Detection Methods Fit-for-Purpose in Enforcement Control of Genetically Modified Plants Produced with Novel Genomic Techniques (NGTs)
Abstract
:1. Introduction
2. Standards and Requirements in Enforcement Control
3. Detection Methods Fit-for-Purpose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. GMO Legislation. Available online: https://ec.europa.eu/food/plant/gmo/legislation_en (accessed on 25 November 2020).
- European Commission. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Off. J. Eur. Communities 2001, 106, 1–38. [Google Scholar]
- European Commission. Regulation (EC) No. 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. Off. J. Eur. Union 2003, L268, 1–23. [Google Scholar]
- European Commission. Regulation (EC) No. 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off. J. Eur. Union 2003, L268, 24–28. [Google Scholar]
- European Commission. Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms. Off. J. Eur. Union 2009, L125, 75–97. [Google Scholar]
- European Commission. Commission Regulation (EU) No. 619/2011 of 24 June 2011 laying down the methods of sampling and analysis for the official control of feed as regards presence of genetically modified material for which an authorisation procedure is pending or the authorisation of which has expired. Off. J. Eur. Union 2011, L166, 9–15. [Google Scholar]
- European Commission. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No. 999/2001, (EC) No. 396/2005, (EC) No. 1069/2009, (EC) No. 1107/2009, (EU) No. 1151/2012, (EU) No. 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No. 1/2005 and (EC) No. 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No. 854/2004 and (EC) No. 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/ EC and Council Decision 92/438/EEC (Official Controls Regulation). Off. J. Eur. Union 2017, L95, 1–142. [Google Scholar]
- Broothaerts, W.; Cordeiro, F.; Robouch, P.; Emons, H. Ten years of proficiency testing reveals an improvement in the analytical performance of EU National Reference Laboratories for genetically modified food and feed. Food Control 2020, 114, 107237. [Google Scholar] [CrossRef]
- Court of Justice of the European Union. InfoCuria. Case-law ECLI:EU:C:2018:583. Judgement of the Court (Grand Chamber) 25 July 2018. Available online: http://curia.europa.eu/juris/document/document.jsf?docid=204387&text=&dir=&doclang=EN&part=1&occ=first&mode=DOC&pageIndex=0&cid=2442882 (accessed on 25 November 2020).
- European Commission. EC Study on New Genomic Techniques. Available online: https://ec.europa.eu/food/plant/gmo/modern_biotech/new-genomic-techniques_en (accessed on 25 November 2020).
- Razzaq, A.; Saleem, F.; Kanwal, M.; Mustafa, G.; Yousaf, S.; Imran Arshad, H.M.; Hameed, M.K.; Khan, M.S.; Joyia, F.A. Modern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 toolbox. Int. J. Mol. Sci. 2019, 20, 4045. [Google Scholar] [CrossRef] [Green Version]
- Holst-Jensen, A.; Bertheau, Y.; de Loose, M.; Grohmann, L.; Hamels, S.; Hougs, L.; Morisset, D.; Pecoraro, S.; Pla, M.; Van den Bulcke, M.; et al. Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnol. Adv. 2012, 30, 1318–1335. [Google Scholar] [CrossRef]
- Petrillo, M.; Angers-Loustau, A.; Henriksson, P.; Bonfini, L.; Patak, A.; Kreysa, J. JRC GMO-Amplicons: A collection of nucleic acid sequences related to genetically modified organisms. Database 2015, 2015, bav101. [Google Scholar] [CrossRef] [Green Version]
- Angers-Loustau, A.; Petrillo, M.; Bonfini, L.; Gatto, F.; Rosa, S.; Patak, A.; Kreysa, J. JRC GMO-Matrix: A web application to support Genetically Modified Organisms detection strategies. BMC Bioinform. 2014, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bonfini, L.; Van den Bulcke, M.H.; Mazzara, M.; Ben, E.; Patak, A. GMOMETHODS: The European Union database of reference methods for GMO analysis. J. AOAC Int. 2012, 95, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Broeders, S.R.; De Keersmaecker, S.C.; Roosens, N.H. How to deal with the upcoming challenges in GMO detection in food and feed. J. Biomed. Biotechnol. 2012, 2012, 402418. [Google Scholar] [CrossRef]
- Verginelli, D.; Paterno, A.; De Marchis, M.L.; Quarchioni, C.; Vinciguerra, D.; Bonini, P.; Peddis, S.; Fusco, C.; Misto, M.; Marfoglia, C.; et al. Development and comparative study of a pat/bar real-time PCR assay for integrating the screening strategy of a GMO testing laboratory. J. Sci. Food Agric. 2020, 100, 2121–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, M.F.; Arraes, F.B.M.; Grossi-de-Sa, M.; Moreira, V.J.V.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. Insights into genetic and molecular elements for transgenic crop development. Front. Plant Sci. 2020, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, L.; Keilwagen, J.; Duensing, N.; Dagand, E.; Hartung, F.; Wilhelm, R.; Bendiek, J.; Sprink, T. Detection and identification of genome editing in plants: Challenges and opportunities. Front. Plant Sci. 2019, 10, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhalliyil, P.; Ilves, H.; Kazakov, S.A.; Howard, S.J.; Johnston, B.H.; Fagan, J. A real-time quantitative PCR method specific for detection and quantification of the first commercialized genome-edited plant. Foods 2020, 9, 1245. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO/IEC 17025:2017. General Requirements for the Competence of Testing and Calibration Laboratories. Available online: https://www.iso.org/standard/66912.html (accessed on 25 November 2020).
- European Network of GMO Laboratories. ENGL-Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Available online: https://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 25 November 2020).
- Van den Eede, G.; Kay, S.; Anklam, E.; Schimmel, H. Analytical challenges: Bridging the gap from regulation to enforcement. J. AOAC Int. 2002, 85, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.P.; Haupt, L.M.; Griffiths, L.R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res. 2004, 32, e55. [Google Scholar] [CrossRef]
- Mouritzen, P.; Nielsen, A.T.; Pfundheller, H.M.; Choleva, Y.; Kongsbak, L.; Møller, S. Single nucleotide polymorphism genotyping using locked nucleic acid (LNA™). Expert Rev. Mol. Diagn. 2003, 3, 27–38. [Google Scholar] [CrossRef]
- Ugozzoli, L.A.; Latorra, D.; Pucket, R.; Arar, K.; Hamby, K. Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal. Biochem. 2004, 324, 143–152. [Google Scholar] [CrossRef]
- You, Y.; Moreira, B.; Behlke, M.; Owczarzy, R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 2006, 34, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobosy, J.R.; Rose, S.D.; Beltz, K.R.; Rupp, S.M.; Powers, K.M.; Behlke, M.A.; Walder, J.A. RNase H-dependent PCR (rhPCR): Improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol. 2011, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayalew, H.; Tsang, P.W.; Chu, C.; Wang, J.; Liu, S.; Chen, C.; Ma, X.-F. Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE 2019, 14, e0217222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broccanello, C.; Chiodi, C.; Funk, A.; McGrath, J.M.; Panella, L.; Stevanato, P. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods 2018, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlay, S.D.; Vincent, K.M.; Berman, J.R.; Postovit, L.-M. A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS ONE 2016, 11, e0153901. [Google Scholar] [CrossRef] [PubMed]
- Miyaoka, Y.; Chan, A.H.; Judge, L.M.; Yoo, J.; Huang, M.; Nguyen, T.D.; Lizarraga, P.P.; So, P.-L.; Conklin, B.R. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat. Methods 2014, 11, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Mock, U.; Hauber, I.; Fehse, B. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat. Protoc. 2016, 11, 598–615. [Google Scholar] [CrossRef]
- Bruge, F.; Littarru, G.P.; Silvestrini, L.; Mancuso, T.; Tiano, L. A novel Real Time PCR strategy to detect SOD3 SNP using LNA probes. Mutat. Res. 2009, 669, 80–84. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Wang, X. Next-Generation Sequencing Data Analysis; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; p. 258. [Google Scholar]
- Grohmann, L.; Broll, H.; Dagand, E.; Hildebrandt, S.; Hübert, P.; Kiesecker, H.; Lieske, K.; Mäde, D.; Mankertz, D.; Reiting, D.; et al. Guidelines for the Single-Laboratory Validation of Qualitative Real-Time PCR Methods; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL): Braunschweig, Germany, 2016; p. 17. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/07_Untersuchungen/Guidelines%20for%20the%20single%20laboratory.pdf (accessed on 25 November 2020).
- Joint Research Centre. JRC-Overview and Recommendations for the Application of Digital PCR. Available online: https://www.researchgate.net/profile/Philippe_Corbisier/publication/333079273_Overview_and_recommendations_for_the_application_of_digital_PCR_European_Network_of_GMO_Laboratories_ENGL/links/5cda663ca6fdccc9ddaab3f4/Overview-and-recommendations-for-the-application-of-digital-PCR-European-Network-of-GMO-Laboratories-ENGL.pdf (accessed on 25 November 2020).
- EUginius. European GMO Initiative for a Unified Database System. Detection Methods. Available online: https://www.euginius.eu/euginius/pages/detection_index.jsf;jsessionid=Pa2i0zseD2UMYVlZQu75Db6nqEwOYiJnCt9MZAsu.subs262 (accessed on 25 November 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribarits, A.; Narendja, F.; Stepanek, W.; Hochegger, R. Detection Methods Fit-for-Purpose in Enforcement Control of Genetically Modified Plants Produced with Novel Genomic Techniques (NGTs). Agronomy 2021, 11, 61. https://doi.org/10.3390/agronomy11010061
Ribarits A, Narendja F, Stepanek W, Hochegger R. Detection Methods Fit-for-Purpose in Enforcement Control of Genetically Modified Plants Produced with Novel Genomic Techniques (NGTs). Agronomy. 2021; 11(1):61. https://doi.org/10.3390/agronomy11010061
Chicago/Turabian StyleRibarits, Alexandra, Frank Narendja, Walter Stepanek, and Rupert Hochegger. 2021. "Detection Methods Fit-for-Purpose in Enforcement Control of Genetically Modified Plants Produced with Novel Genomic Techniques (NGTs)" Agronomy 11, no. 1: 61. https://doi.org/10.3390/agronomy11010061
APA StyleRibarits, A., Narendja, F., Stepanek, W., & Hochegger, R. (2021). Detection Methods Fit-for-Purpose in Enforcement Control of Genetically Modified Plants Produced with Novel Genomic Techniques (NGTs). Agronomy, 11(1), 61. https://doi.org/10.3390/agronomy11010061