The Ecology of Autogamy in Wild Blueberry (Vaccinium angustifolium Aiton): Does the Early Clone Get the Bee?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites
2.2. Effects of Bloom Phenology Class and Pollination Type on Fruit set and Yield (Weight per Berry)
2.2.1. Bloom Phenology of Highly Self-Fertile Clones
2.2.2. Fruit Set and Berry Weight as Determined by Bloom Phenology Class and Pollination Type
2.3. Bee Activity-Density Sampling
- a is the asymptote,
- b is a shape parameter (positive for bloom, negative for bee dilution),
- c is a slope parameter (negative for bloom, positive for bee dilution).
3. Results
3.1. Bloom Phenology of Highly Self-Fertile Clones
3.2. Fruit Set and Blueberry Mass of Highly Self-Fertile Clones
3.3. Bee Activity-Density Sampling
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowland, L.J.; Drummond, F.A.; Graham, J.; Alkharouf, N.; Buck, E.J.; Hancock, J.F.; Bassil, N.V.; Finn, C.E.; Olmstead, J.W. Generating genomic tools for blueberry improvement. Int. J. Fruit Sci. 2012, 12, 276–287. [Google Scholar] [CrossRef]
- Jones, M.S.; Vanhanen, H.; Peltola, R.; Drummond, F. A global review of arthropod-mediated ecosystem-services in Vaccinium berry agroecosystems. Terr. Arthropod Rev. 2014, 7, 41–78. [Google Scholar] [CrossRef]
- Yarborough, D.E. Wild Blueberry Culture in Maine. Wild Blueberry Fact Sheet. No. 220, Bulletin No. 2088. 2009. Available online: https://extension.umaine.edu/blueberries/factsheets/production/wild-blueberryculture-in-maine/ (accessed on 6 May 2020).
- Vander Kloet, S.P. The genus Vaccinium in North America; Agriculture Canada: Ottawa, ON, Canada, 1988. [Google Scholar]
- Drummond, F.A.; Smagula, J.; Annis, S.; Yarborough, D. Organic wild blueberry production. Tech. Bull. Maine Agric. For. Exp. 2009, 852, 43. Available online: https://digitalcommons.library.umaine.edu/aes_bulletin/2/ (accessed on 6 August 2020).
- Strik, B.C.; Yarborough, D.E. Blueberry production trends in North America, 1992 to 2003, and predictions for growth. HortTechnology 2005, 15, 391–398. [Google Scholar] [CrossRef]
- Asare, E.; Hoshide, A.K.; Drummond, F.A.; Chen, X.; Criner, G.K. Economic risk of bee pollination in Maine wild blueberry, Vaccinium angustifolium Aiton. J. Econ. Entomol. 2017, 110, 1980–1992. [Google Scholar] [CrossRef] [Green Version]
- Yarborough, D.; Drummond, F.A.; Annis, S.; D’Appollonio, J. Maine Wild blueberry systems analysis. Acta Hort. 2017, 1180, 151–160. [Google Scholar] [CrossRef]
- Drummond, F.A. Reproductive biology of wild blueberry (Vaccinium angustifolium Aiton). Agric. 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Eaton, L.J.; Murray, J.E. Relationships of pollinator numbers in blueberry fields to fruit development and yields. In VI International Symposium on Vaccinium Culture; Acta Hort: Leuven, Belgium, 1996; pp. 181–188. [Google Scholar]
- Cutler, G.C.; Reeh, K.W.; Sproule, J.M.; Ramanaidu, K. Berry unexpected: Nocturnal pollination of lowbush blueberry. Can. J. Plant Sci. 2012, 92, 707–711. [Google Scholar] [CrossRef]
- Dicenta, F.; Ortega, E.; Canovas, J.A.; Egea, J. Self-pollination vs. cross-pollination in almond: Pollen tube growth, fruit set and fruit characteristics. Plant Breed. 2002, 121, 163–167. [Google Scholar] [CrossRef]
- Scorza, R.; Bassi, D.; Liverani, A. Genetic interactions of pillar (columnar), compact, and dwarf peach tree genotypes. J. Hort. Sci. 2002, 127, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Frankel, R.; Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding (Vol. 2), 1st ed.; Springer: Berlin, Germany, 2012; p. 281. [Google Scholar]
- Ramírez, F.; Davenport, T.L. Apple pollination: A review. Sci. Hort. 2013, 162, 188–203. [Google Scholar] [CrossRef]
- Hepler, P.R.; Yarborough, D.E. Natural variability in yield of lowbush blueberries. J. Hort. Sci. 1991, 26, 245–246. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.J.; Rowland, L.J.; Smagula, J.; Drummond, F.A. Recent advances in the biology and genetics of lowbush blueberry. Maine Agric. Exp. Stn. Tech. Bull. 2009, 203, 36. [Google Scholar]
- Bell, D.J.; Rowland, L.J.; Stommel, J.; Drummond, F.A. Yield variation among clones of lowbush blueberry as a function of kinship and self-compatibility. J. Hort. Sci. 2010, 135, 1–12. [Google Scholar]
- Qu, H.; Drummond, F.A. Simulation-based modeling of wild blueberry pollination. Electron. Comput. Agric. 2018, 144, 94–101. [Google Scholar] [CrossRef]
- Bajcz, A.; Hiebeler, D.; Drummond, F.A. Grid-Set-Match, an agent-based simulation model, predicts fruit set for the Maine lowbush blueberry (Vaccinium angustifolium) agroecosystem. Ecol. Model. 2017, 361, 80–94. [Google Scholar] [CrossRef]
- Bajcz, A.W.; Drummond, F.A. Flower power: Floral and resource manipulations reveal the consequences of reproductive effort in lowbush blueberry (Vaccinium angustifolium). Ecol. Evol. 2017, 7, 5645–5659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajcz, A.W.; Drummond, F.A. Bearing fruit: Flower removal reveals the trade-offs associated with high reproductive effort for lowbush blueberry. Oecologia 2017, 185, 13–26. [Google Scholar] [CrossRef]
- Aalders, L.E.; Hall, I.V. Pollen incompatibility and fruit set in lowbush blueberries. Can. J. Gent. Cytol. 1961, 3, 300–307. [Google Scholar] [CrossRef]
- Wood, G.W. Self-fertility in the lowbush blueberry. Can. J. Plant Sci. 1968, 48, 431–433. [Google Scholar] [CrossRef]
- Hokanson, K.; Hancock, J. Early-acting inbreeding depression in three species of Vaccinium (Ericaceae). Sex. Plant Reprod. 2000, 13, 145–150. [Google Scholar] [CrossRef]
- Bell, D.J.; Rowland, L.J.; Zhang, D.; Drummond, F.A. Spatial genetic structure of lowbush blueberry, Vaccinium angustifolium, in four fields in Maine. Botany 2009, 87, 932–946. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.J.; Rowland, L.J.; Drummond, F.A. Fine-scale spatial genetic structure associated with Vaccinium angustifolium Aiton (Ericaceae). Int. J. Bot. 2012, 2, 72–82. [Google Scholar]
- Myra, M.; MacKenzie, K.; Vander Kloet, S.P. Investigation of a possible sexual function specialization in the lowbush blueberry (Vaccinium angustifolium Aition. Ericaceae). Small Fruits Rev. 2004, 3, 313–324. [Google Scholar] [CrossRef]
- Bell, D.J.; Drummond, F.A.; Rowland, L.J. Evidence of functional gender polymorphisms in a population of the hermaphroditic lowbush blueberry (Vaccinium angustifolium Ait.). Botany 2012, 90, 393–399. [Google Scholar] [CrossRef]
- Bell, D.J.; Rowland, L.J.; Drummond, F.A. Does pollen neighborhood affect berry yield in lowbush blueberry (Vaccinium angustifolium Ait.). Int. J. Fruit Sci. 2012, 12, 65–74. [Google Scholar] [CrossRef]
- Rowland, L.J.; Ogden, E.L.; Bell, D.J.; Drummond, F.A. Pollen-mediated gene flow in managed fields of lowbush blueberry. Can. J. Plant Sci. 2019, 100, 95–102. [Google Scholar] [CrossRef]
- White, S.N.; Boyd, N.S.; van Acker, R.C. Growing degree-day models for predicting lowbush blueberry (Vaccinium angustifolium Ait.) ramet emergence, tip dieback, and flowering in Nova Scotia, Canada. HortScience 2012, 47, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Drummond, F.A.; Dibble, A.C.; Stubbs, C.; Bushmann, S.; Ascher, J.; Ryan, J. A natural history of change in native bees associated with lowbush blueberry in Maine. Northeast. Northeast. Nat. 2017, 24, 49–68. [Google Scholar] [CrossRef]
- Collins, J.A.; Drummond, F.A. Fertilizer and fungicides: Effects on wild blueberry growth, insect attack, and leaf spot disease incidence. In Proceedings of the North American Blueberry Research and Extension Workers Conference, Orono, ME, USA, 12–15 August 2018; p. 24. [Google Scholar]
- Camp, W.H. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 1945, 25, 203–275. [Google Scholar] [CrossRef] [Green Version]
- Vander Kloet, S.P. The taxonomic status of Vaccinium boreale. Can. J. Bot. 1997, 55, 281–288. [Google Scholar] [CrossRef]
- Vander Kloet, S.P. Systematics, distribution, and nomenclature of the polymorphic Vaccinium angustifolium. Rhodora 1978, 80, 358–376. [Google Scholar]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Hokanson, K.; Hancock, J. Levels of allozymic diversity in diploid and tetraploid Vaccinium sect. Cyanococcus (blueberries). Can. J. Plant Sci. 1998, 78, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.T.; Wilson, W.G.; Knight, T.M. Plant population dynamics, pollinator for aging, and the selection of self-fertilization. Am. Nat. 2005, 166, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.G.; Schoen, D.G. Self- and cross-fertilization in plants. I. Functional dimensions. Int. J. Plant Sci. 1992, 153, 358–369. [Google Scholar] [CrossRef]
- Eckert, C.G.; Schaefer, A. Does self-pollination provide reproductive insurance in Aquilegia canadensis (Ranunculaceae). Am. J. Bot. 1998, 85, 919–924. [Google Scholar] [CrossRef]
- Schueller, S.K. Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Am. J. Bot. 2004, 91, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 1979, 113, 67–79. [Google Scholar] [CrossRef]
- Bell, D.J. Spatial and genetic factors influencing yield in lowbush blueberry (Vaccinium angustifolium Ait.) in Maine. Ph.D. Thesis, University of Maine, Orono, ME, USA, 2009. [Google Scholar]
- Drummond, F.A. Wild blueberry fruit drop: A Consequence of Seed Set. Agronomy 2020, 10, 939. [Google Scholar] [CrossRef]
- SAS Institute. JMP® Version 14; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.V.; Christensen, R.H.B. Lmertest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 88, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Drummond, F.A. Behavior of bees associated with the wild blueberry agro-ecosystem in the USA. Int. J. Entomol. Nematol. 2016, 2, 27–41. [Google Scholar]
- Cutler, G.C.; Nams, V.O.; Craig, P.; Sproule, J.M.; Sheffield, C.S. Wild bee pollinator communities of lowbush blueberry fields: Spatial and temporal trends. Basic Appl. Ecol. 2014, 16, 73–85. [Google Scholar] [CrossRef]
- Karem, J.; Drummond, F.A.; Woods, S.A.; Stubbs, C. The relationships between Apocrita wasp populations and flowering plants in Maine’s wild lowbush blueberry agroecosystems. J. Biocontrol Sci. Technol. 2010, 20, 257–274. [Google Scholar] [CrossRef]
- Goodwillie, C.; Kalisz, S.; Eckert, C.G. The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Carvell, C.; Bourke, A.F.; Dreier, S.; Freeman, S.N.; Hulmes, S.; Jordan, W.C.; Redhead, J.W.; Sumner, S.; Wang, J.; Heard, M.S. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 2017, 543, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Greenleaf, S.; Williams, N.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Drummond, F.A.; Ballman, E.; Collins, J. Are they weeds or a life force? Or sustainability on the edge. Spire Maine J. Conserv. Sustain. 2017. Available online: https://umaine.edu/spire/2017/05/04/drummond-et-al/ (accessed on 12 July 2020).
- Lloyd, D.G. Evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). Contrib. Gray Herb. Harv. Univ. 1965, 195, 1–134. [Google Scholar]
- Moore, D.M.; Lewis, H. The evolution of self-pollination in Clarkia xantiana. Evolution 1965, 19, 104–114. [Google Scholar] [CrossRef]
- Antonovics, J. Evolution in closely adjacent plant populations V. Evolution of self-fertility. Heredity 1968, 23, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 1955, 9, 347–348. [Google Scholar]
- Holsinger, K.E. Dispersal and plant mating systems: The evolution of self-fertilization in subdivided populations. Evolution 1986, 40, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Antonovics, J. Evolution in closely adjacent plant populations X: Long-term persistence of prereproductive isolation at a mine boundary. Heredity 2006, 97, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Daehler, C.C. Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evol. Ecol. 1998, 12, 553–568. [Google Scholar] [CrossRef]
- McNeilly, T. Evolution in closely adjacent plant populations III. Agrostis tenuis on a small copper mine. Heredity 1968, 23, 99–108. [Google Scholar]
- Lloyd, D.G. Demographic factors and mating patterns in angiosperms. In Demography and Evolution in Plant Populations; Solbrig, O.T., Ed.; Blackwell: Oxford, UK, 1980; pp. 67–88. [Google Scholar]
- Lloyd, D.G. Benefits and handicaps of sexual reproduction. Evol. Biol. 1980, 13, 69–111. [Google Scholar]
- Hanes, S.P.; Collum, K.; Hoshide, A.K.; Drummond, F.A.; Asare, E. Farmer perceptions of native pollinators and pollination strategies in the lowbush blueberry industry. Renew. Agric. Food Syst. 2013, 28, 1–8. [Google Scholar]
- Rose, A.; Drummond, F.A.; Yarborough, D.E.; Asare, E. Maine Wild Blueberry Farmers: A 2010 Economic and Sociological analysis of a Traditional Downeast Crop in Transition. Maine Agric. Exp. Stn. Misc. Bull. 2013, 445, 24. Available online: https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1017&context=aes_miscreports (accessed on 6 August 2020).
- Hoshide, A.K.; Drummond, F.A.; Stevens, T.H.; Venturini, E.M.; Hanes, S.P.; Sylvia, M.M.; Loftin, C.S.; Yarborough, D.E.; Averill, A.L. What is the value of wild bee pollination for wild blueberries and cranberries and who values it. Environments 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Schut, L.; Tyedmers, P.; Cutler, G.C.; Melathopoulos, A. Is early pollination to lowbush blueberry an ecosystem service or disservice. Agric. Ecosyst. Environ. 2017, 239, 368–375. [Google Scholar] [CrossRef]
Year | Model | Asymptote (a) | Shape (b) | Slope (c) | Coefficient of Determination, p Value *** |
---|---|---|---|---|---|
2009 | bloom | 88.508 (7.517) ** | 4.878 (0.891) | −0.234 (0.049) | r2 = 0.947, X2(8) = 4.31, p = 0.83 |
dilution | 0.252 (0.013) | −4.023 (0.718) | 0.199 (0.029) | r2 = 0.989, X2(8) = 0.01, p > 0.99 | |
2010 | bloom | 85.128 (3.541) | 6.921 (0.637) | −0.410 (0.043) | r2 = 0.996, X2(6) = 1.13, p = 0.98 |
dilution | 0.472 (0.049) | −9.435 (4.994) | 0.592 (0.308 | r2 = 0.992, X2(6) = 0.02, p > 0.99 | |
2015 | bloom | 100.151 (6.468) | 7.187 (1.217) | −0.311 (0.056) | r2 = 0.986, X2(6) = 2.83, p = 0.82 |
dilution | 0.845 (0.058) | −2.597 (0.335) | 0.168 (0.012) | r2 = 0.998, X2(6) < 0.01, p > 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drummond, F.A.; Rowland, L.J. The Ecology of Autogamy in Wild Blueberry (Vaccinium angustifolium Aiton): Does the Early Clone Get the Bee? Agronomy 2020, 10, 1153. https://doi.org/10.3390/agronomy10081153
Drummond FA, Rowland LJ. The Ecology of Autogamy in Wild Blueberry (Vaccinium angustifolium Aiton): Does the Early Clone Get the Bee? Agronomy. 2020; 10(8):1153. https://doi.org/10.3390/agronomy10081153
Chicago/Turabian StyleDrummond, Francis A., and Lisa J. Rowland. 2020. "The Ecology of Autogamy in Wild Blueberry (Vaccinium angustifolium Aiton): Does the Early Clone Get the Bee?" Agronomy 10, no. 8: 1153. https://doi.org/10.3390/agronomy10081153
APA StyleDrummond, F. A., & Rowland, L. J. (2020). The Ecology of Autogamy in Wild Blueberry (Vaccinium angustifolium Aiton): Does the Early Clone Get the Bee? Agronomy, 10(8), 1153. https://doi.org/10.3390/agronomy10081153