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Abstract: Visible, near, and shortwave infrared (VIS-NIR-SWIR) reflectance spectroscopy, a cost-
effective and rapid means of characterizing soils, was used to predict soil sample properties for four
vineyards (central and north-western Spain). Sieved and air-dried samples were measured using a
portable spectroradiometer (350–2500 nm) and compared for pistol grip (PG) versus contact probe
(CP) setups. Raw data processed using standard normal variate (SVN) and detrending transformation
(DT) were grouped into four subsets (VIS: 350–700 nm; NIR: 701–1000 nm; SWIR: 1001–2500 nm;
and full range: 350–2500 nm) in order to identify the most suitable range for determining soil
characteristics. The performance of partial least squares regression (PLSR) models in predicting soil
properties from reflectance spectra was evaluated by cross-validation. The four spectral subsets and
transformed reflectances for each setup were used as PLSR predictor variables. The best performing
PLSR models were obtained for pH, electrical conductivity, and phosphorous (R2 values above 0.92),
while models for sand, nitrogen, and potassium showed moderately good performances (R2 values
between 0.69 and 0.77). The SWIR subset and SVN + DT processing yielded the best PLSR models for
both the PG and CP setups. VIS-NIR-SWIR reflectance spectroscopy shows promise as a technique
for characterizing vineyard soils for precision viticulture purposes. Further studies will be carried
out to corroborate our findings.

Keywords: spectroscopy; PLSR; pistol grip; contact probe; vineyard soils

1. Introduction

Knowledge of soil properties and mapping is regarded as key to decision making
in precision viticulture, mainly because of a growing interest in more environmentally
friendly and sustainable practices [1]. Chemical and physical characteristics are especially
important in evaluating soil fertility and understanding soil dynamics [2]. Modern viticul-
ture requires the evaluation of a wide range of soil properties in a timely and cost-effective
way. However, conventional methods for laboratory analysis of soils are expensive, time-
consuming, and non-environmentally friendly (they require the use of chemical reagents),
and need a whole range of sophisticated protocols and equipment [3]. Soil assessment using
visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) spectroscopy, although it
cannot replace laboratory chemical analysis, is fast, cost-effective, environmentally friendly,
non-destructive, reproducible, and repeatable analytical technique [4]. It is also easy to use
since samples only require minimal preparation, and, furthermore, it requires no chemicals
or reagents and so does not generate chemical waste [5]. A single wavelength spectrum
may contain comprehensive information that can predict various soil components [6]. Spec-
troscopic applications to the soil include NIR, VIS-NIR, and mid-infrared (MIR) analyses
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comprising Fourier transform infrared (FTIR), FTIR-attenuated total reflection (FTIR-ATR),
and Raman spectroscopy [3].

Spectroscopic techniques are physical characterisation methods that involve studying
electromagnetic wave interaction with the material under consideration in the ultraviolet,
VIS, and infrared (IR) wavelengths [7]. Furthermore, spectroscopy, when coupled with
multivariate data analysis, has been shown to be a powerful tool for developing quantitative
and classification models in many disciplines, including food technology [8], petroleum
engineering [9], and soil science [10], as described by Barra et al. [3]. VIS-NIR spectroscopy
is an empirical method based on an analysis of diffuse reflectance radiation in relation to a
material’s characteristics and the assumption that the concentration of a given constituent
is a linear combination of several absorption features [11].

Ben-Dor [12] described the principles and mechanisms of soil–radiation interactions
in relation to quantitative remote sensing of soil properties, noting problematic factors
that prevent direct spectral analysis of electromagnetic signals and reviewing studies that
describe advances in this quantitative method. The same author previously published
research focused on the reflectance spectrum in the VIS-NIR-SWIR regions, together with
proposals for practical applications [13]. Stenberg et al. [14] comprehensively reviewed
the literature on soil VIS and IR diffuse reflectance spectroscopy (including fundamentals,
studied soil properties, conditioning factors, calibrations, field analyses, and practical
applications), while Kuang et al. [15] reviewed the sensing concept applied to soil properties
(basics and brief theory, factors affecting results, and relationship between sensor output
and soil properties).

When electromagnetic radiation is directed to a soil sample, it causes individual
molecular bonds to vibrate (they bend or stretch), resulting in a characteristic absorption
spectrum [15]. The resulting spectrum has a specific shape dependent on soil compo-
sition that can be used for physical and chemical analyses [14]. Soil content in carbon
(C), nitrogen (N), water, and clay minerals are properties with direct NIR spectral re-
sponses that can be attributed to overtones of OH and overtones and/or combinations of
C-H + C-H, C-H + C-C, OH+ minerals, and N-H. Moreover, absorption bands in the VIS
range (400–700 nm), due to electron excitation, are related to soil colour [15,16]. Numerous
studies have used VIS-NIR spectroscopy in an attempt to predict soil content in total
and organic C, total N, clay minerals, and water. Other studies have focused specifically
on sand and silt content, pH, electrical conductivity (Ec), total content in N, extractable
phosphorous (P), extractable potassium (K), extractable calcium (Ca), extractable iron (Fe),
extractable sodium (Na), extractable manganese (Mn), extractable magnesium (Mg), and
cation exchange capacity (CEC) [16–19]. However, results for those studies have been typi-
cally modest and also highly variable, as they were based on co-variations in constituents
that are spectrally active.

The availability of commercial spectroscopic equipment and software packages for
multivariate calibration has led to VIS-NIR spectroscopy becoming widely used for soil
characterisation purposes. Standards and protocols for reflectance measurements of soils
in the laboratory have been proposed by Pimstein et al. [20] and Ben-Dor et al. [21], while
Kuang et al. [15] have reviewed several studies of different VIS-NIR reflectance sensors,
including laboratory, non-mobile/field (in situ), and mobile/field (online) sensors.

Diffuse reflectance spectra in soil are non-specific, since scatter effects caused by
structure result in overlapping absorption features. Therefore, multivariate techniques are
required to extract absorption patterns and to correlate spectra with soil properties. Calibra-
tion methods for soil applications include linear regression approaches, such as stepwise
multiple linear regression (SMLR), principal component regression (PCR), and partial least
squares regression (PLSR), and also data mining techniques, such as neural networks (NN),
multivariate adaptive regression splines (MARS), boosted regression trees (BRT), random
forests (RF), and support vector machines (SVM), along with their combinations [14].

In agriculture, quantitative and qualitative analyses of soil properties yield accurate
information to guide the management of soil fertility and productivity through adjusted
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fertiliser formulations and recommendations [22]. The rapid development of portable and
handheld spectrometers allows analyses to be conducted in situ [23]. As a key factor for
site-specific management practices, Angelopoulou et al. [24] recently reviewed laboratory
and proximal sensing spectroscopy in the VIS, NIR, and SWIR wavelength regions for soil
organic matter estimates. MIR spectroscopy and laser diffraction analysis (LDA) have also
been demonstrated to be useful for calculating organic matter and clay content in soils [25].

Spectroscopy has previously been applied to viticulture. For vineyards located in Aus-
tralia, Cozzolino et al. [23] evaluated use of a portable NIR spectrophotometer in the field
to predict soil chemical properties, fitting PLSR models with coefficients of determination
(R2) that ranged from 0.69 for P to 0.95 for total N content. Muganu et al. [26] demon-
strated the great potential of NIR-acoustic optically tuneable filter (AOTF) spectroscopy
in assessing grape quality, noting the influence of soil management practices on vine and
grape characteristics. Páscoa et al. [27] developed a method for indirect soil differentiation
based on grapevine leaf spectra, demonstrating that leaf spectral information can be used
to define soil maps for vineyards. For Northern Portugal, Lopo et al. [28] demonstrated
the ability of NIR spectroscopy to discriminate between vineyard soil types, showing that
water content is not a significant factor in differentiating between soils.

As reported by Marín-González et al. [19], VIS-NIR spectroscopy can be used to
detect soil properties using laboratory, in situ, and online measurements. This technique is
effective mainly for assessing primary soil properties with direct spectral responses in the
VIS-NIR range, e.g., water, C, N, and clay [15], as well as other soil chemical parameters in
the laboratory [17]. Few studies, however, have described evaluations of soil properties
without direct spectral responses in the VIS-NIR-SWIR range or have compared different
approaches to spectral preprocessing and the use of different accessories. Marín-González
et al. [19] evaluated models to estimate soil properties without direct spectral responses
in the NIR spectroscopy range (CEC, pH, and extractable Ca and Mg), reporting very
good accuracy for pH and moderately good accuracy for CEC and Mg. Munnaf et al. [29]
explored accuracy improvements to visible NIR spectroscopy estimates of secondary
soil properties (pH and extractable K, Mg, Ca and Na) by laboratory fusion approaches,
finding that exclusively online spectrum or hybrid models (50% online scanned spectra and
laboratory spectra) significantly improved online prediction accuracies. Note, however,
that since those works were based on online spectral measurements obtained by specialist
industrial-grade instruments mounted in heavy soil-tilling machinery, and so they are not
applicable to multi-year crops such as vineyards.

The objectives of this study were (1) to compare spectral signatures of soils as mea-
sured in two setups, using a pistol grip (PG) and fibre optic cable, with light provided
by an external illuminator lamp, and using a contact probe (CP), with light provided
by an internal halogen bulb; and (2) to assess the ability of linear regression models to
calculate soil properties (mainly without direct spectral responses in the VIS-NIR-SWIR
range) from preprocessed and non-preprocessed spectral data. Thus, two measurement
methods (PG and CP) and two modelling approaches (with and without preprocessing)
were applied and compared in order to define a suitable protocol to predict vineyard soil
composition by VIS-NIR-SWIR spectroscopy.

2. Materials and Methods
2.1. Study Area and Soil Sampling

Soils were sampled in four different commercial vineyards belonging to three Desig-
nations of Origin (DOs): Bierzo (northwest Spain), Ribera del Duero (north-central Spain),
and Rueda (northwest-central Spain). A total of 12 soil samples were collected from each of
the vineyards, yielding 48 samples in total. Table 1 summarises the main characteristics of
the sampled sites, which were very diverse in terms of soil textures, crops, and landscapes.
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Table 1. Sites sampled for soils.

Municipality Designation
of Origin

Grape
Cultivar Longitude Latitude Soil Classifi-

cation

Cacabelos Bierzo Mencía 6.754 W 42.626 N Dystric
Cambisol

Camponaraya Bierzo Godello 6.692 W 42.606 N Chromic
Cambisol

Valbuena de
Duero

Ribera de
Duero Tempranillo 4.391 W 41.631 N Lithic

Leptosol

Matapozuelos Rueda Verdejo 4.765 W 41.364 N Albic
Arenosol

Geographic coordinates refer to WGS84. The soil classification system is that of the IUSS Working Group WRB [30].

Soil samples were collected in the 0–0.40 m layer between June and August 2015. Soil
cores were air-dried and were sieved (10-mesh) by hand selecting fractions <2 mm before
chemical analyses, performed in the Instrumental Techniques Laboratory attached to León
University (certified by UNE-EN ISO 9001). The following official analytical measure-
ment methods [31] were used: particle-size distribution of clay, silt, and sand (%) by the
pipette method, pH at 1:2.5 soil/water suspension, Ec (dS m−1) at 1:5 soil/water suspen-
sion, organic matter (%) by the Walkley–Black method, N (%) by total Kjeldahl nitrogen,
P extracted with NaHCO3 0.5 M at pH 8.5 by optical spectrometer UV/VIS analysis
(mg kg−1), K and Ca extracted with AcONH4 1N at pH 7 by ICP-AES analysis (cmol kg−1),
Mn and Fe extracted with DTPA at pH 7.3 by ICP-AES analysis (mg kg−1), and CEC
measured by extraction with ClBa 0.1 M by ICP-AES analysis (cmol kg−1).

2.2. Spectral Reflectance Acquisition

Soil samples were air-dried and spread in black soil cores (20 × 20 cm). Spectral
reflectances were recorded at 1 nm intervals from 350 nm to 2500 nm using an ASD Field-
Spec 4 Portable Spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA).
Measurements were made, using a 1.5 m fibre optic cable (25◦ field-of-view), in two ways:
(1) PG setup, with two tungsten halogen lamps supporting the fibre optic; and (2) CP setup,
with an internal halogen bulb attached by cable.

Data were collected following spectroradiometer manufacturer recommendations [32].
Spectral measurements corresponded to reflectance calculated as the ratio of reflected soil
sample energy to reflected energy of a reference calibration panel, consisting of a white
reflectance panel providing a diffuse homogeneous mix of full-source energy at nearly
100%. Recalibration was performed after each measurement of five soil samples.

2.2.1. PG Setup Measurements

The geometry parameters of measurements (lamp to soil sample and fibre optic to
soil sample distances, and the angle between those two distances) were set to ensure
homogenous illumination, with the spot area over the sample surface. To ensure a repre-
sentative spectrum for each soil sample, four reflectance readings (turning the soil core
90◦ clockwise before each capture) were calculated, each representing the average of
15 individual measurements.

2.2.2. CP Setup Measurements

The CP accessory with an internal halogen bulb allowed the fibre optic to be attached
at a fixed measurement angle of 35◦, reducing noise caused by shadows and other errors
associated with stray light [33]. The sensed spot had a diameter of 10 mm, so measurements
were made five times at five different points of the samples and then averaged.

2.2.3. Preprocessing

The spectral signatures were preprocessed to identify outliers, and the spectra mea-
sured for each sample were averaged. To identify the most suitable range to estimate soil
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properties, wavelengths were grouped into four spectral subsets: VIS (350–700 nm), NIR
(701–1000 nm), SWIR (1001–2500 nm), and full range (350–2500 nm).

Standard normal variate (SVN) and detrending transformation (DT) were used for
scatter correction following previous studies of soil composition estimation by spec-
troscopy [23,34]. SVN removes multiplicative interferences of scatter and particle size
effects from spectral data by centring and scaling each spectral signature [34]. DT removes
nonlinear trends in spectroscopic data by calculating a baseline function as the least squares
fit of a polynomial to the sample spectrum [34].

2.2.4. Soil Property Estimation by PLSR

We used PLSR to estimate soil properties (predicted variables) from spectral signa-
tures (predictor variables), given that (as explained above) diffuse reflectance spectra are
correlated with soil properties. Since soil spectra show an overlap of weak overtones
and combinations of fundamental vibrational bands, multivariate calibration methods
were required to quantitatively determine soil properties [35]. PLSR is a generalisation
of linear multiple regression that reduces a large number of collinear variables (e.g., re-
flectance values) to a few non-correlated hidden (latent) variables or factors (see Geladi
and Kowalski [36] and Wold et al. [37] for comprehensive descriptions of PLSR).

We fitted several models in order to identify the most suitable procedure. The three
reflectance datasets considered were non-preprocessed data and SVN and DT processed
data. Additionally, in order to fit simpler and more effective models, an independent model
was fitted for each dataset considering the following subsets as independent variables in
the PLSR: VIS (350–700 nm), NIR (701–1000 nm), SWIR (1001–2500 nm), and the full range
(350–2500 nm).

The resulting models were compared regarding requirements to fit a robust PLSR
model: a small number of factors, small errors in leave-one-out cross-validation (CV), and
a high R2 [38]. Because of the small number of soil samples, we used the leave-one-out
CV procedure to validate the regression models. R2 and root mean square error (RMSE)
values for CV were calculated to test the prediction accuracy of each model; also calculated
for CV were standard error (SE) values. The ratio of performance to deviation (RPD), i.e.,
the standard deviation (SD) to SE ratio, was used to test the usability of the calibrated
models [38], with an RPD value of 2 or more considered appropriate for soil analysis by
spectroscopy [35]. Statistics were calculated according to the following expressions:

R2 =

(
n(∑ x y)− (∑ x)(∑ y)√

[(n ∑ x2 − (∑ x)2)(n ∑ y2 − (∑ y)2)]

)2

(1)

where y is the predicted values, z is the measured values, and n is the number of samples;

RMSE =

√
∑ (y − z)2

n
(2)

where y is the predicted values, z is the measured values, and n is the number of samples;

SE =

√
∑ (y − z)2

n − 1
(3)

where y is the predicted values, z is the measured values, n is the number of samples; and

RPD =
SD
SE

(4)

where SD reflects the SD values of the measured variable, y is the predicted values, z is the
measured values, and n is the number of samples.
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The PLSR factors used in the models were selected on the basis of the lowest RMSE
and highest R2 [39]. The criterion to choose the optimal number of factors was based on
RMSE and the explained variance of the model: another factor was added to the model
if the RMSE was reduced by >2% and the explained variance increased. The maximum
number of factors ultimately selected was seven.

3. Results
3.1. Soil Reflectance Spectra

Soil spectra were mainly dominated by combinations of fundamental vibrational
bands for H-C, H-N, and H-O bonds and by weak overtones, especially from the MIR
region [35]. The range of reflectance values for the sampled soils and average spectral
signatures for the PG and CP setups are shown in Figure 1.
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Figure 1. Range of reflectance values for the sampled soils and average spectral signatures for the
PG and CP setups.

As was expected, the spectral signatures derived from the PG and CP setups were sim-
ilar, while the reflectance values were higher for the CP setup due to its greater illumination
intensity. Reflectance is influenced by the physical structure of soil [35]; the size, shape, and
arrangement of particles and voids affect the length of the light transmitted through a soil
sample, thereby influencing spectral signatures [40,41]. All spectral signatures followed the
typical shape in each wavelength region, i.e., low values in VIS that rise in NIR and SWIR,
while showing water absorbance features at around 1400 nm, 1900 nm, and 2200 nm. The
1400–1900 nm absorption bands dominated for water (O–H bonds), even though the peak
at 1400 nm was associated with aliphatic C–H and the peak at 1900 nm was associated
with amide N–H [15,42]. The spectral shape at 2200 nm was associated with groups such
as phenolic O–H, amide N–H, amine N–H, and aliphatic C–H [2]. In sum, the three major
reflectance peaks identified were caused by absorbances of O–H bonds of hygroscopically
bound water, clay lattices, and various oxides [43].

3.2. Laboratory Analysis

Table 2 shows basic statistics for the chemical and physical properties of the soil
samples. Since the soil dataset reflected four different locations with different chemical and
physical soil properties, values were very diverse. In fact, the coefficients of variation (CoV)
obtained for P, Ca, and Fe were large. Generally, the variability observed in the soil samples
for some chemical and physical properties was considered appropriate for spectroscopic
calibrations, while the variability of other properties (clay and organic matter) was not
great enough to build robust PLSR models.
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Table 2. Descriptive statistics for soil sample properties.

Soil Property N Min Max Range Median Mean SD CoV

Silt (%) 48 14 56 42 36 34.58 11.00 31.81
Clay (%) 48 10 32 22 19 18.46 5.91 32.02
Sand (%) 48 24 76 52 46 46.96 15.10 32.15

pH 48 5.33 8.47 3.14 7.63 7.24 1.16 16.07
Ec (dS m−1) 48 0.02 0.12 0.10 0.08 0.07 0.03 49.27

Organic matter (%) 48 0.37 2.40 2.03 0.81 1.02 0.52 51.04
Total N (%) 48 0.05 0.16 0.11 0.08 0.09 0.03 33.76
P (mg kg−1) 35 5.65 58.38 52.73 16.39 26.12 20.67 79.14

K (cmol kg−1) 48 0.13 0.80 0.67 0.40 0.38 0.14 37.55
Ca (cmol kg−1) 48 1.56 20.90 19.34 9.80 10.49 6.44 61.37
Mn (mg kg−1) 48 1.90 28.40 26.50 10.65 11.02 7.09 64.35
Fe (mg kg−1) 48 2.56 212.41 209.85 8.00 28.60 41.49 145.11

An important issue in chemometric calibration is collinearity in the analytical val-
ues conditioning the validity of the results [23]. Pearson correlations (not shown) were
calculated for all the soil properties; the greatest correlations were observed for silt with
sand (r = 0.95) and for pH with Ec (r = 0.94), while the lowest correlation was found for Fe
with K.

3.3. PLSR Model Predictions

Only variables with R2 values above 0.60 were considered for PLSR in this research.
The reference for the other preprocessing results was PLSR prediction results using the
full VIS + NIR + SWIR range (350–2500 nm) and non-preprocessed data, as summarised
in Table 3. Broadly speaking, the PLSR calibration results indicated good predictions for
pH, Ec, and P, and reasonably good predictions for sand, N, K, and Mn. The CP setup
models had higher R2 and lower RMSE values for pH, Ec, P, Ca, and Mn, while the PG
setup models had higher R2 and lower RMSE values for sand, N, and K. Regarding the
number of factors, CP setup models required fewer factors that PG setup models.

Table 3. CV statistics for PLSR for the full VIS + NIR + SWIR range (350–2500 nm).

PG Setup CP Setup

Soil
Property R2 RMSE SE RPD Factors R2 RMSE SE RPD Factors

Sand 0.75 7.678 7.759 1.95 7 0.70 8.327 8.415 1.79 6
pH 0.95 0.340 0.343 3.38 4 0.92 0.329 0.334 3.47 4
Ec 0.89 0.011 0.011 2.73 3 0.90 0.011 0.011 2.73 4
N 0.68 0.017 0.017 1.76 6 0.62 0.018 0.018 1.67 3
P 0.90 6.530 6.619 3.09 7 0.90 6.647 6.741 3.04 4
K 0.65 0.086 0.087 1.61 6 0.64 0.087 0.088 1.59 6
Ca 0.87 2.332 2.357 2.73 6 0.89 2.141 2.163 2.98 6
Mn 0.62 4.399 4.446 1.59 3 0.66 4.195 4.239 1.67 5

The PLSR predictions explained about 90% of the variance in the laboratory analyses of
pH, Ec, and P, with RMSE values of 0.340–0.329, 0.01–0.01 dS m−1, and 6.530–5.770 mg kg−1,
respectively, for the PG and CP setups. For sand, N, and K, R2 values were better for the
PG setup (0.75, 0.68, and 0.65, respectively) than for the CP setup (0.70, 0.62, and 0.64,
respectively). RMSE results were very similar; the most different were predictions for sand:
7.678% for the PG setup and 8.327% for the CP setup. Predictions for Mn ranged from
R2 = 0.62 (RMSE = 4.399 mg kg−1) for the PG setup to R2 = 0.66 (RMSE = 4.195 mg kg−1)
for the CP setup.

Cozzolino and Morón [2] suggest that calibration models developed for soil composi-
tion by spectroscopy can be classified according to RPD as poor (<1.6), acceptable (1.6–2.0),
or excellent (>2.0). According to this classification, the fitted PLSR models proved excellent
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for pH, P, and Ca and acceptable for sand, Ec, N, K, and Mn. Chang et al. [35] suggest
that spectroscopic prediction models in the intermediate category could be improved
using different calibration strategies. The strategy used in this research was SVN and DT
preprocessing to achieve models that reduce errors (RMSE and SE) and number of factors
and increase R2.

Table 4 shows PLSR results for preprocessed reflectance. Regarding the SVN transfor-
mation, R2 increased for all variables except for P, Ec, and N. PLSR performance improved
more for the CP setup models. RMSE decreased except for N and K, while the number of
factors was also reduced except for N. Regarding DT preprocessing, R2 did not increase
except for K. Results were generally better for the PG setup models. RMSE values were
maintained or increased except for P and Mn, while the number of factors was reduced
except for N. The reduction in the number of factors was less for PG setup models. For SVN
preprocessing, R2 values increased except for Ec and pH, which remained constant, while
RMSE values decreased. Results were better for the models based on the CP setup, while
the number of factors was also reduced, with the exception of the PG models estimating Mn
(+2 factors) and the CP setup models estimating N and P (+1 factor). For DT preprocessing,
although not significantly greater, R2 and RMSE values were better for the CP setup than
the PG setup. The main improvement was the simplification of the models in reducing
the number of factors. Finally, applying SVN + DT, R2 values increased and RMSE values
decreased, while the number of factors was reduced, with the exception of N (7 factors).

Table 4. CV statistics for PLSR for the full VIS + NIR + SWIR range (350–2500 nm) and spectral transformations.

PG Setup CP Setup

Soil Property R2 RMSE SE RPD Factors R2 RMSE SE RPD Factors

SVN

Sand 0.76 7.556 7.635 1.98 6 0.72 8.028 8.112 1.86 5
pH 0.96 0.317 0.320 3.63 4 0.92 0.336 0.339 3.42 3
Ec 0.89 0.011 0.011 2.73 2 0.91 0.010 0.011 2.73 3
N 0.70 0.016 0.016 1.88 5 0.65 0.018 0.018 1.67 4
P 0.92 5.891 5.977 3.43 5 0.93 5.701 5.784 3.54 5
K 0.66 0.084 0.085 1.65 5 0.66 0.084 0.085 1.65 5
Ca 0.89 2.119 2.141 3.01 5 0.91 1.960 1.981 3.25 5
Mn 0.65 4.115 4.154 1.71 5 0.69 3.992 4.032 1.76 5

DT

Sand 0.74 7.725 7.805 1.93 4 0.73 7.902 7.985 1.89 7
pH 0.91 0.356 0.359 3.23 3 0.92 0.343 0.346 3.35 3
Ec 0.90 0.011 0.011 2.73 3 0.90 0.007 0.011 2.73 3
N 0.68 0.017 0.017 1.76 4 0.67 0.017 0.017 1.76 3
P 0.91 6.307 6.398 3.20 4 0.93 5.719 5.795 3.53 4
K 0.68 0.082 0.083 1.69 4 0.64 0.087 0.087 1.44 4
Ca 0.86 2.412 2.437 2.64 4 0.90 2.043 2.064 3.12 5
Mn 0.68 4.075 4.118 1.72 4 0.64 4.315 4.360 1.63 1

SVN + DT

Sand 0.77 7.280 7.74 1.95 6 0.76 7.550 7.62 1.98 6
pH 0.93 0.315 0.32 3.64 4 0.92 0.342 0.35 3.35 3
Ec 0.90 0.011 0.01 2.73 2 0.91 0.011 0.01 2.73 3
N 0.71 0.016 0.02 1.88 7 0.70 0.016 0.02 1.88 7
P 0.92 6.083 6.17 3.32 4 0.92 5.900 5.99 3.42 4
K 0.68 0.083 0.08 1.69 6 0.63 0.088 0.09 1.57 4
Ca 0.89 2.198 2.22 2.90 4 0.91 2.005 2.03 3.18 4
Mn 0.71 3.887 3.93 1.80 5 0.69 3.983 4.03 1.76 5

Preprocessing: SVN: standard normal variate; DT: detrending transformation; SVN + DT: standard normal variate plus detrending
transformation.
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4. Discussion
4.1. Soil Property Predictions

Cross-validation results for the PLSR models were different for the three particle-
size distributions (clay, silt, and sand). For sand, results were satisfactory (R2 = 0.75 and
R2 = 0.70 for the PG and CP data, respectively), and also corroborated other published
results [17,39,44]. For clay, however, results were quite poor (R2 = 0.53 and R2 = 0.51 for the
PG and CP data, respectively), and likewise for silt (R2 = 0.51 and R2 = 0.49 for the PG and
CP data, respectively). Those unexpectedly low R2 values may be due to narrow variability
in clay content (min = 10 and max = 32) and silt content (min = 14 and max = 42) of the
analysed soils.

Soil content in N was estimated by spectroscopy because it is quite sensitive to IR radi-
ation. The R2 values obtained ranged from R2 = 0.68 (RMSE = 0.017%) to R2 = 0.62 (RMSE
= 0.018%) for the PG and CP setups, respectively, lower than the values of R2 = 0.80–0.98
cited elsewhere [45] and the R2 = 0.92 (SE = 2.19) obtained by Cozzolino et al. [23]. Our
result can be explained by the fact that N estimation by spectroscopy is soil-dependent,
due mainly to varying carbonate contents [46]. While MIR-ATR spectroscopy can, in fact,
predict nitrate concentration in soil pastes by direct measurement, prediction accuracy is
strongly conditioned for water and soil constituents [47–49].

Previous research has reported the ability of soil reflectance spectroscopy to accu-
rately determine soil organic matter [24]. However, our results for organic matter were
R2 = 0.29 (RMSE = 0.438%) and R2 = 0.27 (RMSE = 0.445%) for the PG and CP setups,
respectively. These poor results may be due to the fact that the analysed soils have low
organic matter content (0.37–2.40%) and high sand content (24–76%). In fact, spectroscopic
predictions of organic matter are poorly accurate in soils with low C content [50] and high
sand content [14].

Soil pH is a key factor for agriculture as an important fertility regulator of nutrient
solubility and plant root development, biological activity, decomposition, mineralisation,
etc. Because pH is a soil property with no direct spectral responses in the NIR spectroscopy
range [15], calibrations rarely perform better than an RMSE of one-third or half a pH unit [14].
However, soil pH has been predicted quite successfully in several studies [19,51,52].

The pH prediction performance of our PLSR models was excellent (RPD > 3.3) for
both PG and CP reflectances (R2 = 0.92 (RMSE = 0.340) and R2 = 0.92 (RMSE = 0.329),
respectively). Our results were similar to those reported by Kuang et al. (RMSE = 0.36;
RPD = 2.02) and better than those reported by Sorenson et al. [52] (R2 = 0.68) and by
Marín-González et al. [19] (R2 = 0.86; RPD = 2.69). Results for pH predictions may be
explained by co-variation to spectrally active soil constituents such as organic matter and
clay [35] or by soil mineralogy and carbonate content [15]. Note that pH calibrations tend
to vary from one dataset to another because they reflect different scenarios.

Our results for Ca calibrations were reasonably good, at R2 = 0.87 (RMSE = 2.332 cmol
kg−1) and R2 = 0.88 (RMSE = 2.141 cmol kg−1) for the PG and CP setups, respectively, while
RPD > 2 indicated excellent accuracy. Those results improved on those obtained elsewhere:
R2 = 0.75 (RMSE = 4.00 cmol kg−1) by Chang et al. [35]; R2 = 0.72 (RMSE = 4.20 cmol kg−1)
by Islam et al. [6]; and R2 = 0.67 (RMSE = 3.89 cmol kg−1) by Soriano-Disla et al. [53].
Similar results to ours were obtained by Shepherd and Walsh [54] (R2 = 0.88), Cozzolino
and Morón [2] (R2 = 0.90), and Marín-González et al. [19] (R2 = 0.89; RMSE = 22.05).

As for Ec, the results of the PLSR models indicate accurate predictions for both the PG
setup (R2 = 0.89; RMSE = 0.011; RPD = 2.73) and the CP setup (R2 = 0.90;
RMSE = 0.011; RPD = 2.73). Our results corroborate those of Lei et al. [55], who fitted a
PLSR model with R2 = 0.69 (RMSE = 0.039) for semi-arid grasslands, and Farifteh et al. [56],
who fitted models that ranged from R2 = 0.80 (RMSE = 0.070) to R2 = 0.80 (RMSE = 0.060)
for sandy and agricultural areas, while Mashimbye et al. [57] reported PLSR models with
R2 = 0.65–0.85 (validation) for soil in South Africa.

According to Marín-González et al. [19], K is a difficult property to estimate with NIR
spectroscopy. Islam et al. [6] reported poor predictions for extractable K for calibrations
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(R2 = 0.29) using PCR. Using PLSR, Volkan et al. [18] reported K soil content estimates
(depending on the validation set) with R2 values between 0.32 and 0.25 (RMSE 0.21 and
0.22, respectively). Our models predicted extractable K with moderate accuracy for both
the PG setup (R2 = 0.65; RMSE = 0.086; RPD = 1.61) and the CP setup (R2 = 0.64; RMSE
= 0.088; RPD = 1.59). Those accuracy levels corroborate Zornoza et al. [42], who reported
PLSR models with R2 = 0.79 (RMSE = 0.11 g kg−1; RPD = 2.19), but using soil with high K
content (mean 0.60 g kg−1).

Our extractable Mn estimates were moderately accurate for both PG (R2 = 0.62;
RMSE = 4.399 mg kg−1; RPD = 1.59) and CP (R2 = 0.66; RMSE = 4.195 mg kg−1; RPD = 1.67)
setups. There are few references in the literature for K content estimations using VIR-NIR,
although Chang et al. [35] built a PCR model resulting in R2 = 0.70 (RMSE = 56.40 mg kg−1;
RPD = 1.79).

Since our PG and CP setup models had comparable predictive capacities (R2) and
accuracies (RMSE), it can be concluded that the CP setup, more versatile for field measure-
ments, is preferable for soil property estimates by VIS-NIR-SWIR spectroscopy. Note that
while Rosero-Blasova et al. [33] reported a PG setup to perform better than a CP setup, they
detected no statistically significant differences between the two setups.

4.2. PLSR Model Performance

Figure 2 shows distributions of the weighted regression coefficients over the full spec-
tral range for both the PG and CP setups and the considered soil properties (to highlight
differences, the regression coefficients for each soil property are offset by 3.0 units). Evident
are several peaks in wavelength bands located in the VIS and NIR regions, attributable to
colour, water, organic matter, and clay minerals [16]. Regarding sand, K, P, and Mn, the
main peaks in the VIS range are associated with the blue and green regions around 450 nm
and 550 nm, respectively, demonstrating that colour contributes similarly to predicting
those properties. Mouazen et al. [16] reported a similar distribution of regression coeffi-
cients to ours, identifying the spectral range between 1800 nm and 2450 nm as the most
active for P and K estimates. As for pH and Ec, these are mainly associated with the blue
and green regions, denoting the influence of Fe oxides associated with clay minerals [58].
Predictions of N content are little affected by colour, while Ca predictions are influenced in
the red region.

As was expected, regression coefficient distributions were very similar for both PG
and CP setups, thereby corroborating measurement and prediction consistency between
both. The main difference was reported for N estimates, which can be attributed to PLSR
algorithm calculations instead of actual differences in spectral signatures.

Figure 3 shows the R2 values for the PLSR models obtained for the different data
subsets, different pre-processing approaches, and PG and CP setups. Using only part of
the spectrum (VIS, NIR, or SWIR), general trends for R2 were similar: R2 values with SWIR
were the best, followed by R2 values with VIS, then R2 values with NIR. RMSE values were
highest with NIR, while the lowest values were obtained with SWIR (see Table 4 above).
The main disadvantage of using SWIR subsets was that some models (e.g., those for N and
Mn) needed a greater number of factors than the VIS and NIR subsets, which potentially
delays computational calculations.
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Figure 2. Weighted regression coefficient distribution over the spectral range obtained for PLSR models for the CP
setup (coloured unbroken lines) and PG setup (coloured broken lines). Soil properties analysed for cross-validation are
sand content (Sand), pH, electrical conductivity (Ec), total nitrogen content (N), extractable phosphorous (P), extractable
potassium (K), extractable calcium (Ca), and extractable manganese (Mn). Black broken lines represent zero correlation,
offset by 3.0 units for clarity of presentation.

4.3. Data Preprocessing

Table 5 shows the best fitting models for each soil property, each type of preprocessing,
each spectral subset, and each setup. Generally, sand, pH, Ec, N, P, and K were best
predicted with models using the SWIR subset, Ca with models using the VIS subset, and
Mn with models using the full spectrum. The best models for sand, Ec, K, Ca, and Mn
were obtained for SVN + DT preprocessing, while models for N and P only required SVN
preprocessing, and models for pH required no preprocessing.
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Figure 3. Variation in coefficients of determination for spectral subsets and preprocessing approaches. R2 values obtained
for PLSR models for the CP setup (coloured unbroken lines) and PG setup (coloured broken lines). Spectral subsets were
VIS (350–700 nm), NIR (701–1000 nm), SWIR (1001–2500 nm), and VIS + NIR + SWIR (350–2500 nm). Spectral preprocessing
approaches were standard normal variate (SVN), detrending transformation (DT), and SVN + DT. Soil properties are
sand content (Sand), pH, electrical conductivity (Ec), total nitrogen content (N), extractable phosphorous (P), extractable
potassium (K), extractable calcium (Ca), and extractable manganese (Mn).

Table 5. Best PLSR models for predicting soil properties.

PG Setup CP Setup

Soil Property Transformation Spectral Subset R2 RMSE SE RPD Factors R2 RMSE SE RPD Factors

Sand SVN + DT SWIR 0.77 7.276 7.353 2.05 6 0.77 7.326 7.396 2.04 6
pH None SWIR 0.94 0.284 0.287 4.04 3 0.94 0.287 0.29 4.00 5
Ec SVN + DT SWIR 0.92 0.010 0.01 3.00 3 0.92 0.010 0.01 3.00 3
N SVN SWIR 0.77 0.014 0.014 2.14 7 0.84 0.012 0.016 1.88 7
P SVN SWIR 0.92 5.816 5.891 3.48 5 0.93 5.571 5.653 3.62 5
K SVN + DT SWIR 0.72 0.076 0.077 1.82 4 0.71 0.078 0.079 1.77 4
Ca SVN + DT VIS 0.94 1.603 1.983 3.25 5 0.92 1.859 2.277 2.83 5

Mn SVN + DT VIS + NIR +
SWIR 0.71 3.887 3.928 1.80 5 0.69 3.983 4.025 1.76 5

Transformations: SVN: standard normal variate; DT: detrending, SVN + DT: standard normal variate plus detrending. Spectral subsets: VIS
(350–700 nm), SWIR (1001–2500 nm), VIS + NIR + SWIR (350–2500 nm).

No one specific kind of preprocessing ensures the effectiveness of models. Spectral
signatures of soils are influenced by chemical composition and structural properties that
produce non-linear light scattering effects. Regression model performance depends on the
soil dataset, the analysed soil property, and the variability of the data [59], so a specific
model needs to be fitted that reflects each scenario. Furthermore, it has been reported that
spectral preprocessing has a minor influence on results when PLSR models are used [60].

Stenberg et al. [14] report that SVN combined with DT is one of the more commonly
used means of improving PLSR performance, as this approach usually enhances weak
soil spectral signals. In our research, while SVN + DT increased R2 and reduced RMSE
(see Tables 3 and 4), improvement depended on the studied soil property, and was not so
great probably because the raw reflectance data were quite stable and consistent. Other
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authors [33,61] report, for VIS-NIR spectroscopy, that preprocessing of spectral samples is
data-specific, so no single or combination technique is generally applicable to preprocessing.
In fact, different preprocessing methods should be used for different calibration techniques,
different datasets, and different soil conditions [59].

Table 5 confirms that the predictive performance of soil property PLSR spectroscopic
models varies with different kinds of preprocessing. Furthermore, use of different acces-
sories results in different illumination setups and observation geometries that condition
measurement and that consequently may affect the performance of models [21]. Model
effectiveness is also probably conditioned by variability in the data [59]. In fact, for proper-
ties where standard deviations are greater, more variance is explained and greater accuracy
is achieved.

Figure 4 represents Pearson coefficient values reflecting correlations between soil
properties and wavelengths. The correlograms grouped by correlation structure are Fe
and Mn; N and organic matter; pH and Ec; and sand and K. Analysing the correlograms,
within groups, the correlation structure is quite redundant; only Fe and organic matter
have direct optical features, while predictions for the remaining properties are based on
spurious correlations [62]. Patterns in the groups can be attributed to dominant chemical
characteristics (e.g., iron oxides and clay minerals in the group consisting of Fe and Mn)
and to the aggregate effect of several optically active minerals [62]. Regression models
based on spurious correlations depend on underlying geology and soil parameters and so
only are useful for our studied plots.
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Interpretation of the regression coefficient curves and correlograms (Figures 3 and 4,
respectively) is complicated due to the complexity in overlapping soil constituent absorp-
tion patterns. The studied chemical properties do not have direct spectral responses in
the considered spectral regions. The prediction of these properties, namely, sand, pH, Ec,
N, P, K, Ca, and Mn, can be attributed to locally present co-variations in spectrally active
constituents (mainly organic C and clay minerals). Furthermore, correlations of some
soil properties with NIR spectroscopy are still unknown and so require further investiga-
tion [16]. In fact, Miller [63] acknowledged that it is difficult to identify relevant effects
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in the NIR spectrum based on chemistry and spectroscopy of samples alone. Therefore,
further studies are needed to understand why, in our study and using VIS-NIR-SWIR
spectroscopy, properties were estimated with excellent accuracy (pH, Ec, P and Ca) and
acceptable accuracy (sand, N, and Mn).

Our results suggest that it is possible to estimate variables such as sand, pH, Ec, N, P,
K, Ca, and Mn that are optically non-active chemical properties with featureless spectra,
because those elements are bonded to spectrally active soil components, mainly iron oxides,
organic matter, and clay minerals, in such a way that the bonds constitute a key predictive
mechanism [62]. Similar conclusions have been published by Martínez-Carreras et al. [64]
and Wu et al. [65].

5. Conclusions

Vineyard soil parameters were calculated by relating spectral signatures and labora-
tory analytical determinations using PLSR. Reflectance measurements were made using PG
and CP setups. Our findings suggest that proximal soil spectroscopy is a useful technique
for soil characterisation and monitoring. The great advantage of the spectroscopic approach
is that it is cost-effective and rapid, although prediction accuracy is less than for laboratory
analyses. The predictive capacity (R2) and accuracy (RMSE) of the PLSR models depends
on setup (PG or CP), preprocessing (SVN and/or DT), spectral subset (VIS, NIR, SWIR, or
full spectrum), and individual soil properties. The best predictions, with R2 values above
0.915, were obtained for pH, Ec, and P, while moderately accurate predictions, with R2

values of 0.69 to 0.77, were obtained for sand, N, and K.
In conclusion, PLSR models can be useful for monitoring overall changes in soil

properties. Further studies aimed at more effective precision viticulture practices will
focus on vineyard soil characterisation using VIS-NIR-SWIR spectroscopy combined with
geographical information system (GIS) data.
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