Marlvand, and Ims [16,89].
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in a potato crop (A), analog tensiometer installed in a vine open-field crop ((B); source: ScientAct S.A.,
Thessaloniki) and a wireless time domain reflectometry sensor installed in soilless media (C).

The “moisture allowable deficit” can be calculated as a percentage of the available water, which is
usually 10% in soilless cropping systems and between 30–50% in soil open-field crops. Multiplying
this deficit with a coefficient account for irrigation application uniformity and water salinity (typical
values range from 1.15 to 2), the irrigation dose may be estimated. The irrigation interval rate should
be compatible with specific soil limitations of infiltration and water holding capacity; therefore, it can
be estimated when the accumulated daily ETc for the study period between two irrigations approaches
the upper level of the allowable moisture deficit [45]. Otherwise, Yildirim and Erken [90] used the
equation initially proposed by Doorenbos and Pruitt [86] for irrigation amount estimation of field
melon as below:

I = Ep×A×Kcp× P (6)

where I, the amount of irrigation water (mm); Ep, evaporation between irrigation intervals from
Class–A pan (mm); A, the plot area (m2), Kcp, is crop–pan coefficient (0.8 until fruit development and
1.3 until the ripening period); and P is the crop coverage as percent (%).

Other than the direct measurement of plant evapotranspiration, weighing and drainage lysimetric
systems may be used as the only way of calibrating evapotranspiration models [91–93]. Even though
lysimeters are used preferably for containerized crops rather than for soil-based crop systems, as in the
latter case, they required expensive constructions. For example, sixteen lysimeters (a large soil tank
that situated on a scale) were constructed in a semi-commercial scale at the Western Negev Desert
Agro-Research Center in Israel for the calculation of optimal irrigation schemes by directly recording
changes in the soil tank weight [94]. The accuracy of the lysimetric method proved to be very high
for soilless-based culture systems where the water uptake could be monitored several times on a
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day-to-day basis in a representative group of plants. A simplified model based on a weighing-drainage
lysimetric system in a soilless-based cultivation system could be as below [78,95]:

Tr =
(IV−RV±DSM)

n
(7)

where Tr, crop transpiration rate (Kg pl−1 d−1); IV, water volume supplied to the crop; RV, water volume
collected by the drainage system; DSM, difference in substrate moisture between measurement; and n,
measurement period (d−1).

3.3. Sensing Plant Water Status

In the past, growers inspected plants for identifying early water stress symptoms. Plant indicators
may include changes in leaf color (e.g., beans), plant movement or elongation (e.g., corn and sorghum
leaves), and fruit growth (e.g., citrus) [96]. Nowadays, technological improvements incorporate
advanced instrumentation and application techniques; therefore, it is possible to implement new
integrated information for supporting the decision-making process in industrial horticulture [97].
Plant-sensing could be applied with success for irrigation scheduling, as the crop water status is
directly related to the soil/substrate available water content (Figure 6) [72,98]. However, a significant
limitation of plant-based sensing is that they could rather predict the irrigation frequency rather than
the irrigation dose.Agronomy 2020, 10, x FOR PEER REVIEW 13 of 36 
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Abiotic and biotic stress factors could also affect water uptake [99]. Therefore, plant sensing
irrigation is preferably to be used in combination with other irrigation approaches such as the available
water in the root zone. Comparatively, sensing technologies have been mainly applied in open-field
crops rather than in protected cultivation systems. Boini et al. [100] indicated the high correlation of
apple daily fruit growth with plant water status and highlighted the potential to use automatic fruit
gauges in irrigation scheduling. Similarly, for apple trees, the signal intensity based on maximum
stem shrinkage proved to be an accurate indicator of the plant water status under deficit irrigation
supply [101]. For avocado trees, the maximum trunk diameter variation correlated with water stress
history rather than on the actual plant water status, even though, in a relative basis, it may form an
efficient aid for irrigation controlling [102]. Sap flow measurements are also used for determined plant
water consumption and transpiration in fruit trees as well as in soilless-based crops [103,104] Aside
from that, the determination of leaf and stem water potential is still difficult to commercialized.
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Ribera-Fonseca et al. [105] concluded that near-infrared and visible reflectance spectral indices
could be used as a non-destructive predictor of plant water stress in blueberry orchards. Similarly,
a prototype framework for high-resolution thermal infrared vineyard site in the Central Valley of
California, U.S. was developed by Lei et al. [106]. Recently, crop water status indicators were estimated
based on satellite remote sensing. Sentinel-2 revealed superiority compared to older generations
of public domain satellite data, allowing irrigation decisions based on fine spatial resolution of
10 m [107,108]. In another study, carbon nanotube sensors were embedded in plant leaves for
reporting hydrogen peroxide signal waves, a stress report signal for crops’ infections, injury, and light
damage [109]. Printed carbon nanotubes were also applied on plant stomata as an early warning of
water shortage. It was found that after 7 min of light, stomata opened, and that after 53 min, stomata
closed when darkens falls. However, under water shortage, they take an average of 25 min to open and
45 min to close [110]. In any case, the use of plant-based irrigation scheduling requires the definition
of reference or threshold plant stress values, beyond which irrigation is necessary [88]. In soilless
culture systems, the main limitation of linking crop water status with plant sensing techniques has to
do mainly with the water content status in restricted root zone which is constantly changing due to the
high irrigation frequency intervals rate, the crop fast growth, continual product harvesting, and crop
defoliation. However, Morales et al. [111] suggested that infrared thermography can be used as a tool
for identifying water stress symptoms in soilless-based systems.

In any case, the most important plant sensors used are those which could run continuously and
automatically, and thus can be implemented in a data transmission system [72]. Commercialized
phyto-monitoring systems based on leaf temperature sensing are considered by many researchers
among the most promising sensors used for irrigation monitoring due to the early warning signals
resulting from stomata closure. According to the authors, previous work on the timing of irrigation,
even in soilless cucumber crops, was found to be highly correlated with leaf temperature. Based on
the P–M equation reformulation, a proposed irrigation model was calibrated and validated under
Mediterranean greenhouse conditions using leaf temperature as an indicator for estimating crop
tranpsiration rate (Equation (8)) [112].

λT = A(1− exp(−K.LAI))(70.694T− 1376.69) + BLAI(0.192T− 3.156) (8)

where T, mean crop transpiration rate (kg m−2 s−1); K, light extinction coefficient; LAI, leaf area index
(m2 leaf m−2 ground); A and B, values of equation parameters (A, dimensionless; B, W m−2 kPa−1);
and T, the leaf temperature (◦C).

An overview of direct and remote-based sensors that are used in the open field and protected
cultivation systems can be found in [88,99].

4. Water Application Below Evapotranspiration

Deficit irrigation (DI or regulated deficit irrigation RDI; i.e., the application of water at a lower
rate and/or volume than the plants evapotranspiration) has been considered as a sustainable irrigation
strategy as opposed to conventional irrigation under limited water supply conditions [113,114].
The principal attitude of DI is to increase water productivity by irrigating crops only at critical
crop growth stages without causing severe yield reductions or to save water for expanding
farmlands [115,116]. It is a common practice for farmers to roughly double the nominal irrigated area
with a given amount of water by applying DI strategy [117]. Following literature, DI strategies may be
grouped as below:

• Sustained deficit irrigation (StDI), where a fixed fraction of the crop water needs is supplied
throughout the irrigation period [118],

• Stage-based deficit irrigation (SBDI), where water applied to meet full plant water requirements
only at the critical growth stages and less water applied at the non-critical growth stages [119],
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• Partial root zone drying (PRD), where partial half of the root system irrigated, while the remaining
half is exposed to drying soil switching to the other half every 2–3 weeks [119].

• Supplemental irrigation (SI), optimally scheduled for the amount and timing of irrigation to
ensure that a minimum water amount is available to the crops during the critical stages that it
would permit a significant increase in the yield. Usually, SI is combined with earlier planted
dates in order to prevent exposure of crops to drought stress and heat in hot areas and frost in
cold areas [120].

Aside from DI, cultural practices must also be adopted by farmers for increasing crops’ adaptation
to the reduced water application volumes, such as, for example, the use of moderate plant densities,
the minimum amount of fertilizer application, the flexible planning dates, and the limited use of
fallowing, especially when it is desired for precipitation storage [117]. In any case, the water deficit level
characterization corresponded to a percentage of soil field capacity reduction as below (Table 2) [119].

Table 2. Water deficit level in relation to a percentage reduction in soil field capacity.

Water Deficit Level Soil Field Capacity

Severe water deficit <50%
Moderate water deficit 50–60%

Mild water deficit 60–70%
No deficit/full irrigation >70%

Over-irrigation Excess amount of water

Actually, several field crops like cotton, sugar beet, sunflower, wheat, and maize are well-suited
for applying DI. For example, minimal yield reductions are expected when SBDI is imposed during
flowering and grain filling stages of wheat, flowering and boll formation stages of cotton, vegetative
growth of soybean, and vegetative and yielding stages of sunflower and sugar beet [121]. However,
DI in potatoes is not regimented as the small financial benefits would not offset the high risks of reduced
yields and profits from the reduced water applications [122]. PRD irrigation in sugar beet leads to water
savings up to 35% in a semi area, compared to a full irrigation treatment [123]. For watermelon, the best
compromise between water productivity, yield, and quality was obtained by applying full irrigation
needs up to the ripening stage and then by applying half of the irrigation needs for restoration [124].
In tomatoes, wetting and drying off the root zone alternative under drip irrigation increased WUE and
reduced nitrogen loss to the environment [125]. In another work, slight DI corresponded to 80% of ETc
and was the most appropriate DI strategy for greenhouse tomato crop growth rate [126]. In grapes, PRD
showed superior performance compared to other DI strategies; therefore, it should be recommended
under water shortages periods [62]. In cotton SI, increased yield by 14% [127]. The water deficits
effects at critical growth stages for several crops can be pronounced, as summarized by Doorenbos and
Pruitt [86] in the following table (Table 3).

Table 3. Critical stages for several crops. Data adapted from [117].

Crop Critical Stage

Apricots During the flower period and bud development
Peaches, Cherries During the rapid fruit growth period and prior to maturity

Table Olives Just before the flowering period and during the enlargement of fruits
Citrus The flowering period and during the fruit settings stages

Broccoli, Cabbage In the head formation and enlargement period
Cauliflower From planning to harvesting it requires frequent irrigation

Lettuce Requires wet soil conditions especially before harvesting
Tomatoes When the flowers are formed and during the phase that fruits are rapidly enlarging

Watermelon From blossom to harvesting period
Turnips During the period of the rapidly increased of the size of edible root till harvesting
Radish During the period of enlargement of the root
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Table 3. Cont.

Crop Critical Stage

Castor bean Requires high wet soil conditions during the full growing period
Soybeans In the flowering and fruiting stage and during the period of maximum vegetative growth

Strawberries From the fruit development to ripening
Potatoes Requires high soil water levels after tubers formation and from blossom to harvest

Oats From the beginning of ear emergence possibly up to heading

Cotton From flowering and boll formation, then at the early stages of grown and the stage after
boll formation

Alfalfa After each cutting for hay and at the start of flowering for seed production

Maize
Requires high soil water conditions during the pollination period, from tasseling to

blister kernel stages; prior to tasseling and during the grain filling periods. The
pollination period is very critical if no prior water stress conditions

Small grains From boot to heading stage
Sugar beet 3 to 4 weeks after emergence
Sugarcane The period of maximum vegetative growth

Tobacco Knee high to blossoming
Wheat During booting and heating and two weeks before pollination

The Cyprus Agricultural Research Institute working on DI strategies during a long-term
experimental period time concluded the following:

• For olives trees, it is recommended to fully cover the annual irrigation needs which are relatively
low compared to other perennial crops (Table 1), even though when water is the limiting resource,
a minimum yield reduction is expected. Indeed, the annual yield production was unaffected
when irrigation up to 70% of evapotranspiration needs of Olea europeae L. cv Koroneiki was applied
uniformly throughout the irrigation period, or by complete cessation of irrigation during the two
summer months. However, reduction of irrigation in Olea europeae L. cv Manzanillo causes the
wilting of the fruit; it reduces its size and adversely affects production in the long term [128].

• In citrus, the yield is expected to decline by 10.7% if the water application amount is reduced by
37% of evapotranspiration, while by reducing it by 26%, the yield is expected to decline by 5.8%.
In a citrus tree cultivar (Citrus reticulata x Citrus sinensis, cv.‘Mandora’), DI negatively affects the
number and the size of fruit per tree during spring, while in autumn, it affects the quality of the
juice (ratio of sugars to acids). However, the effects of DI on yield of Citrus sinensis, cv. ‘Valencia’
and Citrus reticulata × Citrus sinensis, cv.‘Mandora’ are smaller than on others’ citrus varieties,
because harvesting, in Mediterranean zone countries, took place usually towards the end of the
rainy season and trees may recover. In lemon trees, DI negatively affects the prematurity of
production and, to a lesser extent, its volume. In grapefruits, the lack of water delays the ripening
of the fruit, negatively affecting the fruit size and yield [129–132].

• The total irrigation needs for Vitis vinifera L. cv “Sultanina” was estimated at 250–300 mm from
flowering to the beginning of ripening. DI reduces production while over-irrigating delays
ripening. In Vitis vinifera L. cv “Cardinal”, irrigation with 200 mm from flowering (mid-April–early
May) until harvesting (late June-early July) positively affects product quality. This amount of
water corresponded to 50% of evaporation. Irrigation below evapotranspiration negatively affects
the vigor of vines and reduces yields. In Vitis vinifera L. cv “Superior”, irrigation with 300–350 mm
is recommended from late April to early July. However, irrigation with 210 mm under limited
water conditions did not affect the yield in the first year. Over-irrigation reduced the sugar content
of the juice [133].

• Optimum yield for oregano was obtained with 400 mm irrigation of water. Irrigation below ETc
negatively affected the fresh and dried marketable product and oil yield. In sage, the annual
irrigation needs during the first year estimated at 300–320 mm. These needs are expected to
increase gradually as plants grow. The reaction of sage to DI is similar to that of oregano [134].
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• The water requirements of alfalfa range from 75% of the evaporation rate of the Class-A evaporation
pan from October to April to 110% in July. However, water savings up to 40% of the total crop
requirements could be obtained by stopping irrigation during July and August with an expected
annual yield reduction by 18–20%. The plants fully recover in September after irrigation [135].

• The irrigation requirements of maize for seed production were estimated at 560 mm. The reduction
of irrigation amount from 20–40% caused a reduction of 8–21% in yield, respectively [136].

5. Protected Cropping and WUE

Protected cropping such as, e.g., greenhouses, screen-houses, horizontal screen covers, and shade
netting screens (photoselective nets, proof screens, anti-hail), aim to minimize crops’ environmental
stress through aerial environment modification. In subtropical regions, those systems have been
extensively used as they protect crops from extreme weather conditions, which often occur as
hailstorm, droughts, wind damage, and sunburn incidence [137]. Protected crops proved to have
lower evapotranspiration rates mainly because of the reduction in the wind speed and turbulent
exchange rates, the decreased irradiance, and the increased humidity within leaf canopy [138,139].
Sweet pepper grown in a screen-house, during the period August-September indicated 60% reduction
in crop water use as opposed to an open-field crop; however, shading factor recommended being no
more than 20% [140,141]. For avocado trees, 20% white shade netting minimized the irrigation water
requirements by 29% [142]. The use of aluminized plastic nets in lemon trees increased the water use
efficiency in comparison with a non-shaded treatment [143]. Similarly, in a hot and arid area of Israel,
the estimated WUE values of banana crop in a screen-house estimated being by 30% higher comparing
with an open-field crop as cited by Pirkner et al. [144].

In any case, in protected cropping, the ratio between the marketable crop production and the
total crop irrigation supply, or the ratio of CO2 assimilation to transpiration (i.e., irrigation water
use efficiency, WUE; Kg m-3; transpiration efficiency, TE) is higher comparing with open-field crops
(Tables 4 and 5). High WUE values were also observed in soilless cultivation substrate systems (Table 4).
The importance of increasing water productivity (WP) by improving the WUE, in arid and semi-arid
regions, is considered as a strategic activity highlighted by several authors [145–147].

Table 4. Tomatoes water use efficiency values (WUE; Kg m−3) in different growing conditions and
substrate. Data adapted from [33,34,148].

Country Cropping Conditions WUE

France Field-grown 14
Greenhouse unheated 24

Italy Greenhouse substrate-open system 23
Greenhouse substrate-closed system 47

Spain Greenhouse substrate-system 35
Israel Field-grown 17

Greenhouse unheated 33
Netherlands Greenhouse substrate-open system 45

Greenhouse substrate-closed system 66
Egypt Field-grown 3

Greenhouse unheated 17
Greenhouse substrate-grown system 45

Cyprus Field-grown 7
Tunnel-grown 11
Greenhouse 23

Greenhouse substrate-grown system 30
Greece Greenhouse substrate-open system, low tech greenhouse 20

Greenhouse substrate- semi-closed system, low tech greenhouse 28
Greenhouse substrate-closed system, low tech greenhouse 36
Greenhouse substrate-closed system, high tech greenhouse 50

Greenhouse substrate-closed system, semi-closed greenhouse
(cooling capacity of 100 W m−2), high tech greenhouse 80
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Optimal microclimate control in greenhouses usually entails the use of sophisticated equipment
such as, for example, cooling and heating systems, artificial illumination and dehumidification and
shading techniques. Plastic greenhouses in hot and dry regions during a significant part of a year
used active cooling systems to reduce greenhouse heat accumulation [149]. However, the water
needed to be evaporated for alleviated the heat load is not always taken into consideration into the
total greenhouse water use estimations; in addition, it affects diurnal leaf water potential fluctuation.
Overall, lower evapotranspiration rates observed for anisohydric plants (i.e., stomata do not respond
to changes in humidity), rather than to isohydric plants which leaf conductances tend to increases
leading to higher evapotranspiration rate [139]. However, even though leaf conductances were about
25% higher in a greenhouse cooled by a wetted-evaporative pad; higher transpiration rates by 60%
observed for a cucumber crop in a greenhouse with a ventilation system [150]. For cucumber growth
during a spring-summer period under Mediterranean conditions the mean daily water evaporated
through a wetted pad was measured at 72 L per m−2 of wetted pad, increased to 104 L m−2 as the
outside conditions became warmer and dryer [151]. In any case, the cultivation period of tomato in
a screen-house extended with the use of a fogging system irrespectively of the availability of water
needed to be evaporated [152].

The concept of generating fresh water by condensation, for reuse, it in a greenhouse is not new [149].
That is the reason there is an increasing interest for using dehumidifiers within greenhouses, even though
there are still issues related to energy consumption. That is especially useful in cases of risen humidity
levels, in coastal areas, and during winter at cold night were the greenhouse openings are kept closed
resulted in the air saturated with moisture.

Table 5. Water Productivity (WP; €m−3) and Water Use Efficiency (WUE; Kg m-3) values of several
crops estimated based on market prices and crop water needs [153].

Crop WUE WP Crop WUE WP
Avocado 1.30 2.29 Melons

Cuucmber open field 6.74 2.39
greenhouse 22.2 30.5 low tunnel 13.7 7.01
low tunnel 14.0 11.2 Peppers
open field 6.30 4.70 open field 6.31 4.94
Artichoke low tunnel 12.0 11.7
first year 6.66 3.92 Pistachio 1.13 5.54

second year 7.95 4.67 Orange 5.90 1.57
Almond 2.26 2.39 Radish bunch 23.6 5.11

Pears 3.81 5.35 Peaches 3.52 4.97
Greipfruit 8.86 2.48 Celery bunch 18.2 8.03

Plums 3.52 7.30 Spinach bunch 35.0 7.56
Table Olives 4.18 4.24 Table grapes 6.49 2.77
Water melon Figs 2.05 3.62
low tunnel 20.6 8.08 Apples 3.52 4.21
open field 12.0 2.83 Tomato

Carrots 10.6 4.78 greenhouse 23.9 21.0
Pecan 0.41 2.71 low tunnel 11.0 7.55

Colocasia 2.35 7.30 open field 7.04 2.90
Cherries 2.08 1.85 Alfalfa 2.51 0.56
Zucchini Bean

low tunnel 7.87 6.63 open field 5.76 7.88
Open field 3.92 2.70 greenhouse 11.0 32.4

Broad beans fresh 8.97 8.35 dry 0.60 1.61
Cauliflowers 6.51 3.96 Peanuts 0.76 1.46

Cabage 7.44 2.49 Strawberries
Onios bunch 33.2 6.50 greenhouse 5.46 17.0

Onios dry 12.4 4.63 open field 3.75 10.3
Lemon 5.90 1.45 Apricot 3.81 6.98

Tangerines 4.13 1.77 Bananas 2.79 2.69
Lettuce 26.3 6.46 Peas 3.90 4.59

Aubergines 10.1 5.35 Potatoes
Aubergines low tunnel 20.9 14.3 spring 16.5 4.86

Loquat mid-season 25.0 8.85
screenhouse 2.94 9.78 autumn 6.15 2.06
open field 1.02 1.81 Okra 3.13 4.60
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6. Precision Agriculture

Increasing agricultural systems’ resource efficiency and building resilience to climate change is
the key actions for producing adequate food quantities while coping with water scarcity and land
degradation issues. To this end, climate-smart agriculture is an integrated approach used to support
customized agricultural practices (smart farming techniques) aimed at higher efficiency and lower
impact to the environment (circular economy).

In this framework, information technology, remote sensing techniques and proximal data gathering
and analyzing (i.e., precision agricultural systems; PA) is a key factor for efficient agricultural
water management [154]. Recent technological advantages such as, e.g., Cooperative Information
Systems (CIS), enable analyzing autonomously information systems executing locally or cooperate
for implementing specific tasks such as computer-generated interactions in real time, between
soil-plant-atmosphere under real conditions [155,156]. Indeed, the efficient use of water, fertilizers
and energy through the Internet of Things (IoT) adaptation applications reduce the production cost,
improves yield while protecting the environment [157].

For instance, a variety of Agricultural Cyber-Physical System (ACPS) has been developed for the
management of different services in precision agriculture. A “smart irrigation system” considered to
be a perfect cyber-physical test bed, a collection of hardware for delivering water in a spatially precise,
timely manner assisted by algorithms that use multiple layers of digital information from sensors,
drones, weather stations and soil maps [158]. A new approach to the cyberisation of solar photovoltaic
water systems for remote irrigation management was also tested by Selmani et al. [159]. Based on the
back propagation (BP) neural network, a water demand prediction model was planned for open fields,
as it has shown great potential in solving pipe network optimization and precision irrigation [160].
Meanwhile, Netafim developed the “NeatBeat”, an intelligent, self-learning cloud-based platform for
precision irrigation and fertigation crop management based on agronomic, atmosphere, plant and soil
input parameters [161]. In addition a fuzzy control system was used for monitoring the speed and
therefore the depth of water application (i.e., variable rate irrigation, VRI) in a field irrigated with a
pivot system taking into account differences of soil type and crops [162]. In line, VRI in wheat crop
based on differences of soil available water holding capacity reduces by 7% the irrigation water used
as opposed to a uniform rate irrigation management application [163].In another experiment with
cotton; even though the WUE between the manual irrigation method and the plant-feedback control
incorporated with a VRI treatment were not differ; in the latter case VRI was less time consuming [164].

Soilless–based systems may be part of the solution to the problems created by the lack of water and
fertile soils increasing the yield per square meter of cultivated land. Those systems considered been
one of the most intensive production methods recognized globally for its ability to support efficient and
intensive plant production and at the same time applying environmentally friendly technology [165,166].
They are adapted as technological components where the ability of a computer-based system to learn a
specific task resulting from experimental observation for automatic monitoring and control, could be
implemented (i.e., Computational Intelligence Systems) [167,168]. For example, the “Crop Assist
system” which used on real-time data from a pairs of load cells for monitoring of up to 11 physiological
and irrigation parameters measured simultaneously in a greenhouse vine crop [169]. In line, the
frequency of irrigation cycles in tomato crops could be implemented through an algorithm namely
“Hidro-Control”, which estimated plant transpiration rates and monitoring the electrical conductivity
of leachate under pre-set limits [170].

However as semi-arid regions are more vulnerable to climate change it is necessary to implemented
sustained water management practices considering energy conservation as well. Indeed, the energy
consumption for irrigation and greenhouse cooling processes was recorded to be the highest among all
energy needed for greenhouse operation under Eastern Mediterranean conditions. That because a
significant amount of water is needed to be evaporated within greenhouse to alleviate the high head
load observed year-round. Therefore, modifying the aerial environment using transpiration as one of
the main cooling processes is of critical factor in protected cropping systems and should be accounted
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for the prober design and climate control decisions [171,172]. Consequently, PA aims of monitoring of
plants actual responses to their environment with the implementation of phyto sensing technology.
According to authors’ previous work; the timing of an irrigation event and the amount of water was
significantly correlated with leaf temperature and stem microvariation even in high frequency soilless
culture systems [112,173]. Differences in the greenhouse enironment (i.e., VPD values) shows to affect
significantly the stem variations and the water uptake leading to less amounts of greenhouse emmisions
outflows into the environment [151,152]. In order to reach a suitable greenhouse microclimate a fuzzy
logic control system presented by [174].

7. Alternative Water Sources as Part of Water Balance

With the implementation of the Urban Wastewater Treatment Directive (91/271/EEC) in all EU
Member states, municipalities with over 2000 population equivalents are obliged to collect sewage and
treated them properly. Nowadays, treated wastewater (i.e., TWW) is considered as a valuable alternate
water source aim of reducing the risk of water shortages. Being a low-cost water source; TWW reuse
for irrigation is considered being an environmentally friendly disposal practice [175]. A large amount
of nutrients such as nitrogen, phosphorous and organic matter which appears in TWW contributed to
crop nutrient needs, minimizing the need of commercial fertilizer application [176]. Following the
strictest existing legislation, tertiary treated wastewater and disinfection which is the highest degree of
treatment could be reused for irrigation in agriculture, mainly for fodder crops, olive trees, citrus trees
and vegetables; except for leafy vegetables, bulbs and condyles that are eaten raw. It is extensively
used for the irrigation of green areas, public parks and play fields following specific restrictions on the
type of the irrigation system to be used. Cyprus proceeds with the municipal wastewater treatment
since 1998. The estimated quantity of recycle water produced in 2015 was about 65 million m3 and
by the 2025 is expected to increase to 85 million m3. About 75% of the TWW produced is reused for
irrigation of agricultural crops and green areas (e.g., turf grass and landscaped areas) and 12% applied
for groundwater recharge. The rest amount is discharged into the sea, mainly in winter months. That is
because during winter irrigation water needs are relatively low. The existing rate of tertiary treated
TWW is about the one third of that from governmental water works. Locally the total irrigation needs
it is estimated about 162 million m3. Nowadays about 10–15% of the total irrigation needs are met by
TWW; however, in the long term, the objective is the replacement of fresh water used in agriculture by
TWW up to 40%.

TWW should be appropriately managed in order to protect public health; in addition, minimizing
negative impact to the environment such as, e.g., soil salinization, the accumulation of heavy metals [177,
178]. Several authors reported on the effects of recycle water on crops growth. Bourazanis et al. [175]
concluded that in Olea europeae L. cv Koroneiki the superior quality of oil production was enhanced
under TWW. In addition, Christou et al. [179] reported that tertiary treated wastewater could be safely
used even for vegetables irrigation, in terms of public health safety and environmental sustainability.

Several well-developed countries that have long ago incorporated TWW reuse for irrigation in
their integrated water management schemes (i.e., Israel, Cyprus, Spain, United States, Italy) have
set and implement comprehensive guidelines and criteria aiming to safeguard the public health and
environmental sustainability from potential adverse impacts of such a practice, while most other
countries are following the WHO guideline (WHO, 2006). Recently, the European Union (EU) have
adopted the EU 2020/74 regulation on the minimum requirements for water reuse, highlighting
the importance of reducing the impacts of TWW reuse, thus ensuring water savings, and human
and animal health and environmental protection, simultaneously promoting circular economy and
supporting adaptation to climate change. The EU 2020/74 regulation incorporates extensive risk
management scheme which comprise the identification and management of risks in a proactive way,
aiming at the production of TWW of a specific quality required for a particular need. Thus, four TWW
quality classes have been established (A,B,C,D), with the best quality (class A) being suitable for the
irrigation of all crops consumed raw where the edible part is in direct contact with TWW and root crops
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consumed raw. Importantly, the regulation may include additional quality requirements concerning
heavy metals, pesticides and contaminants of emerging concern (CECs) (i.e., disinfection by-products,
pharmaceuticals, other micropollutants including micro- and nano-plastics, and antimicrobial resistance
determinants). Such a need is driven by the fact that despite the major advances that have been
made with respect to producing safe TWW for reuse, TWW may contain undesirable CECs that pose
negative environmental and public health impacts [180]. Thus, several important questions concerning
the presence of CECs in TW and their subsequent release to the environment through TW irrigation
are still unanswered and barriers exist regarding the safe and sustainable reuse practices. Applied
technologies fail to completely remove CECs while no consolidated information exists concerning the
efficacy of the conventional activated sludge (CAS) process (which is the most widely applied process)
to remove antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs) from TWW in the
framework of reuse applications (i.e., irrigation, groundwater replenishment, storage in surface waters
for subsequent reuse) [181,182].

CECs are now commonly detected in relevant concentrations in TWW effluents and in both the
aquatic (surface and groundwater systems, even drinking water) and the terrestrial environments
(TW-irrigated soils and runoff from such sites) as a consequence of their continual introduction in the
environment through the disposal of TWW [181]. The uptake and bioaccumulation of CECs in the
edible parts of food crops and fodders and their subsequent entry into the human food chain have
gained prominence over the last decade [182]. Also, the continuous disposal of TWW (and biosolids
and manure as well) renders soil as the largest environmental reservoir of antibiotic resistance (AR),
while ARGs may persist in the environment and be transferred to other microbial populations (e.g.,
human pathogens of clinical relevance), posing major health and economic implications [183–185]. It is
now widely accepted that the phytoavailability of CECs in the soil is closely related to the properties of
the compound, as well as the soil properties [186]. Recently studies dealing with the long-term effects
of TWW irrigation under commercial agricultural farming on the fate of a number of CECs in soil and
their uptake by crop, revealed that the uptake and biomagnification of CECs in the edible parts of crop
plants varied depending on the qualitative characteristics of the TWW applied, the crop itself, and the
duration of irrigation [184,187–189]. Risk assessment in most studies revealed that the consumption
of fruits harvested from crop plants irrigated for long period with the TWW represent a de minimis
risk to human health [190]. However, more studies are needed to reach a definite conclusion for the
classification of TWW reuse as a safe practice regarding human health. Such studies should take into
the potential additivity of the mixture of few dozen CECs that may present in TWW, their metabolites
of pharmaceuticals present in agricultural commodities, the potential sensitivity of subgroups of the
population (i.e., pregnant, infants, elderly people, chronic sufferers) and the dietary habits of the
distinct population [187]. Least but not last, the potential adverse effects of CECs released to the
agricultural environment through TWW reuse on the growth and development of crop plants [191]
and on aquatic organisms [192] should also be taken into consideration for further studies.

Brackish or seawater desalination increases the water availability of conventional water
resources [193,194]. However, water desalination represents an energy intensive water treatment
technology in addition several issues related to adverse effect on the climate change caused by the
brine discharge [194,195]. A different option, is to use seawater as a complementary irrigation source
at salts concentrations not harmful for the cultivated crops [196]. An economic optimization model
has been proposed and developed to optimize water mixture and usage when different sources of
non- uniform quality irrigation water are available for the irrigation of greenhouse crops in semiarid
regions, a blend of desalinated and brackish water for irrigation of greenhouse crops [193]. Indeed,
each crop tolerance to an upper threshold value of salinity; beyond that yield is decreasing (Table 6).

Leaching (i.e., irrigate with good quality water for moving salt below the root zone) should be
calculated in the basis of maintaining the soil saturated electrical conductivity values bellow to the
upper threshold values for each cultivar. Yet, apparent salinity and yields vary significantly even
between different varieties of the same crop and as affected with different nutritional needs (i.e., different
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fertilizer applications), soil amendments, the timing and the amount of irrigation, drainage etc [198].
Indeed, salt tolerance of several crops and varieties which were tested under Dutch field conditions
were proved to be at least a factor two higher, and in some cases, even a factor three in comparison
with FAO report on crop salt tolerance [199].

Table 6. Crop salt tolerance classification to irrigation water salinity (dS m−1) and % yield decreased
per unit of salinity increase in salinity beyond threshold. Data adapted from [197].

Crops Salt Tolerance Classification Salinity at Initial Yield Decline % Yield Decreased

Sensitive
Strawberry 1.0 33
Carrot 1.0 14
Bean 1.0 19
Almond 1.5 19
Apricot 1.6 24
Orange 1.8 16

Moderately Sensitive
Cowpea 1.3 14
Sweet potato 1.5 11
Corn 1.7 12
Cabbage 1.8 9.7
Alfalfa 2 7.3
Spinach 2.0 7.6
Cucumber 2.5 13
Tomato 2.5 9.9

Moderately Tolerant
Broccoli 2.8 9.2
Soybean 5.0 20

Tolerant
Date palm 4.3 3.6
Cotton 7.7 5.2

8. Measures for Sustainable Irrigation and Water Management Recommendations in
Water-Scarce Regions

• Adoption of improved high water application efficiency pressurized irrigation system. Frequent
system inspection and irrigation systems’ maintenance. Irrigation combined with fertilization
should also be promoted,

• Appropriate irrigation scheduling based on local conditions,
• Application of low-cost commercial sensors and irrigation controllers (on-farm irrigation

management and control technologies); adopted by smallholding aged farmers with low level of
technical education [200],

• Big data analysis and artificial intelligence system for implementing precision irrigation for new
age farmers with are familiar with technological improvements [155],

• Volumetric water metering and water pricing in each plot. Temporary drought surcharges rates
for over-irrigating crops should be promoted [16],

• Groundwater aquifer extraction should be protected appropriately. Drilling wells to access
groundwater must require a permission taking into account water quantity and quality issues,

• Adopting water prices that induce farmers to irrigate by night [201] in selected crops,
• Increasing the frequency of irrigation can be helpful for salinity management. Frequent irrigation

requires high labor inputs, therefore economic considerations usually favor automated or
mechanized irrigation systems [202],

• Leaves wetted by sprinkling water absorbs salts directly; therefore, sprinkler irrigation at night
is preferable,

• Reducing water evaporation from open reservoirs (Figure 7) using chemicals films and flooding
objects and reduce soil water evaporation with crop residues, plastic mulches etc,
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• Enable growers to adopt cropping systems with recycling of the excess irrigation water. Re-use of
drainage water especially in large irrigation schemes [203],

• Training growers in operation and management of water savings programs, such as deficit
irrigation strategies,

• Selected drought resistant varieties, taking into consideration seasonal rainfall availability.
The adaptation of planting dates i.e., after a rainy season ensures more effective conditions
for crop establishment [201],

• Established on farm water storage capacities like reservoirs and tanks, for water harvesting,
and reused it for irrigation. Practices like terracing construction and small dams can be used to
increase aquifer recharge [201],

• Enhance the productive use of rainwater (Figure 7) by supporting sustainable land management
and farming methods that increase soil organic matter and improve the water infiltration and
water retention capacity of soil [202],

• Develop an Agricultural Insurance Law that includes drought hazards, considering droughts as a
natural disaster, therefore developed a legislation to implement competencies and action of public
institutions to face a natural disaster [203],

• Protected cropping systems increasing the WUE values. Proper design and operation of climate
control within these structures under local conditions, ensures minimum operational cost, enable of
controlling crop evapotranspiration and drainage emissions without compromising yields,

• In rain-fed agriculture, enhanced production, and imports of food product through international
trade. The concept of ‘virtual water’ indicated that gains in water productivity can be achieved by
growing crops in places where climate enables high water productivity at lower cost and trading
them to places with lower water productivity. Although rarely expressed in water terms, virtual
water trade is already a reality for many water-scarce countries, and is expected to increase in the
future [203],

• Increasing consumption of meat and, to a lesser extent, also dairy products translates into increased
water consumption, as their production requires large volumes of water. The extent to which
societies are willing to modify their diets as part of a larger effort to reduce their environmental
footprint reaches far beyond water scarcity concerns. Yet, it has implications in terms of national
food security and associated water-scarcity coping strategies [202],

• Reduction of water losses in the postharvest value chain (i.e., blue water footprints). Indeed,
more than one-third of food is lost or wasted in postharvest operations, therefore it could be a
sustainable solution to reduce the pressure on natural resources [203],

• Using newly accessible technologies and strategies to achieve high water use efficiency and to
promote non-conventional water resources (e.g., wastewater, salt-contaminated) in combination
with soil fertility,
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Figure 7. Rain water harvesting and storage in open reservoir (A); water storage in a covered reservoir
minimizing water evaporation losses and algae growth (B); a commercial closed water reservoir (C);
blended water from different sources (D); a water supply main manifold of recycle water (E); localized
irrigation and net protection in a tree cropping system (F).

9. Conclusions

The present report summarizes sustainable irrigation management guidelines in water-scarce
regions. In particular, as climate change are increase the intensity and frequency of extreme events;
more resilience from people and society is required [203]. Over the longer term, intensive drought
events, water scarcity, overexploitation of groundwater resources and water quality issues remains
much-less the same between regions in arid and semi-arid climate. Several countries have already
developed extensive legislation, institutional capabilities actions and practices that are required for the
effective climate change adaptation. Good irrigation and water management practices are highlighted
with the aim of transferring knowledge in regions which are in the stage of developing national
schemes regarding water productivity optimization. It has to be noted that no individual measure or
action could effectively tackle water scarcity issue.
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Abbreviations

List of Symbols and Abbreviations
Abbreviations Symbols
ACPS agricultural cyber-physical system A equation value model coefficient (dimensionless)
CIS cooperative information systems B values of equation parameters (W m−2 kPa−1)

DI deficit irrigation c
Adjustment factor which depends on mean
humidity and daytime wind conditions

Ep potential evapotranspiration (mm d−1) ea actual vapour pressure (kPa)

ETc crop evapotranspiration (mm d−1) es
saturation vapour pressure for a given time
period (kPa)

ETo reference evapotranspiration (mm d−1) es- ea saturation vapour pressure deficit
I irrigation (mm) G soil heat flux density (Mj m−2)
IoT internet of things K light extinction coefficient
IV irrigation water volume supplied (m−3) n Measurement period (d−1)
IZ irrigation zone Rn net radiation at the crop surface (Mj m−2 d−1)
Kc crop coefficient Rs solar radiation (mm d−1)
Kcp crop-pan coefficient Rsi solar radiation inside greenhouse (W m−2 d−1)
LAI leaf area index (m2 leaf m−2 ground) T air temperature at 2 m height (oC)
PA precision agriculture u2 wind speed at 2 m height (m s−1)

PIS pressurized irrigation system W
weighting factor depends on altitude and
temperature

PRD partial root zone drying Greek letters
R rainfall (mm) Γ psychrometric constant (kPa oC−1)

RDI Regulated deficit irrigation ∆
slope of the saturation vapour
pressure-temperature curve (kPa ◦C−1)

RV drainage water volume collected (m−3) Λ vaporization heat of water (J kg−1)
SBDI stage-based deficit irrigation
SDI subsurface drip irrigation systems
SI supplemental irrigation
StDI sustained deficit irrigation
SWC soil water content
Tc crop transpiration (kg m−2 s−1)
TWW treated wastewater
VPD vapor pressure deficit (kPa)
VRI Variable rate irrigation
WP water productivity (€m−3)
WU water uptake
WUE water use efficiency (Kg m−3)
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