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Abstract: Fruit maturity is an essential factor for fresh retailers to make economical distribution
scheduling and scientific market strategies. In the context of farm-to-door mode, the fresh retailers
could incorporate the postharvest maturity time, picking time and distribution time to deliver
high-quality fruits to consumers. This study selects climacteric tomato fruits and formulates a
postharvest maturity model by capturing the firmness and soluble solid content (SSC) data during
maturing. A joint picking and distribution model is proposed to ensure tomatoes could arrive at
consumers within expected maturity time windows. To improve the feasibility of proposed model,
an improved genetic algorithm (IGA) is designed to obtain solutions. The results demonstrate that the
joint model could optimize the distribution routing to improve consumer satisfaction and reduce the
order fulfillment costs. The proposed method provides precise guidance for tomato online retailers
by taking advantage of postharvest maturity data, which is conducive to sustainable development of
fresh e-ecommerce.
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1. Introduction

With the development of e-commerce platforms and consumption patterns, agri-product online
retailers are pursuing diversified and high-quality services for consumers [1]. Tomato is one of the most
common agri-products categories in China, and how to improve the service ability and reduce the cost
simultaneously has become an essential issue for online retailing [2]. As a climacteric fruit, tomatoes
have postharvest maturity characteristics, i.e., maturing after harvest, which brings the possibility for
better picking decision and distribution scheduling [3]. To extend the shelf life and reduce the quality
deterioration, tomato retailers usually pick tomatoes at the initial maturity stage (such as green or pink
fruits), so that they could provide more available time for distribution and marketing [4]. However,
due to the complex maturity characteristics and diverse order requirements, it brings more challenges
for tomato retailers to determine optimal decisions. Therefore, this study incorporates the tomato
postharvest maturity data into the joint picking and distribution model to make an economical picking
and distribution scheduling. The purpose of the joint model is to guarantee the delivered tomatoes
with higher marketability and satisfying maturity.

The complication of joint tomato picking and distribution scheduling problem comes from three
aspects:

• Maturity characterization. A precise maturity characterization would consider the maturity stages,
characteristic indices and temporal distribution.
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• Time collaboration. It is a time collaboration problem that decides the expected maturity time
window, picking time and distribution time simultaneously.

• Joint decision-making. Picking and distribution processes are interactive for making the picking
strategy, vehicle arrangement and optimal routing.

The most relevant literature involves agricultural supply chain [5], picking or distribution of
agri-products [6,7], maturity measurement [8], vehicle routing problem with time window [9,10] and
multi-type vehicle routing problem [11]. Generally, these studies have provided many methods to
reduce the loss and cost in agricultural supply chain from some vital process, such as inventory or
distribution. However, for fresh agri-products, available literature has mainly considered freshness
during distribution, while seldom taking advantage of the postharvest maturity data to ensure the
optimal maturity stage. In the context of agri-product online retailing, the farm-to-door mode has
become a trend due to its economy and convenience. Joining multiple processes is necessary to be
researched further for precise agricultural production activities. Therefore, a joint decision-making for
tomato picking and distribution based on postharvest maturity is proposed in this study, which aims
to reduce the order fulfillment cost and satisfy the consumer requirement.

The contributions in this study contain three aspects: (1) capturing the tomato maturity data and
formulating a tomato maturity model; (2) introducing the postharvest maturity model into the picking
and distribution processes, and establishing a joint decision-making model on tomato picking and
distribution scheduling; (3) proposing an improved genetic algorithm (IGA) to solve the model.

This study is organized as follows. Section 2 reviews the related literature. In Section 3, the problem
is described and the joint decision-making model is formulated. Section 4 proposes an improved
genetic algorithm (IGA) to solve the joint model. In Section 5, the numerical results, sensitivity analyses
and computational performance of proposed model and algorithm are reported. Section 6 discusses
the conclusions and suggests future works.

2. Literature Review

This study is related to two research streams: the model formulation of fruit maturity, the decision
optimization of agri-product supply chain.

Fruit maturity is widely applied in picking and storage processes. It is conducive to deciding
optimal production strategies and extending shelf life by identifying and monitoring the different
maturity stages [12]. To characterize maturity, there is a large literature monitoring different maturity
features most related to fruit biological characteristics, such as color, firmness and soluble solids content.
Among these works, the most intuitive approach is to regularly record the values of multiple indices
during fruits maturing [13,14]. Schouten et al. [15] used the non-linear regression model of color and
firmness to determine the maturity, storage time and biological age of tomato fruits. Van de Poel et al. [8]
measured the fruit color and mass of tomatoes and formulated an integrated growth model to forecast
the maturity stages. Olarewaju et al. [16] investigated the relationship between physicochemical indices
(such as dry matter, moisture content and oil content) and near-infrared spectroscopy. The partial
least squares regression model was formulated to evaluate the avocado fruit maturity. Sun et al. [17]
compared the variations of color space parameters, soluble solids content, titratable acidity etc. of
lemon fruits at different maturity stages. Kasampalis et al. [18] selected fluorescence of tomato fruit
surface to monitor the maturity stages during storage. Generally, these studies have provided many
methods to formulate the tomato maturity model in this study. It is crucial to select appropriate indices
to evaluate fruits with different features. For most fruits, firmness and soluble solid could describe
maturity accurately, because softening is a universal feature of fruit maturing.

The agri-product supply chain contains picking optimization, inventory strategy, distribution
scheduling, market decision and so on [19]. In this study, the most relative processes are picking and
distribution. For picking optimization, the objective is often to adjust picking operation and sequence
to improve the agri-product marketability. Ferrer et al. [20] optimized grape picking operations with
consideration of operational costs and grape quality. Arnaout and Maatouk [21] decided the optimal
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picking days for different grape blocks to optimize the quality and costs. An and Ouyang [22] proposed
a bi-level robust optimization model to assign the picking time of farmers to minimize the postharvest
loss. Munoz and Lee [23] proposed a distributed control approach to compare the performances of
different picking sequences for sugarcane. For distribution scheduling, the objective mainly focuses on
optimizing the profits or costs of retailers. Hu et al. [24] proposed a time-dependent model to reduce
the distribution cost, time penalty and cargo damage of fresh products. Bortolini et al. [25] considered
the operating cost, carbon emission and delivery time to optimize the distribution networks of fresh
food. Wang et al. [26] optimized the distribution costs and freshness state to obtain an effective vehicle
routing. These studies demonstrated that considering time, quality and cost requirements is essential
to optimize agri-product distribution. However, in the context of the traditional market, the farmer and
retailer are two separate participants. Most of the existing works addressed a certain process to propose
effective solutions for the farmer or retailer. With the rise of online retailing, the farm-to-door mode has
become popular for many agri-product retailers. In this context, the retailer receives consumer orders,
then picks tomatoes and arranges vehicles for the delivery. Therefore, joining picking and distribution
processes is necessary for retailers to make optimal decisions.

In summary, in order to take advantage of the postharvest maturity characteristic, this study selects
the firmness and soluble solid to evaluate tomato maturity, and introduces maturity time windows
into the joint model formulation. The joint model integrates picking and distribution, which are two
highly related processes for online retailers. In other words, the retailers could decide the picking
time and distribution secluding synergistically after receiving consumer orders. The purposes of the
proposed model are to satisfy consumer maturity requirements and minimize order fulfillment costs.

3. Model Development

3.1. Problem Description

The joint decision-making approach for tomato picking and distribution based on postharvest
maturity contains multiple processes, i.e., order collection, picking decision, vehicle assignment and
routing scheme, as shown in Figure 1. For order collection, the tomato online retailer collects orders
from scattered consumers (denoted as c1, c2, · · · , c5). The order information contains demand quantity,
expected maturity and geographical location. For picking decision, the retailer decides the start picking
time of each order, so that tomatoes could be delivered to the consumer at the expected maturity stage.
For vehicle assignment, the vehicle type and number would be determined with consideration of
loading capacity and distribution cost. For routing scheme, the optimal delivery sequence of each
vehicle is designed to fulfill orders within time windows. It is noteworthy that the time window of
consumer order is determined by consumer expected tomato maturity. In this study, the crucial issue
is how to decide the start picking time and assign the optimal vehicle routing to satisfy time windows
generated by expected maturity of consumers.

3.2. Postharvest Maturity Model

To formulate the tomato postharvest maturity model, the data of maturity indices is monitored to
investigate the relationship between maturity and time. More than 150 tomato samples were picked in
October 2019 at the Jiangsu Academy of Agricultural Sciences for maturity experiment. According to
the general classification standard and market preference, the available tomato maturity was classified
into five stages in this study, i.e., breaker, turning, pink, light red and red stages [27,28]. There were
50 tomato samples for each maturity stage, for a total of 150 effective samples. These tomatoes were
similar in shape and had no mechanical damage. All the experiments were performed in the specific
condition with temperature 20 ± 2 °C and relative humidity: 70–75%. The tomato samples at each
maturity stage are shown in Figure 2.
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The firmness and soluble solid content (SSC) are critical factors for farmers to evaluate tomato
maturity [29–31]. In this study, firmness and SSC experiments are carried out, and data distributions of
different maturity stages are reported.

(1) Firmness measurement

In practice, the tomato fruit texture would soften as maturing, which directly influences the
change in firmness values [32]. In the firmness experiment, the professional US FTC TMS-Pro with a
cylindrical probe is employed. The deformation degree, detection speed and trigger force are set to
20%, 5 mm/min and 1 N, respectively [33].

(2) Soluble solid content measurement

Soluble solid content (SSC) is the most relevant index for tomato fruit taste, which is vital to
decide the optimal picking time and implement appropriate tomato sales strategies [34]. The tomato
juice is extracted and the supernatant liquor is selected to measure the SSC value by Japanese ATAGO
PAL-1 digital refractometer [35].

After extracting the values of firmness and SSC indices, statistical analysis and data distributions
among different maturity stages are reported by SPSS software version 22.0. The significance level was
set to 0.05. The analysis results are shown in Table 1 and Figure 3.

Table 1. Statistical analysis of firmness and soluble solid content (SSC) maturity indices a.

Maturity Index
Maturity Stage

Breaker Turning Pink Light red Red

Firmness 40.09 ± 1.69 A 35.22 ± 1.93 B 32.27 ± 2.04 C 27.74 ± 1.30 D 25.48 ± 1.81 E

SSC 4.71 ± 0.20 E 5.14 ± 0.15 D 5.34 ± 0.15 C 5.70 ± 0.19 B 6.09 ± 0.22 A

a Values in this table is defined as average value ± standard deviation. A–E Superscripts A–E represent the significant
difference between different maturity stages by the analysis of variance. If superscripts are different in one row,
the maturity index has significant differences between these two maturity stages.
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As shown in Table 1, the values of firmness and SSC indices with significant differences at
these tomato maturity stages are labeled with different superscripts. Although there are some slight
overlapping intervals, such as turning and pink stages of firmness index, these two maturity indices
all have significant differences between different maturity stages. Similarly, Figure 3 demonstrates
that the values of firmness and SSC indices at the same maturity stages fluctuate within a certain
range. Generally, it is feasible to formulate the tomato maturity model by monitoring firmness and
SSC value variation.

The firmness and SSC are measured and recorded every six hours. The experiments would be
done until tomato fruits rot. The curve regression is performed to formulate the continuous time
models on firmness and SSC indices as Equations (1) and (2):

Firmness = 42.137− 0.010t− 0.002t2 (1)

SSC = 4.61·e0.002t (2)

The best fit curve regression analysis of firmness and SSC models are shown in Table 2.
The coefficients of determination (R2) of firmness model is 0.927, and R2 of SSC model is 0.856,
which indicates that the firmness regression model has a higher goodness of fit. The significance values
(Sig.) of firmness regression model is 0.001 (Sig. ≤ 0.05), which demonstrates this model is statistically
effective. In addition, considering the small range of SSC varies from 4.5 to 6.5, a slight value difference
may result in a significant error in results. While the tomatoes at different maturity stages have obvious
differences in firmness values. Therefore, the firmness index is selected to calculate the tomato maturity
time window in this study. Based on the data distribution of firmness above, the time windows of
tomatoes at different maturity stages are calculated by Equation (1) and the results are as shown in
Table 3.

Table 2. Curve regression analysis for tomato maturity and time.

Maturity Model Equation R2 Sig.

Firmness Quadratic 0.927 0.001
SSC Exponential 0.856 0.011
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Table 3. Time windows for tomato different maturity base on firmness.

Maturity Stage Firmness Value Range Time Window (h)

Breaker 37.9–42.3 0–44
Turning 33.1–37.9 44–65

Pink 28.5–33.1 65–80
Light red 25.9–28.5 80–88

Red 22.1–25.9 88–98

3.3. Objective Function

In this study, the proposed model considers two objectives related to picking and distribution
scheduling for tomato online retailing: maturity penalty cost and distribution cost. Detailed
explanations of the notations are given in Appendix A.

(1) Maturity Penalty Cost

For tomato online retailing, the retailer could decide the picking and distribution time to satisfy the
expected maturity of consumers. There are two maturity penalty scenarios considered in this model,
i.e., earliness penalty and tardiness penalty [36]. The increase rate of maturity penalty cost (U(tk

ip)) is
related to the deviation of consumer expected time window [eir, lir], which could be represented as
Equation (3). Therefore, the more the vehicle arrival time (tk

ip) deviates from the time window, the more
penalty cost would generate:

U
(
tk
ip

)
=


γ1·

(
eir − tk

ip

)
+ ϑ1, tk

ip ≤ eir

0, eir ≤ tk
ip ≤ lir

γ2·

(
tk
ip − lir

)
+ ϑ2, tk

ip ≥ lir

(3)

where γ1 and γ2 denote the unit increase rate of earliness penalty cost and unit tardiness penalty cost,
respectively. For the earliness scenario, the consumer needs to store tomatoes for a period of time
to reach the expected maturity stage. For the tardiness scenario, the overripe tomatoes would make
consumer satisfaction decrease significantly and bring more penalty costs. Considering the different
influences of earliness and tardiness on consumer satisfaction, the unit penalty cost parameters are

set to γ1 < γ2. The maturity penalty cost equals the integral of U
(
tk
ip

)
, which can be formulated as

Equation (4):

obj1 =
∑
i∈N′

(γ1

2
·(EPi)

2 + ϑ1·EPi

)
+

∑
i∈N′

(γ2

2
·(TPi)

2 + ϑ2·TPi

)
(4)

where EPi is the earliness deviation of consumer expected time window, and TPi is the tardiness
deviation. The mathematical formulation of EPi and TPi are shown as Equations (5) and (6):

EPi = max

eir −
∑
p∈P

∑
k∈K

tk
ip, 0

,∀i ∈ N′, p ∈ P, k ∈ K, r ∈ R (5)

TPi = max

∑
p∈P

∑
k∈K

tk
ip − lir, 0

,∀i ∈ N′, p ∈ P, k ∈ K, r ∈ R (6)

In the objective, R = {r|1, 2, · · · , rnum} represents the collection of tomato maturity stages, such as
breaker (r = 1), turning (r = 2), pink (r = 3), light red (r = 4) and red (r = 5). We would minimize obj1.
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(2) Distribution Cost

The distribution cost in this study considers two parts: fixed usage cost and transportation cost.
Let xk

i jp ∈ {0, 1} be a decision variable. If xk
i jp = 1, the arc (i, j) belongs to the delivery routing of vehicle

k with type p. In other words, the vehicle k with type p leaves consumer i, and then travels to consumer
j. Therefore, the distribution cost is formulated as Equation (7):

obj2 =
∑
p∈P

∑
k∈K

∑
j∈N

∑
i∈N

xk
i jp·ωp·τi j +

∑
p∈P

∑
k∈K

∑
j∈N′

xk
0 jp· fp (7)

In the objective, we would minimize obj2.

3.4. Constraints

To model tomato online retailing mode based on postharvest maturity, the picking decision and
distribution scheduling are joined to reduce the order fulfillment cost and improve the consumer
satisfaction. Constraints are given as follows:∑

i∈N′
di·yk

ip ≤ qp, ∀p ∈ P, k ∈ K (8)

∑
k∈K

∑
j∈N′

xk
0 jp ≤ np, ∀p ∈ P (9)

∑
p∈P

∑
k∈K

∑
i∈N

xk
i jp = 1, ∀ j ∈ N′ (10)

∑
p∈P

∑
k∈K

∑
j∈N

xk
i jp = 1, ∀i ∈ N′ (11)

∑
i∈N

xk
i jp =

∑
i∈N

xk
jip, ∀ j ∈ N′, p ∈ P, k ∈ K (12)

∑
j∈N′

xk
0 jp ≤ 1, ∀p ∈ P, k ∈ K (13)

∑
i∈N′

xk
i0p ≤ 1, ∀p ∈ P, k ∈ K (14)

∑
i∈N

xk
i jp = yk

jp, ∀ j ∈ N′, p ∈ P, k ∈ K (15)

tsk
ip + α·di·yk

ip ≤ t f k
ip, ∀p ∈ P, k ∈ K (16)

t f k
ip ≤ tk

0p, ∀i ∈ N′, p ∈ P, k ∈ K (17)

tk
ip + τi j −

(
1− xk

i jp

)
·M ≤ tk

jp, ∀i, j ∈ N, p ∈ P, k ∈ K (18)

tk
0p ≤ tk

ip, ∀i ∈ N′, p ∈ P, k ∈ K (19)

tsk
ip, tk

ip ≥ 0, ∀i, j ∈ N, p ∈ P, k ∈ K (20)

xk
i jp, yk

jp ∈ {0, 1},∀i, j ∈ N, p ∈ P, k ∈ K (21)

Constraint (8) is the loading quantity limit of vehicle type p. Constraint (9) ensures that the
number of vehicle type p used would not exceed the total number of vehicle type p. Constraints (10)
and (11) indicate that each consumer can only be served by one vehicle. Constraint (12) represents
the network flow balance. The vehicle k with type p arrives and leaves a certain consumer node.
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Constraints (13) and (14) indicate that each vehicle k with type p can only leave and return to the tomato
farm at most once. Constraint (15) denotes that vehicle k with type p serves consumer j, if consumer
j is a node in the routing of this vehicle. Constraint (16) calculates the start picking time and finish
picking time. Constraint (17) ensures that the vehicle k with type p starts to distribute after picking
all tomatoes of consumers in routing. Constraint (18) eliminates the sub-tours of vehicle k with type
p. M denotes a large positive constant. If vehicle k with type p serves from consumer i to consumer
j, xk

i jp = 1 and tk
ip + τi j ≤ tk

jp; otherwise, tk
jp ≥ tk

ip + τi j −M. Constraint (19) describes the relationship
between vehicle start distribution time and arrival time of consumer. Constraint (20) indicates the
value ranges of tsk

ip and tk
ip. Constraint (21) defines xk

i jp and yk
ip as binary decision variables.

3.5. Model Formulation

According to the discussions in Sections 3.3 and 3.4, the joint decision-making approach for
picking and distribution is formulated as a constrained multi-objective optimization model. The joint
decision-making model can be expressed as:

min obj1 + obj2 (22)

s.t. (5)(6) and (8) ∼ (21) (23)

4. Implementation of Improved Genetic Algorithm

With the expansion of problem scale, general solvers may not obtain optimal solutions or require
a lot of time to solve the problem [37]. Genetic algorithm (GA) is a universal optimization algorithm
with global parallel searching ability, which is suitable for large scale case solutions [38]. Considering
multiple decision variables in the joint model (such as picking time variables, vehicle selection variables
and routing node variables), the solution spatial structure will be complicated. It brings more difficulty
to solve the model. In this study, an improved genetic algorithm (IGA) is proposed to improve the
optimization efficiency and global convergence ability.

4.1. Selection Operation

The selection operation is to preserve the individual information of parent to the offspring. In this
study, the selection probability is determined adaptively according to the fitness value. Through the
adaptive selection operation, the number of excellent individuals in the parent could be increased to
accelerate the optimization efficiency. The individuals selected number in the parent is calculated as
Equation (24):

Ni =
gi∑

gi
·N (24)

where gi denotes the fitness value of i-th individual in the population, N is the population size.

4.2. Self-Adaptive Genetic Operator Probability

Crossover and mutation probabilities are important factors related to search ability and
convergence efficiency. Increasing the crossover probability pc could improve the convergence
efficiency, but it is easy to generate a local optimum. Increasing the mutation probability pm could
enhance the global search ability, but the convergence speed would be slower. In this study, a novel
adjustment strategy is proposed by nonlinearly adjusting the crossover and mutation probabilities to
improve the global optimization ability. pc and pm are calculated as Equations (25) and (26):

pc = k1·exp(1−
favg − fmin

favg − f ′
) (25)
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pc = k2·exp(1−
favg − fmin

favg − f
) (26)

where favg and fmax are the average and minimum individual finesses, respectively. f ′ is the larger
fitness value between two selected crossover individuals, and f is the fitness value of selected mutation
individual. The ranges of k1, k2 are [0, 1]. This strategy could adjust the crossover and mutation
probabilities dynamically to improve the global search ability and convergence speed.

4.3. Implementation of IGA

The implementation procedures on solving the joint decision-making model are shown in Figure 4.
The detailed instructions of IGA are described as follows.
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Step 0: Initialize the parameters of population quantity N, the maximum iteration number T,
the probabilities of crossover pc and mutation pm.

Step 1: Generate the initial population P randomly within the feasible solution space obtained
by constraints.

Step 2: Calculate the fitness value of each individual according to the objective function
Equation (19).

Step 3: Select the parents P1 (population quantity Ni) from the current population according to
Equation (21).

Step 4: Generate the offspring P2 obtained in Step 3 according to the following steps.
Step 4.1: Calculate the crossover and mutation operators based on Equations (22) and (23) to yield

the offspring P2.
Step 4.2: Check whether the individual in the offspring P2 satisfies the constraints. If it satisfies

the conditions, proceed to the next step; otherwise, return to Step 4.1.
Step 5: Calculate the fitness value of each individual in the offspring P2 again based on

Equation (19).
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Step 6: Check the current iteration number Gen. If Gen < T, then return to Step 3; otherwise,
output the optimal solution.

5. Numerical Experiments

The numerical results of the joint model and proposed algorithm are reported in this section.
In Section 5.1, a basic numerical experiment with one tomato farm and 20 consumer nodes is carried
out to verify the efficiency of the joint model. In Section 5.2, the optimal solutions of joint model
and traditional model are compared in terms of vehicle number, penalty cost and distribution cost.
In Section 5.3, the results of sensitivity analysis on penalty cost and time window are reported.
In Section 5.4, the performance of improved genetic algorithm (IGA) is examined from aspects of
iteration number and CPU time. All experiments are performed on an Intel Core i3-8100 3.60 GHz
processor with 16 GB RAM and MATLAB 2017a.

5.1. Basic Numerical Experiments

There are one tomato farm and 20 consumer nodes in this case. The geographic locations, expected
maturity and demand quantities are all known. The unit earliness and tardiness penalty costs are set as:
γ1 = 0.05 CNY/unit, γ2 = 0.2 CNY/unit, ϑ1 = 0.1 CNY/unit, ϑ2 = 0.4 CNY/unit. The unit picking
time (α) is set to 50 kg/h. The IGA parameters are set as: N = 100, T = 1000, pc = 0.9 and pm = 0.05.
There are two vehicle types used in this study, and q1 = 100 kg, q2 = 70 kg. The unit fixed usage and
unit distribution costs are set as: f1 = 130 CNY, f2 = 100 CNY, ω1 = 2.2 CNY/h and ω2 = 2 CNY/h.
Figure 5 shows the spatial coordinate of each node (citing from Solomon [39]). The tomato farm is
denoted as circle 0, and the consumer nodes are denoted as circle 1 ∼ 20. Table 4 gives the information
of consumer orders on geographic locations, tomato demands and expected maturity.
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Table 4. Consumer order information.

Number Coordinate
(km)

Demand
(kg)

Expected
Maturity a Number Coordinate

(km)
Demand

(kg)
Expected

Maturity a

0 [35, 35] 0 0 11 [20, 65] 12 2
1 [41, 49] 10 4 12 [50, 35] 19 5
2 [35, 17] 7 4 13 [30, 25] 23 3
3 [55, 45] 13 4 14 [15, 10] 20 3
4 [55, 20] 19 5 15 [30, 5] 27 4
5 [15, 30] 26 1 16 [10, 20] 19 4
6 [25, 30] 21 2 17 [5, 30] 14 5
7 [20, 50] 17 2 18 [20, 40] 12 5
8 [10, 43] 9 3 19 [15, 60] 17 2
9 [55, 60] 16 4 20 [45, 65] 31 3
10 [30, 60] 16 2

a The corresponding relationship between maturity stage and numbers is: Break = 1, Turning = 2, Pink = 3,
Light red = 4, Red = 5.

The basic numerical experiment is tested 10 times, and the optimal tomato picking and distribution
scheduling is shown in Table 5 and Figure 6. There are four vehicles used in this scheduling to distribute
the tomatoes, three vehicles are type 1 and one vehicle is type 2. The v1-1 in Figure 6 represents
the vehicle 1 with type 1. In this scheduling, vehicle 1 with type 1 serves consumer 1, consumer 9,
consumer 20, consumer 3, consumer 12 in turns, and then returns to the tomato farm. The total cost is
1610.57 CNY, where maturity penalty cost is 295.94 CNY, and distribution cost is 1314.63 CNY.

Table 5. Optimal tomato picking and distribution scheduling.

Vehicle Type Vehicle Number The Optimal Vehicle Routing

Type 1
Vehicle 1 0→1→9→20→3→12→0
Vehicle 2 0→7→10→11→19→8→17→18→0
Vehicle 3 0→6→13→2→15→4→0

Type 2 Vehicle 1 0→5→16→14→0

Objective value
obj1 obj2 Total Cost Number of Vehicles

295.94 CNY 1314.63 CNY 1610.57 CNY 4
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5.2. Comparison between Joint Model and Traditional Model

To further analyze the economic contribution of the joint model, the optimal result is compared
with the traditional distribution scheduling. According to models reported by Cordeau et al. [40] and
Koc et al. [41], the traditional model is formulated as a cost-based model, which does not consider
maturity time window and penalty cost. In the proposed model, the time windows are generated from
the tomato maturity model to constrain picking and distribution decision. However, in the traditional
distribution mode, the distribution cost is the primary factor for retailers to make decisions. The time
window [eir, lir] in the joint model is slacked to formulate the traditional model (i.e., eir = 0, lir = M).
That is to say, the maturity penalty cost is not considered in the traditional distribution mode. In the
traditional model, the optimization objective is to minimize the delivery cost for order fulfillment.

The optimal objective values of the traditional model are shown in Table 6 and Figure 7. The vehicle
number is 3 and the distribution cost is 1138.92 CNY. Compared with the results of joint model,
the vehicle number and distribution cost are reduced. Without the time window constraints, the retailer
arranges the vehicles only considering loading capacities and geographical locations. To calculate the
penalty cost of traditional model, tomato arrival times at consumers in the traditional scheduling are
introduced into Equation (4). The maturity penalty cost of traditional model is 829.06 CNY, which is 2.8
times that of the joint model. In summary, the joint model could reduce the maturity penalty cost by
64.30% and save the total cost by 357.41 CNY in this case setting. The comparison results demonstrate
that the joint model could provide a precise scheduling to satisfy the consumer requirements.

Table 6. Comparison results of the joint model and traditional model.

Model
Objective Value

Number of Vehicles obj1 obj2 Total Cost

Joint model 4 295.94 CNY 1314.63 CNY 1610.57 CNY
Traditional model 3 829.06 CNY 1138.92 CNY 1967.98 CNY
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In this study, the tomato maturity time windows are calculated by multiple experiments on
tomato samples. Considering different fruits have different maturity characteristics, it would bring
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stricter or more inclusive time window restrictions, as well as affect picking and distribution decisions.
For example, the maturity speed of peaches is faster than that of tomatoes, so that the maturity time
window intervals are smaller. In this context, the retailer needs to fulfill the peach orders in a shorter
time. Therefore, in this subsection, the sensitivity analyses are carried out in terms of maturity penalty
factors and maturity time windows.

For maturity penalty, the unit earliness penalty cost (γ1) and tardiness penalty cost (γ2) are varied
from 0 to 0.25 in interval of 0.025, respectively. As shown in Figure 8, with the increase of γ1 and γ2,
the objective value increases gradually. It can be seen that the increase rate of the objective value by
increasing γ1 is higher than that by increasing γ2. The variation trend demonstrates that the maturity
speed of tomatoes is relatively slow than other fruits, and most of the maturity penalty costs in this
scheduling are earliness penalty. It could provide more distribution time for retailers to satisfy the
expected maturity. In addition, to satisfy the increasing requirements of consumers, the retailer would
weigh the penalty cost and distribution cost to reduce the total cost.
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For the maturity time window, the interval of each time window is adjusted by ±10%, ±20%,
±30%, ±40% and ±50%. If the initial time window is 0–50, the adjusted time windows are 0–45 by
adjusting −10%, and 0–55 by adjusting +10%. The results are reported in Figure 9. With the time
window shrinking, the objective values increase gradually. When the time window intervals are large
enough, the distribution costs have slight gaps, such as adjusting the time windows by 30%−50%.
In these cases, the routing scheduling is mainly determined by distribution cost constraints. However,
when time window intervals are small, the retailer needs to assign more vehicles or adjust the most
economical routing to satisfy the maturity requirements. The distribution cost would increase greatly
with strict time window constraints, which demonstrates that the retailer needs to assign more vehicles
to distribute fruits to reduce the penalty possibility. In addition, the distribution cost in case of time
window −10% is higher than case of time window −20%. Although the stricter time constraint leads
to a higher penalty cost, it may bring more total costs by increasing the vehicle number. Therefore,
the retailer could weigh distribution cost and penalty cost to determine the least total cost scheduling.
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In general, retailers could adjust the distribution strategy according to the fruit maturity
characteristic and consumer demand preference. Three managerial insights could be drawn from
numerical analyses above:

• For some fruits with higher maturity rates, distribution in advance could avoid a sharp drop in
consumer satisfaction.

• For some fruits with slower maturity speed rates, consumers are more inclined to receive fruits
with closer maturity, rather than immature fruits; thus, a delayed distribution could reduce the
penalty cost.

• Retailers could shorten the distribution time by increasing the vehicle number to satisfy strict
maturity requirements of consumers.

5.4. Medium-to-Large Scale Numerical Experiments

Considering the large number of online orders and scattered demand locations, it is crucial to
calculate a feasible solution in a reasonable time. The proposed IGA aims to provide the optimal
solution quickly for retailers in practice. To further verify the efficiency of the proposed algorithm,
eight medium-to-large scale cases are tested. The consumer number increases from 30 to 100.
The computational performance results of IGA and genetic algorithm (GA) are reported in terms of
CPU time and iteration number.

As shown in Figure 10a, the iteration number of IGA ranges from 80 to 500. With the scale
of numerical experiment increasing, the iteration number would increase accordingly. While the
iteration number of GA ranges from 350 to 800, which is significantly greater than IGA. In Figure 10b,
CPU times of IGA are all less than that of IGA. Especially for solving the large-scale numerical case
with 100 consumer nodes, CPU time of IGA is 714 s, while that of GA is 1123 s. In this case, IGA saves
about 7 min of solution time. Generally, the proposed IGA converges the optimal solution with fewer
iterations and shorter time. Compared with GA, the IGA proposed in this study saves an average of
32.37% CPU time and reduces the iteration number by 54.27% on average. The joint decision-making
model and proposed IGA have superior in solving the medium-to-large scale cases, which is feasible
for practical application.
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6. Conclusions

This study proposes a joint decision-making approach for tomato picking and distribution
considering postharvest maturity. To satisfy diversified maturity requirements, a postharvest maturity
model is formulated by monitoring variations of firmness and SSC. The maturity time windows
are calculated and introduced into picking and distribution processes. An optimization model is
proposed by joining picking decision and distribution scheduling to ensure that orders could be fulfilled
within the optimal maturity time window. This model represents a feasible method to address the
high-quality deterioration and diverse requirements of fresh agri-product online retailing, especially
for climacteric fruits. An economical distribution scheduling is proposed to satisfy requirements by
overlapping maturing time and distribution time. Moreover, numerical experiments demonstrate that
the proposed IGA saves iteration number and CPU time by 54.27% and 32.37% on average compared
to GA. In general, this proposed method could take full advantage of postharvest maturity data to
provide more decision-making possibilities for retailers, which has promising applications for tomato
online retailing.

This study contains new directions for further research in fruit supply chain considering maturity.
On one hand, fruit has different postharvest maturity speeds in different environments, such as
temperature, ethylene, humidity. Investigating the relationship between these factors and postharvest
maturity speed could optimize inventory decisions, which is conducive to extending shelf life and
improving marketability. On the other hand, for several fruits with short shelf life (such as peach,
kiwi and mango), it is economical to make bundle pricing decisions in advance based on maturity
stages and speeds. The sales strategies based on maturity provide more available time for retailers,
which could reduce quality deterioration and unsalable risk.
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Appendix A

Table A1. Notation explanations.

Sets

N Set of nodes including one tomato farm and multiple consumers.
N′ Set of consumer nodes, N′ = N/{0}.
P Set of vehicle types.
K Set of vehicles.
R Set of tomato maturity stages.

Parameters

γ1 Unit increase rate of earliness penalty cost.
γ2 Unit increase rate of tardiness penalty cost.
ϑ1 Constant earliness penalty cost.
ϑ2 Constant tardiness penalty cost.
fp Fixed usage cost of vehicle type p.
ωp Unit distribution cost of vehicle type p.
np Number of type p vehicles.
qp Loading capacity of vehicle type p.
α Unit picking time of tomatoes.
di Tomato demand quantity of consumer i.
τi j Distribution time between consumer i and j.

[eir, lir] Time window of consumer i with expected tomato maturity r.

Variables

xk
i jp Binary decision variable. If xk

i jp = 1, vehicle k with type p serves from consumer i to consumer j.

yk
ip Binary decision variable. If yk

ip = 1, consumer i is served by vehicle k with type p.

tk
ip Arrival time of vehicle k with type p at consumer i.

tsk
ip Start picking time of vehicle k with type p for consumer i order.

t f k
ip Finish picking time of vehicle k with type p for consumer i order.
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