Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Fertilizers
2.2. Study Soil
2.3. Experimental Design
3. Results
3.1. Total Nitrogen
3.2. Ammonium Nitrogen in Organic Pellets
3.3. Organic Nitrogen
3.4. Soil Nitrogen
3.5. Soil pH
3.6. Electric Conductivity (EC) of Soil Solution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.J.; Malik, A.; Zaman, M.; Khan, Q.; Ur Rehman, H.; Kalimullah. Nitrogen use efficiency and yield of maize crop as affected by Agrotain coated urea in arid calcareous soils. Soil Environ. 2014, 33, 1–6. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Rochette, P.; MacDonald, J.D.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; Bertrand, N. Banding of urea increased ammonia volatilization in a dry acidic soil. J. Environ. Qual. 2009, 38, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 2016, 62, 250–255. [Google Scholar] [CrossRef]
- Christianson, C.B.; Baethgen, W.E.; Carmona, G.; Howard, R.G. Microsite reactions of urea-nbtpt fertilizer on the soil surface. Soil Biol. Biochem. 1993, 25, 1107–1117. [Google Scholar] [CrossRef]
- Allaire, S.E.; Parent, L.E. Physical Properties of Granular Organic-based Fertilisers, Part 1: Static Properties. Biosyst. Eng. 2004, 87, 79–87. [Google Scholar] [CrossRef]
- Akhtar, M.; Hussain, F.; Ashraf, M.Y.; Qureshi, T.M.; Akhter, J.; Awan, A.R. Influence of Salinity on Nitrogen Transformations in Soil. Commun. Soil Sci. Plant Anal. 2012, 43, 1674–1683. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia Emission from Mineral Fertilizers and Fertilized Crops. Adv. Agron. 2001, 82, 557–622. [Google Scholar]
- Marschner, P.; Rengel, Z. Nutrient Availability in Soils. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 315–330. [Google Scholar]
- Herrmann, M.; Pust, J.; Pott, R. Leaching of nitrate and ammonium in heathland and forest ecosystems in Northwest Germany under the influence of enhanced nitrogen deposition. Plant Soil 2005, 273, 129–137. [Google Scholar] [CrossRef]
- Cheng, W.; Sudo, S.; Tsuruta, H.; Yagi, K.; Hartley, A. Temporal and spatial variations in N2O emissions from a Chinese cabbage field as a function of type of fertilizer and application. Nutr. Cycl. Agroecosyst. 2006, 74, 147–155. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, Z.; Sun, W.; Huang, Y. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agric. Ecosyst. Environ. 2010, 135, 216–225. [Google Scholar] [CrossRef]
- Weier, K.L.; Gilliam, J.W. Effect of acidity on denitrification and nitrous oxide evolution from Atlantic Coastal Plain soils. Soil Sci. Soc. Am. J. 1986, 50, 1202–1205. [Google Scholar] [CrossRef]
- Boyer, E.W.; Goodale, C.L.; Jaworski, N.A.; Howarth, R.W. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry 2002, 57–58, 137–169. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Sommer, K. CULTAN cropping system: Fundamentals, state of development and perspectives. Nitrogen A Sustain. Ecosyst. Cell Plant 2000, 361–375. [Google Scholar]
- Stagnari, F.; Pisante, M. Slow release and conventional N fertilizers for nutrition of bell pepper. Plant Soil Environ. 2012, 58, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Alemi, H.; Kianmehr, M.H.; Borghaee, A.M. Effect of pellet processing of fertilizer on slow-release nitrogen in soil. Asian J. Plant Sci. 2010, 9, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Sun, Y.; Zhang, M.; Li, C.; Yang, Y.; Liu, Z.; Li, S. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Res. 2015, 184, 65–73. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Sommer, K. CULTAN-Düngung. In Physiologisch, Ökologisch, Ökonomisch Optimiertes Düngungsverfahren für Ackerkulturen, Grünland, Gemüse, Zierpflanzen und Obstgehölze; AgroConcept GmbH: Bonn, Germany, 2005. [Google Scholar]
- Azeem, B.; Kushaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Petersen, J.; Hansen, B.; Sørensen, P. Nitrification of 15N-ammonium sulphate and crop recovery of 15N-labelled ammonium nitrates injected in bands. Eur. J. Agron. 2004, 21, 81–92. [Google Scholar] [CrossRef]
- Naeem, M.; Idrees, M.; Khan, M.M.A.; Moinuddin; Ansari, A.A. Task of mineral nutrients in eutrophication. In Eutrophication: Causes, Consequences and Control; Springer Science & Business Media: Berlin, Germany, 2014; Volume 2, pp. 223–237. [Google Scholar]
- Lubkowski, K. Coating fertilizer granules with biodegradable materials for controlled fertilizer release. Environ. Eng. Manag. J. 2014, 13, 2573–2581. [Google Scholar] [CrossRef]
- Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 2004, 163, 459–480. [Google Scholar] [CrossRef]
- Motior Rahman, M.; Soaud, A.A.; Al Darwish, F.H.; Sofian-Azirun, M. Effects of sulfur and nitrogen on nutrients uptake of corn using acidified water. Afr. J. Biotechnol. 2011, 10, 8275–8283. [Google Scholar] [CrossRef] [Green Version]
- Shammas, K.N. Interactions of temperature, pH, and biomass on the nitrification process. J. Water Pollut. Control Fed. 1986, 58, 52–59. [Google Scholar]
- Marschner, P.; Fu, Q.; Rengel, Z. Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J. Plant Nutr. Soil Sci. 2003, 166, 712–718. [Google Scholar] [CrossRef]
- Smiley, R.W. Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci. Soc. Am. Proc. 1974, 38, 795–799. [Google Scholar] [CrossRef]
- Kanabo, I.A.K.; Gilkes, R.J. The role of soil pH in the dissolution of phosphate rock fertilizers. Fertil. Res. 1987, 12, 165–173. [Google Scholar] [CrossRef]
- Freney, J.R.; Keerthisinghe, D.G.; Phongpan, S.; Chaiwanakupt, P.; Harrington, K.J. Effect of urease, nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand. Fertil. Res. 1994, 40, 225–233. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess. Soil Qual. 2015, 49, 169–185. [Google Scholar]
- Giacometti, C.; Demyan, M.S.; Cavani, L.; Marzadori, C.; Ciavatta, C.; Kandeler, E. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl. Soil Ecol. 2013, 64, 32–48. [Google Scholar] [CrossRef]
- Hood, R.C. The effect of soil temperature and moisture on organic matter decomposition and plant growth. Isot. Environ. Health Stud. 2001, 37, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Agehara, S.; Warncke, D.D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Medina, L.C.; Sartain, J.B.; Obreza, T.A. Estimation of release properties of slow-release fertilizer materials. HortTechnology 2009, 19, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Broschat, T.K.; Moore, K.K. Release rates of ammonium-nitrogen, nitrate-nitrogen, phosphorus, potassium, magnesium, iron, and manganese from seven controlled-release fertilizers. Commun. Soil Sci. Plant Anal. 2007, 38, 843–850. [Google Scholar] [CrossRef]
- Rusek, P.; Rutkowska, B.; Szulc, W.; Schab, S.; Łabętowicz, J.; Stępień, W.; Biskupski, A.; Niedziński, T. The urea superphosphate-based nps(M) fertilizer production technology. part 1. the evaluation of fertilizer effect on development of maize root system after sub-soil application of the fertilizer. Przem. Chem. 2016, 95, 1020–1024. [Google Scholar] [CrossRef]
- Schab, S.; Biskupski, A.; Rusek, P. Process for production of a urea superphosphate fertilizer under continuous feeding of raw materials. Przem. Chem. 2016, 95, 1000–1002. [Google Scholar] [CrossRef]
- ISO 11261:1995. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Available online: https://www.iso.org/standard/19239.html (accessed on 18 June 2021).
- Krasilnikov, P.; Martí, J.J.I.; Arnold, R.; Shoba, S. A Handbook of Soil Terminology, Correlation and Classification. Stylus Pub. Llc.: London, UK, 2009; pp. 328–335. [Google Scholar]
- ISO 10693:1995. Soil Quality—Determination of Carbonate Content—Volumetric Method. Available online: https://www.iso.org/standard/18781.html (accessed on 18 June 2021).
- ISO 10694:1995(en)ISO 10694:1995. Soil Quality—Determination of Organic and Total Carbon after Dry Combustion. Available online: https://www.iso.org/standard/18782.html (accessed on 18 June 2021).
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Trenkel, M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd ed.; International Fertilizer Industry Association: Paris, France, 2010. [Google Scholar]
- Fillery, I.; Simpson, J.R.; De Datta, S.K. Contribution of ammonia volatilization to total nitrogen loss after applications of urea to wetland rice fields. Fertil. Res. 1986, 8, 193–202. [Google Scholar] [CrossRef]
- Hasnain, M.; Chen, J.; Ahmed, N.; Memon, S.; Wang, L.; Wang, Y.; Wang, P. The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability 2020, 12, 9065. [Google Scholar] [CrossRef]
- Ju, X.T.; Liu, X.J.; Pan, J.R.; Zhang, F.S. Fate of 15N-Labeled Urea Under a Winter Wheat-Summer Maize Rotation on the North China Plain1 1 Project supported by the National Natural Science Foundation of China (Nos. 40571071, 30390080 and 30370287) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0511). Pedosphere 2007, 17, 52–61. [Google Scholar] [CrossRef]
- Zangani, E.; Afsahi, K.; Shekari, F.; Sweeney, E.M.; Mastinu, A. Nitrogen and phosphorus addition to soil improves seed yield, foliar stomatal conductance, and the photosynthetic response of rapeseed (Brassica napus L.). Agriculture 2021, 11, 483. [Google Scholar] [CrossRef]
- Prasertsak, P.; Freney, J.R.; Denmead, O.T.; Saffigna, P.G.; Prove, B.G.; Reghenzani, J.R. Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland. Nutr. Cycl. Agroecosyst. 2002, 62, 229–239. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Andrews, R.K.; Blakeley, R.L.; Zerner, B. Urea and urease. Adv. Inorg. Biochem. 1984, 6, 245–283. [Google Scholar] [PubMed]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; MacDonald, J.D.; Pelster, D.E.; Bertrand, N. NH3 volatilization, soil NH4+concentration and soil pH following subsurface banding of urea at increasing rates. Can. J. Soil Sci. 2013, 93, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Soaud, A.A.; Saleh, M.E.; El-Tarabily, K.A.; Rahman, M.M. Effect of elemental sulfur application on ammonia volatilization from surface applied urea fertilizer to calcareous sandy soils. Aust. J. Crop Sci. 2011, 5, 571–579. [Google Scholar]
- Passioura, J.B.; Wetselaar, R. Consequences of banding nitrogen fertilizers in soil—II. Effects on the growth of wheat roots. Plant Soil 1972, 36, 461–473. [Google Scholar] [CrossRef]
- Ekwue, E.I.; Bartholomew, J. Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosyst. Eng. 2011, 108, 95–103. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R.W.; Wolf, D.C. Effect of sodium chloride on CO2 evolution, ammonification, and nitrification in a Sassafras sandy loam. Soil Biol. Biochem. 1980, 12, 153–157. [Google Scholar] [CrossRef]
- McClung, G.; Frankenberger, W.T., Jr. Soil nitrogen transformations as affected by salinity. Soil Sci. 1985, 139, 405–411. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef] [Green Version]
- FAO. Calcareous Soils; FAO Soils Bulletin: Rome, Italy, 1973; Volume 21. [Google Scholar]
Fertilizer | Mass Percentage—N (%) | ||
---|---|---|---|
NH4-N | Norg-N | Ntot-N | |
U-PSc | - | 20.81 | 20.81 |
U-PSf | - | 20.89 | 20.89 |
DAP | 18.67 | - | 18.67 |
MT | 1.09 | 2.77 | 3.86 |
Ms | 0.55 | 1.97 | 2.52 |
pH(H2O) | CaCO3 (%) | µS·cm−1 | Ntot (%) | NH4+-N (%) | Corg (%) | Ctot (%) |
---|---|---|---|---|---|---|
8.39 | 52.0 | 113.85 | 0.17 | 0.01 | 0.66 | 1.14 |
Time (Days) | U-PSc | U-PSf | DAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 20.8a * | 100 | 20.8a | 100 | 20.9a | 100 | 20.9a | 100 | 18.7a | 100 | 18.7a | 100 |
5 | 3.4b | 16.1 | 1.9c | 9.3 | 1.7b | 8.0 | 1.9b | 9.0 | 6.5b | 34.8 | 5.2de | 27.7 |
10 | 1.7c | 7.9 | 0.5d | 2.2 | 0.7c | 3.4 | 0.3cd | 1.4 | 5.8c | 31.2 | 4.8ef | 25.6 |
20 | 0.5d | 2.4 | 0.3d | 1.5 | 0.4cd | 2.1 | 0.3cd | 1.3 | 5.6cd | 30.0 | 4.5f | 24.2 |
35 | 0.4d | 2.0 | 0.3d | 1.4 | 0.3cd | 1.2 | 0.2d | 1.1 | 5.3d | 28.2 | 4.0g | 21.3 |
Average | 5.3A ** | 25.7 | 4.8B | 22.9 | 4.8A | 22.9 | 4.7A | 22.5 | 8.4A | 44.8 | 7.5B | 40.0 |
Time | TM | MS | ||||||
---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 3.9a * | 100 | 3.9a | 100 | 2.5a | 100 | 2.5a | 100 |
5 | 3.5b.0 | 91.2 | 3.0de | 77.5 | 2.4ab | 94.0 | 2.3abc | 90.9 |
10 | 3.4bc | 88.1 | 2.9def | 75.9 | 2.3abc | 89.3 | 2.2bc | 86.5 |
20 | 3.2cd | 83.4 | 2.8ef | 73.1 | 2.2bc | 86.1 | 2.0bc | 81.0 |
35 | 3.1de | 79.8 | 2.6f | 68.1 | 2.2bc | 85.7 | 2.0c | 80.2 |
Average | 3.4A ** | 88.3 | 3.0B | 79.0 | 2.3A | 90.9 | 2.2A | 88.5 |
Time (Days) | TM | MS | ||||||
---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 1.09a * | 100 | 1.09a | 100 | 0.55a | 100 | 0.55a | 100 |
5 | 0.89b | 81.7 | 0.65c | 59.6 | 0.41b | 74.5 | 0.33c | 60.0 |
10 | 0.86b | 78.9 | 0.60c | 55.0 | 0.29c | 52.7 | 0.23d | 41.8 |
20 | 0.66c | 60.6 | 0.48d | 44.0 | 0.22de | 40.0 | 0.22de | 40.0 |
35 | 0.59c | 54.1 | 0.33e | 30.3 | 0.20de | 36.4 | 0.17e | 30.9 |
Average | 0.82A ** | 75.2 | 0.63B | 57.8 | 0.33A | 60.0 | 0.30B | 54.5 |
Time (Days) | TM | MS | ||||||
---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 2.75a * | 100 | 2.74a | 100 | 1.97a | 100 | 1.97a | 100 |
5 | 2.61abc | 94.9 | 2.39de | 87.2 | 1.96a | 99.5 | 1.95a | 99.0 |
10 | 2.65bcd | 96.4 | 2.34e | 85.4 | 1.96a | 99.5 | 1.93ab | 98.0 |
20 | 2.55cd | 92.7 | 2.32e | 84.7 | 1.94ab | 98.5 | 1.90b | 96.4 |
35 | 2.44cde | 88.7 | 2.29e | 83.6 | 1.92ab | 97.5 | 1.82c | 92.4 |
Average | 2.58A ** | 93.8 | 2.41B | 88.0 | 1.95A | 99.0 | 1.91B | 97.0 |
Time (Days) | U-PSc | U-PSf | DAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 129a * | 100 | 120a | 100 | 129a | 100 | 120a | 100 | 129a | 100 | 120a | 100 |
5 | 772b | 598 | 798b | 665 | 905b | 702 | 1042e | 868 | 833e | 646 | 929fg | 774 |
10 | 940e | 729 | 1107g | 923 | 996de | 772 | 1376g | 1147 | 872ef | 676 | 946g | 788 |
20 | 893d | 692 | 1037f | 864 | 967cd | 750 | 1323fg | 1103 | 679c | 526 | 849e | 708 |
35 | 816b | 633 | 1001f | 834 | 931bc | 722 | 1312f | 1093 | 610b | 473 | 766d | 638 |
Average | 710A ** | 550 | 813B | 678 | 786A | 609 | 1034B | 862 | 625A | 484 | 722B | 602 |
Time (Days) | TM | MS | ||||||
---|---|---|---|---|---|---|---|---|
30% MWHC | % Relative Content | 60% MWHC | % Relative Content | 30% MWHC | % Relative Content | 60% MWHC | % Relative Content | |
0 | 129a * | 100 | 120a | 100 | 129a | 100 | 120a | 100 |
5 | 371b | 288 | 576c | 480 | 293b | 227 | 357c | 298 |
10 | 403b | 312 | 697d | 581 | 325bc | 252 | 511e | 426 |
20 | 523c | 405 | 764d | 637 | 337c | 261 | 540e | 450 |
35 | 698d | 541 | 944e | 787 | 424d | 329 | 797f | 664 |
Average | 425A ** | 329 | 618B | 515 | 301A | 233 | 465B | 388 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niedziński, T.; Sierra, M.J.; Łabętowicz, J.; Noras, K.; Cabrales, C.; Millán, R. Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil. Agronomy 2021, 11, 1981. https://doi.org/10.3390/agronomy11101981
Niedziński T, Sierra MJ, Łabętowicz J, Noras K, Cabrales C, Millán R. Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil. Agronomy. 2021; 11(10):1981. https://doi.org/10.3390/agronomy11101981
Chicago/Turabian StyleNiedziński, Tomasz, María José Sierra, Jan Łabętowicz, Kinga Noras, Cristina Cabrales, and Rocio Millán. 2021. "Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil" Agronomy 11, no. 10: 1981. https://doi.org/10.3390/agronomy11101981
APA StyleNiedziński, T., Sierra, M. J., Łabętowicz, J., Noras, K., Cabrales, C., & Millán, R. (2021). Release of Nitrogen from Granulate Mineral and Organic Fertilizers and Its Effect on Selected Chemical Parameters of Soil. Agronomy, 11(10), 1981. https://doi.org/10.3390/agronomy11101981