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Abstract: The effects of silicon (Si) on temperature stresses were investigated in poinsettia. Well-rooted
cuttings supplemented with and without Si were exposed to 40 ◦C, and plants treated with or without
Si during cutting propagation and cultivation were subjected to 4 ◦C. The results showed that almost
all the stomata of cuttings without Si supplementation were closed, while some of them were still
open in cuttings supplemented with Si under a high temperature stress. However, Si was not able
to alleviate stomatal closure of poinsettia under low temperature stress. The increased epicuticular
wax might contribute to enhanced resistance of poinsettia to low temperature stresses. In addition,
poinsettia maintained a higher photosynthetic rate and lower malonaldehyde and hydrogen sulfide
concentrations when supplemented with Si under high and low temperature stresses, which might
contribute to lower APX activities. Overall, temperature stresses had negative impacts on the
physiological characteristics of poinsettia, while Si could alleviate some effects of temperature stresses.
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1. Introduction

Silicon (Si) is a beneficial element that helps plants overcome temperature stresses. The mechanisms
involved include stimulation of antioxidant systems [1,2], maintenance of photosynthetic proteins [3],
retention of water content [4], fortification of cell wall [4], restoration of hormonal balances [5],
and regulation of stress-related genes [6,7]. Although Si is largely present in soil, the plant-available
form (monosilicic acid) is relatively limited, especially in Korea which has low available Si in soil
(averaged 72 mg·kg−1) [8,9]. Moreover, Si is not available in most of hydroponic systems when it is not
supplemented since horticultural growing media usually do not contain any natural soil. Deficiency of
Si usually leads to abnormal plant development such as reduced number of brown epidermal cells,
yellow leaves, and malformed fruits [10,11], while excessive Si uptake has negative effects on growth
of Phragmites australis [12].

Poinsettias (Euphorbia pulcherrima Willd.) are propagated in summer and they bloom in winter,
which therefore could be exposed to high and low temperature stresses, respectively. Temperature
stresses lead to numerous changes in plants. The initial response should be stomatal closure [13,14].
The stomata regulate gas exchange, which contribute to physiological processes including
photosynthesis and transpiration. Most importantly, their roles in transpiration help plants control leaf
temperature. Results of studies on stomatal responses to temperature are somewhat contradictory.
Some studies revealed that stomata closed with increasing temperature [15–17], whereas some found
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that stomata opened with increasing temperature [18,19]. On the other hand, studies have suggested
that stomata close at temperatures lower than that at which plants are grown [20,21]. However, it
depends on the sensitivity of plants. It was found that a sudden low temperature led to stomatal
closure in cold-tolerant plants but not in cold-sensitive plants [22].

High temperatures not only cause photorespiration of plants, but also damage the photosynthetic
apparatus [23,24]. It was reported that chlorophyll biosynthesis is one of the most affected plant
functions damaged by high temperatures [25]. Numerous studies have also reported that low
temperatures stresses have negative impacts on photosynthesis in maize [26,27], rice [28,29], bean [27,30],
potato [31,32], barley [33,34], wheat [35], and tomato [36,37]. The light absorbed by plants is either used
for production of carbohydrates, dissipated as heat, or reemitted as fluorescence [38]. Thus, chlorophyll
fluorescence-based techniques, such as JIP test, have been frequently used as a tool for early diagnosis
of temperature stresses [39–41].

Moreover, malonaldehyde (MDA) accumulation is often used as an indicator of lipid peroxidation
or maker of oxidative disruption of lipids [42–45] which is caused by reactive oxygen species such as
hydrogen peroxide (H2O2), superoxide, and hydroxyl radical [46,47]. Among these reactive oxygen
species, H2O2 has relatively a long-life span and plays central roles in stress signal transduction
pathways [48,49]. Plants generate enzymatic and non-enzymatic antioxidant systems to remove the
damage of excessive H2O2. In enzymatic antioxidant systems, antioxidant enzymes such as superoxide
dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) are involved.
Studies revealed that their activities are elevated under high temperature stresses [50–52], providing a
protective role for plants.

Therefore, in this study, stomata, chlorophyll fluorescence, and antioxidant enzyme activities
were determined, hoping to obtain a better understanding of how Si alleviates temperature stresses
in poinsettia.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

Poinsettia cultivar ‘Flame’ was used in this study. Terminal cuttings were harvested and stuck
in foam wedge substrate in trays (Smithers Oasis Korea, Seoul, Korea). Then, they were kept on a
fogged (for 10 min at every 15-min interval) propagation bench for 4 weeks. The mean day/night air
temperature during the whole propagation period is 30/25 ◦C and average relative humidity is 80%.
The well-rooted cuttings were then transplanted to 15-cm pots and cultivated for 18 weeks.

2.2. Supplementary Si and Temperature Stress Treatments

The cuttings, in trays, were treated with either 0 (Si0) or 75 (Si75) mg·L−1 of Si from potassium
silicate (K2SiO3) every 3 days for 4 weeks during propagation. The cuttings from each treatment
were then separated into two groups and supplied with either 0 or 75 mg·L−1 of Si during cultivation.
The treatments were designated as CP0→C0 (supply 0 mg·L−1 Si during cutting propagation and
cultivation), CP75→C0 (supply 75 mg·L−1 Si during cutting propagation and 0 mg·L−1 Si during
cultivation), CP0→C75 (supply 0 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si during
cultivation), and CP75→C75 (supply 75 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si
during cultivation). The composition of nutrient solutions was described in our previous report [53].
The temperature stress responses in cuttings and plants were evaluated by treating them with high
(40 ◦C) or low (4 ◦C) temperatures in plant growth chambers for 3 or 9 days, respectively. Each treatment
consisted of 3 replicates, and each replicate contained 15 cuttings or 3 plants. Samples were collected
at the end of treatments.
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2.3. Scanning Electron Microscopy

Leaf samples were excised and fixed with 2.5% glutaraldehyde for 4 h. After 3 washes with
a 0.1 M phosphate buffer (pH 7.0), samples were slowly dried at room temperature in a desiccator.
The dried samples were coated with gold and then observed using a DS-130 ISI (Oxford, UK) scanning
electron microscope.

2.4. Chlorophyll Fluorescence

The chlorophyll fluorescence parameters were measured every 24 h with a portable fluorometer
(FluorPen FP110, Photon Systems Instruments, Drásov, Czech Republic).

2.5. H2O2 and MDA Concentrations

About 0.1 g of leaf material was homogenized in ice with 0.1% (w/v) TCA. The homogenate was
centrifuged at 13,000 rpm for 15 min at 4 ◦C and 0.5 mL of the supernatant was added to 0.5 mL of a
potassium phosphate buffer (10 mM, pH 7.0) and 1 mL of KI (1 M). The absorbance of the assay mixture
was read at 390 nm and H2O2 concentration was calculated based on a standard curve of known
concentrations of H2O2. For MDA concentration quantification, 0.1 g leaf samples were homogenized
with 2 mL of a sodium phosphate buffer (pH 7.0). The homogenates were centrifuged at 13,000 rpm
and 4 ◦C for 20 min. The supernatants were added into 2 mL of 20% trichloroacetic acid containing
0.5% thiobarbituric acid. The reaction solutions were boiled for 10 min, and then cooled to room
temperature and centrifuged at 3000 rpm for 10 min. The absorbance was measured at 450 nm, 532 nm,
and 600 nm. The MDA concentration was calculated according to the following formula:

MDA (µmol·g−1 FW) = [6.452 × (A532 − A600) − 0.56 × A450] × VT/(V0 ×W)

where FW indicates the fresh weight of leaf sample, VT indicates total volume of the extraction solution,
V0 indicates the measured volume, and W indicates the weight of leaf sample.

2.6. Activities of Antioxidant Enzymes

The activities of antioxidant enzymes SOD, POD, CAT, and APX were determined by the method
introduced by Manivannan et al. [54]. The specific enzyme activity was represented as unit·µg−1

protein. One unit of SOD activity was defined as the amount causing 50% inhibition of initial rate of
NBT reduction. One unit of POD activity was defined as the amount of enzyme that caused an increase
of 0.01 per minute at 470 nm. One unit of CAT activity was defined as the amount of enzyme needed
to reduce 1 µM of H2O2 per minute. One unit of APX activity was defined as the enzyme activity
catalyzing oxidation of 1 µM ascorbic acid per minute.

2.7. Statistical Analysis

The SAS statistical software Release 8.2 (SAS Inst., Cary, NC, USA) was used. The differences
between the control and plants treated with supplementary Si were tested by Student’s t-test (p ≤ 0.05),
while multiple comparisons were analyzed by Duncan’s test (p ≤ 0.05).

3. Results

3.1. Silicon Affected Stomata and Epicuticular Wax of Poinsettia

With a high temperature stress, almost all the stomata of cuttings not supplemented with Si were
closed, while some of them were still open in cuttings that were supplemented with Si (Figure 1).
However, all the stomata of cuttings, with and without Si supplementation, were closed under a low
temperature stress (Figure 2).
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Figure 1. Leaf surface of cutting-propagated poinsettia subjected to a high temperature stress. Si0, 0 
mg∙L−1 Si; Si75, 75 mg∙L−1 Si. 

It was also found that leaves of Si-treated cuttings and plants had more epicuticular wax, 
compared to those of the control, especially on the guard cells (Figures 1 and 2). To prove that the 
white spots were epicuticular wax, wax was removed with chloroform and leaves were observed 
(Supplementary Figure S1). 

 
Figure 2. Leaf surface of potted poinsettia subjected to a low temperature stress. CP0→C0, grown with 
0 mg∙L−1 Si during cutting propagation and cultivation; CP75→C0, grown with 75 mg∙L−1 Si during 
cutting propagation and 0 mg∙L−1 Si during cultivation; CP0→C75, grown with 0 mg∙L−1 Si during 
cutting propagation and 75 mg∙L−1 Si during cultivation; CP75→C75, grown with 75 mg∙L−1 Si during 
cutting propagation and 75 mg∙L−1 Si during cultivation. 

Figure 1. Leaf surface of cutting-propagated poinsettia subjected to a high temperature stress.
Si0, 0 mg·L−1 Si; Si75, 75 mg·L−1 Si.
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Figure 2. Leaf surface of potted poinsettia subjected to a low temperature stress. CP0→C0, grown with
0 mg·L−1 Si during cutting propagation and cultivation; CP75→C0, grown with 75 mg·L−1 Si during
cutting propagation and 0 mg·L−1 Si during cultivation; CP0→C75, grown with 0 mg·L−1 Si during
cutting propagation and 75 mg·L−1 Si during cultivation; CP75→C75, grown with 75 mg·L−1 Si during
cutting propagation and 75 mg·L−1 Si during cultivation.

It was also found that leaves of Si-treated cuttings and plants had more epicuticular wax, compared
to those of the control, especially on the guard cells (Figures 1 and 2). To prove that the white spots
were epicuticular wax, wax was removed with chloroform and leaves were observed (Figure S1).
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3.2. Silicon Maintained Photosynthesis in Poinsettia

With a high temperature stress, fluorescence quantum yields and OJIP transient curves showed
significant differences after 2 days of treatment (Figure 3A,B). The photochemical efficiency (Fv/Fm)
derived from JIP test was higher in the Si-treated cuttings (Figure 4A).
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Figure 3. Fluorescence quantum yield and OJIP transient curves of poinsettia subjected to high
(A,B) and low (C,D) temperature stresses. The asterisk and different letters besides error bars
indicate significant differences according to Student’s t-test and Duncan’s test, respectively (p ≤ 0.05).
Si0, 0 mg·L−1 Si; Si75, 75 mg·L−1 Si; CP0→C0, grown with 0 mg·L−1 Si during cutting propagation
and cultivation; CP75→C0, grown with 75 mg·L−1 Si during cutting propagation and 0 mg·L−1 Si
during cultivation; CP0→C75, grown with 0 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si
during cultivation; CP75→C75, grown with 75 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si
during cultivation.

With a low temperature stress, the fluorescence quantum yield and OJIP transient curves showed
significant differences after 6 days of treatment (Figure 3C,D). The Fv/Fm (maximum quantum efficiency
of photosystem II) was higher in CP0→C75 and CP75→C75 than in CP0→C0 (Figure 4B).
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Figure 4. The Fv/Fm of poinsettia subjected to high (A) and low (B) temperature stresses. The asterisk
and different letters besides error bars indicate significant differences according to Student’s t-test
and Duncan’s test, respectively (p ≤ 0.05). Si0, 0 mg·L−1 Si; Si75, 75 mg·L−1 Si; CP0→C0, grown with
0 mg·L−1 Si during cutting propagation and cultivation; CP75→C0, grown with 75 mg·L−1 Si during
cutting propagation and 0 mg·L−1 Si during cultivation; CP0→C75, grown with 0 mg·L−1 Si during
cutting propagation and 75 mg·L−1 Si during cultivation; CP75→C75, grown with 75 mg·L−1 Si during
cutting propagation and 75 mg·L−1 Si during cultivation.

3.3. Concentration of H2O2 and MDA Was Low in Silicon-Treated Cuttings

The H2O2 concentration was significantly lower in the Si75-treated seedlings under a high
temperature stress and in the CP75→C75-treated seedlings under a low temperature stress (Figure 5A,C).
Moreover, MDA concentration was lower in the Si75-treated seedlings under a high temperature stress
and in the CP0→C75- and CP75→C75-treated seedlings under a low temperature stress (Figure 5B,D).
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Figure 5. The MDA and H2O2 concentrations in leaves of poinsettia subjected to high (A,B) and low
(C,D) temperature stresses. The asterisk and different letters besides error bars indicate significant
differences according to Student’s t-test and Duncan’s test, respectively (p ≤ 0.05). Si0, 0 mg·L−1 Si;
Si75, 75 mg·L−1 Si; CP0→C0, grown with 0 mg·L−1 Si during cutting propagation and cultivation;
CP75→C0, grown with 75 mg·L−1 Si during cutting propagation and 0 mg·L−1 Si during cultivation;
CP0→C75, grown with 0 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si during cultivation;
CP75→C75, grown with 75 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si during cultivation.
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3.4. APX Activity Was Low in Silicon-Treated Seedlings

With a high temperature stress, the SOD and APX activities were lower in the Si75-treated seedlings,
while POD and CAT activities showed no significant differences (Figure 6A). With a low temperature
stress, APX activity was lower in the CP0→C75- and CP75→C75- treated seedlings, while the POD
activity was higher in the CP0→C75-treated seedlings (Figure 6B). There were no significant differences
in SOD and CAT activities.
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differences according to Student’s t-test and Duncan’s test, respectively (p ≤ 0.05). NS, non-significant;
Si0, 0 mg·L−1 Si; Si75, 75 mg·L−1 Si; CP0→C0, 0 mg·L−1 Si during cutting propagation and cultivation;
CP75→C0, 75 mg·L−1 Si during cutting propagation and 0 mg·L−1 Si during cultivation; CP0→C75,
0 mg·L−1 Si during cutting propagation and 75 mg·L−1 Si during cultivation; CP75→C75, 75 mg·L−1

Si during cutting propagation and 75 mg·L−1 Si during cultivation; SOD, superoxide dismutase;
POD, peroxidase; CAT, catalase; APX, ascorbate peroxidase.

4. Discussion

Silicon is abundant in tissues around the stomata such as guard cells, spongy mesophyll,
and veins [55,56]. The presence of Si modulates ion fluxes, which contributes to stomatal movement [57].
Under drought stresses, Si reduced transpiration in maize through stomatal movements and improved
water use efficiency as a result [58,59]. In this study, we found that Si maintained stomatal opening in
poinsettia under a high temperature stress. Based on previous reports, stomatal opening is believed
to be associated with an enhanced evaporative cooling of leaves, reducing the likelihood of thermal
damage to tissues [60]. Poinsettia is a sub-tropical plant, which might be sensitive to low temperature
stresses. All stomata were closed under a low temperature stress, and Si was not able to alleviate
stomatal closure.

Epicuticular wax plays an important role in modifying stomatal conductance, reflecting irradiation,
and reducing water loss [61]. It has been reported that Si supplementation can increase epicuticular
wax deposition in banana [62] and strawberry [63]. Moreover, Si-induced epicuticular wax deposition
on leaves of wheat improved its ability to alleviate drought stresses [64]. Thus, the increased wax load
on leaves of poinsettia, especially on guard cells, might help poinsettia overcome temperature stresses.

The value of fluorescence quantum yield and shape of OJIP transient curve has been found to be
very sensitive to environmental conditions and thus are used as early diagnoses of stresses [37,65].
Researchers may find that it is difficult to determine optimal timing for sampling during experiment,
especially when the plant materials are very limited. Thus, the fluorescence quantum yield and
OJIP transient curve can provide important information for researchers. In this study, chlorophyll
fluorescence was measured at intervals of 1 and 3 days for high and low temperature stresses,
respectively. Samples were collected at one interval after significant differences were found. At that
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time point, fluorescence quantum yield and OJIP transient curve showed no significant differences,
which might result in no differences in chlorophyll contents among differently treated plants (data
not shown). At the time when fluorescence quantum yields were significantly different, Fv/Fm was
higher in Si-treated plants than in control plants. Studies have revealed that Si supply mitigates high
temperature stresses by maintaining photosynthetic proteins [3], which is essential for photosynthesis
in plants. These results indicated that Si maintained photosynthetic proteins and/or pigments in
poinsettia under temperature stresses.

The accumulation of MDA reflects oxidative cellular and tissue damages [66]. The Si-treated
poinsettia had a significantly lower MDA concentration than control plants did. The same trends were
found with H2O2 concentration. These results suggested that Si alleviated temperature stresses of
poinsettia evidenced by lower production of H2O2 and MDA.

The accumulation of H2O2 was reported to increase under temperature stresses [67]. Generally,
a decrease in concentration of H2O2 was due to high activity of peroxide scavenging antioxidative
enzymes [68]. However, we found that both H2O2 concentration and APX activity were lower in
Si-treated poinsettia under temperature stresses. There is a possibility that low H2O2 concentration
contributed to lower APX activity. On the other hand, a previous study reported that generation of
H2O2 and activity of antioxidant enzymes increased to a certain degree and then decreased with the
duration of stress exposure [69], which suggested that H2O2 concentration and antioxidant enzyme
activities should be measured at more time points to observe the changes.

5. Conclusions

It can be concluded in this study that Si alleviated temperature stresses in poinsettia by maintaining
photosynthetic rate, preventing lipid peroxidation, and producing less H2O2. Moreover, SOD and
APX activities were lower in Si-treated poinsettia under a high temperature stress, and APX activity
was lower in the Si-treated poinsettia under a low temperature stress. Further studies could focus on
the regulation of epicuticular wax by Si.
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